Extraction, Purification, Structure, and Bioactivities of Polysaccharides from Glehnia littoralis: A Review
Abstract
1. Introduction
2. The Traditional Use of GL
3. Preparation Techniques of GLPs
3.1. Extraction of GLPs
3.1.1. Solvent Extraction
3.1.2. Acid-Assisted and Alkali-Assisted Extraction
3.1.3. Ultrasonic-Assisted Extraction
3.1.4. Microwave-Assisted Extraction
3.1.5. Enzymatic Extraction
3.1.6. Multi-Method Joint Extraction
3.2. Isolation and Purification of GLPs
4. Structural Characteristics of GLPs
4.1. Purity of GLPs
4.2. Molecular Weight
4.3. Composition and Chemical Structure of Monosaccharides
5. Pharmacological Activities of GLPs
5.1. Immunomodulatory Effects
5.2. Antioxidant Effects
5.3. Antitumor Effects
6. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Abbreviation | Full name |
| GL | Glehnia littoralis |
| GLPs | Polysaccharides from glehnia littoralis |
| CNKI | China national knowledge infrastructure |
| TCM | Traditional chinese medicine |
| NaOH | Sodium hydroxide |
| H2O2 | Hydrogen peroxide |
| DEAE | Diethylaminoethyl |
| IC | Ion chromatography |
| FTIR | Fourier transform infrared spectroscopy |
| HPLC | High performance liquid chromatography |
| HPGPC | High performance gel permeation chromatography |
| GC | Gas chromatography |
| GC-MS | Gas chromatography-mass spectrometry |
| NMR | Nuclear magnetic resonance |
| UV | Ultraviolet |
| UV-Vis | Ultraviolet absorption spectroscopy |
| GPC | Gel permeation chromatography |
| HPSEC | High performance size exclusion chromatography |
| Mw | Molecular weight |
| PDI | Polydispersity index |
| HPSEC-MALLS-RID | High performance size exclusion chromatography-multi-angle laser light scattering-refractive index detector |
| HPAEC | High performance anion exchange chromatography |
| MALDI-TOF-MS | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
| IR | Infrared spectroscopy |
| FT-IR | Fourier transform infrared spectrometer |
| CE | Capillary electrophoresis |
| TLC | Thin layer chromatography |
| RSM | Response surface methodology |
| SAR | Structure–activity relationship |
| DES | Deep eutectic solvent |
| MS | Mass spectrometry |
| H-HCOSY | Homonuclear correlation spectroscopy |
| HILICLC-MS | Hydrophilic interaction chromatography-liquid chromatography-mass spectrometry |
| Glc | Glucose |
| Man | Mannose |
| GlcA | Glucuronic acid, gluconic acid |
| Gal | Galactose |
| Ara | Arabinose |
| Rha | Rhamnose |
| Xyl | Xylose |
| Fuc | Fucose |
| RAW 264.7 | Mouse mononuclear macrophage leukemia cells |
| NK cell | Natural killer cell |
| TNF-α | Tumor necrosis factor-α |
| NO | Nitric oxide |
| MTT | 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide |
| A549 Cells | Human Non-Small Cell Lung Cancer Cells |
| PCNA | Proliferating cell nuclear antigen |
| PD-1 | Programmed cell death protein-1 |
| VEGF | Vascular endothelial growth factor |
| VEGFR-2 | Vascular endothelial growth factor receptor 2 |
| SPR | Surface plasmon resonance |
| IgG | Immunoglobulin G |
| IgM | Immunoglobulin M |
| IL-6 | Interleukin-6 |
| LPS | Lipopolysaccharide |
| ANN | Artificial Neural Networks |
| prep-UHPLC | Preparative ultra-high performance liquid chromatography |
| SFE | Supercritical fluid extraction |
References
- Jing, Y.S.; Zhang, R.J.; Wu, L.F.; Zhang, D.S.; Zheng, Y.G. Structural characteristics and antioxidant activity of polysaccharide-iron complex from Glehniae Radix. Int. J. Food Prop. 2020, 23, 894–907. [Google Scholar] [CrossRef]
- Du, B.X.; Fu, Y.P.; Wang, X.; Jiang, H.Q.; Lv, Q.T.; Du, R.K.; Yang, Y.; Rong, R. Isolation, purification, structural analysis and biological activities of water-soluble polysaccharide from Glehniae radix. Int. J. Biol. Macromol. 2019, 128, 724–731. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, S.; Lei, S.S.; Wang, D.; Peng, B.; Shi, R.; Chong, C.M.; Zhong, Z.; Wang, Y. A comprehensive review of the classical prescription Yiguan Jian: Phytochemistry, quality control, clinical applications, pharmacology, and safety profile. J. Ethnopharmacol. 2024, 319, 117230. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, F.; Yang, L.; Zeng, J.; Han, F.; Yu, X.; Zhu, Y.; Zhong, G.; He, J. Chemical constituents from Glehnia littoralis and their chemotaxonomic significance. Nat. Prod. Res. 2020, 34, 2822–2827. [Google Scholar] [CrossRef]
- Seo, U.M.; Zhao, B.T.; Kim, Y.H.; Kang, J.S.; Son, J.K.; Woo, M.H. Simultaneous analysis of seven marker compounds from Saposhnikoviae Radix, Glehniae Radix and Peucedani Japonici Radix by HPLC/PDA. Arch. Pharm. Res. 2016, 39, 695–704. [Google Scholar] [CrossRef]
- Dong, Q.; Yuan, Y.; Zhou, Y.; Zhang, Y.X.; Zhang, J.P.; Yu, H.B.; Jiao, B.H.; Liu, X.Y.; Lu, X.L. Biotransformation of total coumarins of Radix Glehniae by Lecanicillium attenuatum W-1-9. J. Asian Nat. Prod. Res. 2018, 20, 675–685. [Google Scholar] [CrossRef]
- Yang, M.; Li, X.; Zhang, L.; Wang, C.C.; Ji, M.Y.; Xu, J.P.; Zhang, K.Y.; Liu, J.C.; Zhang, C.H.; Li, M.H. Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Glehnia: A Systematic Review. Evid.-Based Compl. Alt. 2019, 2019, 1253493. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, P.; Zhao, S.; Nie, C.; Wang, N.; Du, X.; Zhou, Y. Characterization, antioxidant activity and immunomodulatory activity of polysaccharides from the swollen culms of Zizania latifolia. Int. J. Biol. Macromol. 2017, 95, 809–817. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Yu, Y.; Cheung, P.C. Enhancement of antitumor activities in sulfated and carboxymethylated polysaccharides of Ganoderma lucidum. J. Agric. Food Chem. 2009, 57, 10565–10572. [Google Scholar] [CrossRef]
- Bian, Z.; Zhang, R.; Zhang, X.; Zhang, J.; Xu, L.; Zhu, L.; Ma, Y.; Liu, Y. Extraction, structure and bioactivities of polysaccharides from Rehmannia glutinosa: A review. J. Ethnopharmacol. 2023, 305, 116132. [Google Scholar] [CrossRef]
- Huang, Y.; Nan, L.; Xiao, C.; Ji, Q.; Li, K.; Wei, Q.; Liu, Y.; Bao, G. Optimum preparation method for self-assembled pegylation nano-adjuvant based on rehmannia glutinosa polysaccharide and its immunological effect on macrophages. Int. J. Nanomed. 2019, 14, 9361–9375. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.H.; Zhao, S.; Ho, K.P.; Wu, J.Y. Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem. 2009, 114, 1251–1256. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Zhang, H.; Guo, H.; Kang, L.; Li, H.; Li, K. A systematic review on polysaccharides from Morinda officinalis How: Advances in the preparation, structural characterization and pharmacological activities. J. Ethnopharmacol. 2024, 328, 118090. [Google Scholar] [CrossRef]
- Mukherjee, S.; Jana, S.; Khawas, S.; Kicuntod, J.; Marschall, M.; Ray, B.; Ray, S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr. Polym. 2022, 289, 119299. [Google Scholar] [CrossRef]
- Wu, J.; Gao, W.; Song, Z.; Xiong, Q.; Xu, Y.; Han, Y.; Yuan, J.; Zhang, R.; Cheng, Y.; Fang, J.; et al. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549. Int. J. Biol. Macromol. 2018, 106, 464–472. [Google Scholar] [CrossRef]
- Liu, Y.M.; Liu, B.; Wang, J.F.; Feng, Y.T.; Miao, N.F. The extraction on polysaccharide of Radix Glehniae and immuno-regulating effects on Yin deficiency mice. Chin. J. Biochem. Pharm. 2005, 26, 224–225. [Google Scholar] [CrossRef]
- Gao, J.; Lin, L.; Sun, B.; Zhao, M. A comparison study on polysaccharides extracted from Laminaria japonica using different methods: Structural characterization and bile acid-binding capacity. Food Funct. 2017, 8, 3043–3052. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, J.; Wang, B.; Cheng, Z.; Xu, J.; Gao, W.; Chen, K. Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohydr. Polym. 2021, 266, 118149. [Google Scholar] [CrossRef]
- Ji, X.L.; Yin, M.S.; Nie, H.; Liu, Y.Q. A review of isolation, chemical properties, and bioactivities of polysaccharides from Bletilla striata. BioMed Res. Int. 2020, 2020, 5391379. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huang, G.L. Extraction and antioxidant activities of cushaw polysaccharide. Int. J. Biol. Macromol. 2018, 120, 1646–1649. [Google Scholar] [CrossRef]
- Pawlaczyk, G.I.; Balicki, S.; Wilk, K.A. Effect of various extraction methods on the structure of polyphenolic-polysaccharide conjugates from Fragaria vesca L. leaf. Int. J. Biol. Macromol. 2019, 130, 664–674. [Google Scholar] [CrossRef]
- Jing, Y.S.; Zhang, D.S.; Zhang, R.J.; Su, L.; Pan, M.S.; Sun, S.S.; Wu, L.F.; Zheng, Y.G. Effect of different extraction methods on the properties and biological activity of polysaccharides from Radix Glehniae. Food Mach. 2017, 33, 149–153. [Google Scholar] [CrossRef]
- Fang, X.; Gu, S.; Jin, Z.; Hao, M.; Yin, Z.; Wang, J. Optimization of ultrasonic-assisted simultaneous extraction of three active compounds from the fruits of forsythia suspensa and comparison with conventional extraction methods. Molecules 2018, 23, 2115. [Google Scholar] [CrossRef]
- Si, J.; Yang, C.; Chen, Y.; Xie, J.; Tian, S.; Cheng, Y.; Hu, X.; Yu, Q. Structural properties and adsorption capacities of Mesona chinensis Benth residues dietary fiber prepared by cellulase treatment assisted by Aspergillus niger or Trichoderma reesei. Food Chem. 2023, 407, 135149. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Zhang, M.; Zhou, H.L. Microwave-Assisted Extraction, Purification, Partial Characterization, and Bioactivity of Polysaccharides from Panax ginseng. Molecules 2019, 24, 1605. [Google Scholar] [CrossRef]
- Zhang, R.J.; Jing, Y.S.; Zhang, D.S. Optimization of Glehniae Radix polysaccharide extraction process, antioxidant activity and protective effect on H2O2 induced oxidative damage in PC12 cells. Chin. J. Pharmacol. Toxicol. 2019, 33, 473–474. [Google Scholar]
- Shen, Y.X.; Liu, H.X.; Li, H.S.; Ren, B.R. Optimisation of aqueous extraction of crude polysaccharides from Glehniae Radix. Chin. Food Safe Mag. 2016, 3, 123–125. [Google Scholar] [CrossRef]
- Wang, B.l.; Xu, Y.; Chen, L.J.; Zhao, G.M.; Mi, Z.Y.; Lv, D.H.; Niu, J.F. Optimizing the extraction of polysaccharides from Bletilla ochracea Schltr. using response surface methodology (RSM) and evaluating their antioxidant activity. Processes 2020, 8, 341. [Google Scholar] [CrossRef]
- Jayapala, N.; Toragall, V.; Kumar, G.; Chaudhari, S.R.; Baskaran, V. Preparation, characterization, radical scavenging property and antidiabetic potential of laminarioligosaccharides derived from laminarin. Algal Res. 2022, 63, 102642. [Google Scholar] [CrossRef]
- Li, Y.C.; Zhao, M.; Gomez, L.P.; Senthamaraikannan, R.; Padamati, R.B.; O’Donnell, C.P.; Tiwari, B.K. Investigation of enzyme-assisted methods combined with ultrasonication under a controlled alkali pretreatment for agar extraction from Gelidium sesquipedale. Food Hydrocoll. 2021, 120, 106905. [Google Scholar] [CrossRef]
- Wang, N.; Shi, N.; Fei, H.; Liu, Y.; Zhang, Y.; Li, Z.; Ruan, C.; Zhang, D. Physicochemical, structural, and digestive properties of pea starch obtained via ultrasonic-assisted alkali extraction. Ultrason. Sonochem 2022, 89, 106136. [Google Scholar] [CrossRef]
- Wei, E.W.W.; Yang, R.; Zhao, H.P.; Wang, P.H.; Zhao, S.Q.; Zhai, W.C.; Zhang, Y.; Zhou, H.L. Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries. Int. J. Biol. Macromol. 2019, 123, 280–290. [Google Scholar] [CrossRef]
- Feng, Z.J.; Zhang, X.H.; Zhang, J.P.; Shang, X.H.; Gao, Y.; Lu, X.L.; Liu, X.Y.; Jiao, B.H. A new aromatic glycoside from Glehnia littoralis. Nat. Prod. Res. 2014, 28, 551–554. [Google Scholar] [CrossRef]
- Jing, Y.S.; Zhang, R.J.; Ma, Y.F.; Zhang, Y.W.; Zheng, Y.G.; Wu, L.F.; Zhang, D.S. Structural elucidation, anti-radical and immunomodulatory activities of polysaccharides from the roots of Glehnia littoralis. Nat. Prod. Res. 2021, 36, 4624–4629. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.Y.; Zhou, C.C.; Wang, Z.H.; Zhu, W.W.; Wang, X.; Liu, G.J. Solid-oil separation of coal tar residue to reduce polycyclic aromatic hydrocarbons via microwave-assisted extraction. J. Environ. Manag. 2023, 337, 117679. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Lv, S. Microwave-assisted extraction and antioxidant activities of polysaccharides from radix glehniae. Food Res. Dev. 2016, 37, 62–65. [Google Scholar] [CrossRef]
- Pan, J.; Shi, Y.; Zou, J.; Zhang, X.; Xin, B.; Zhai, B.; Guo, D.; Sun, J.; Luan, F. Preparation technologies, structural features, and biological activities of polysaccharides from Mesona chinensis Benth.: A review. J. Ethnopharmacol. 2024, 326, 117979. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Lee, W.Y. Anti-glycation effect of Ecklonia cava polysaccharides extracted by combined ultrasound and enzyme-assisted extraction. Int. J. Biol. Macromol. 2021, 180, 684–691. [Google Scholar] [CrossRef]
- Pan, S.; Wu, S. Cellulase-assisted extraction and antioxidant activity of the polysaccharides from garlic. Carbohydr. Polym. 2014, 111, 606–609. [Google Scholar] [CrossRef]
- Jing, Y.S.; Zhang, D.S.; Zhang, R.J.; Han, Y.; Liu, D.B.; Zheng, Y.G.; Wu, L.F. Study on the compound enzyme extraction process of Glehniae Radix and its physicochemical properties. Food Mach. 2019, 35, 191–197. [Google Scholar] [CrossRef]
- Jing, Y.S.; Yuan, X.R.; Dai, L.X.; Zhang, R.J.; Zhang, H.; Zhang, Y.G.; Wu, L.F. Optimization of cellulase synergistic ultrasonic-assisted extraction of polysaccharide from glehniae radix and its physicochemical properties and immunomodulatory activity. Sci. Technol. Food Ind. 2022, 43, 185–193. [Google Scholar] [CrossRef]
- Liu, W.; Li, K.; Zhang, H.; Li, Y.; Lin, Z.; Xu, J.; Guo, Y. An antitumor arabinan from Glehnia littoralis activates immunity and inhibits angiogenesis. Int. J. Biol. Macromol. 2024, 263, 130242. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.R.; Wang, P.Z.; Jiang, H.Q.; Gong, L.L.; Lv, Q.T.; Rong, R. Optimization of hot water extraction method of Glehnia littoralis polysaccharides by central composite design and response surface methodology. Shandong J. Tradit. Chin. Med. 2017, 36, 66–70+77. [Google Scholar] [CrossRef]
- Jin, M.; Zhao, K.; Huang, Q.; Xu, C.; Shang, P. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: A review. Carbohydr. Polym. 2012, 89, 713–722. [Google Scholar] [CrossRef]
- Luan, F.; Ji, Y.; Peng, L.; Liu, Q.; Cao, H.; Yang, Y.; He, X.; Zeng, N. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Codonopsis pilosula: A review. Carbohydr. Polym. 2021, 261, 117863. [Google Scholar] [CrossRef] [PubMed]
- Panda, B.C.; Mondal, S.; Devi, K.S.; Maiti, T.K.; Khatua, S.; Acharya, K.; Islam, S.S. Pectic polysaccharide from the green fruits of Momordica charantia (Karela): Structural characterization and study of immunoenhancing and antioxidant properties. Carbohydr. Res. 2015, 401, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guo, Y.; Sun, J.; Lei, Y.; Guo, M.; Wang, L. Extraction methods, multiple biological activities, and related mechanisms of Momordica charantia polysaccharide: A review. Int. J. Biol. Macromol. 2024, 263, 130473. [Google Scholar] [CrossRef]
- Jing, Y.S.; Zhang, D.S.; Su, L.; Zhang, R.J.; Wu, L.F.; Zhang, Y.G. Studies on the physicochemical properties and biological activities of Glehnia littoralis polysaccharides from different locations. Food Res. Dev. 2018, 39, 21–26. [Google Scholar] [CrossRef]
- Piasecka, I.; Brzezińska, R.; Kalisz, S.; Wiktor, A.; Górska, A. Recovery of antioxidants and oils from blackcurrant and redcurrant wastes by ultrasound-assisted extraction. Food Biosci. 2024, 57, 103511. [Google Scholar] [CrossRef]
- Huang, H.; Huang, G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides. Chem. Biol. Drug Des. 2020, 96, 1209–1222. [Google Scholar] [CrossRef]
- Yang, M.L.; Ren, W.J.; Li, G.Y.; Yang, P.; Chen, R.; He, H. The effect of structure and preparation method on the bioactivity of polysaccharides from plants and fungi. Food Funct. 2022, 13, 12541–12560. [Google Scholar] [CrossRef]
- Qi, H.Y.; Zhang, Z.P.; Liu, J.Q.; Chen, Z.Q.; Huang, Q.X.; Li, J.; Chen, J.J.; Wang, M.X.; Zhao, D.Q.; Wang, Z.Y. Comparisons of isolation methods, structural features, and bioactivities of the polysaccharides from three common Panax species: A review of recent progress. Molecules 2021, 26, 4997. [Google Scholar] [CrossRef] [PubMed]
- Cohen, G.H.; Johnstone, D.B. Extracellular polysaccharides of Azotobacter vinelandii. J. Bacteriol. 1964, 88, 329–338. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhou, H.L.; Li, Y.P.; Wu, M.F.; Yu, M.; Sun, X.S. Optimized purification process of polysaccharides from Carex meyeriana Kunth by macroporous resin, its characterization and immunomodulatory activity. Int. J. Biol. Macromol. 2019, 132, 76–86. [Google Scholar] [CrossRef]
- Jing, Y.S.; Li, J.Y.; Zhang, Y.W.; Zhang, R.J.; Zheng, Y.G.; Hu, B.B.; Wu, L.F.; Zhang, D.S. Structural characterization and biological activities of a novel polysaccharide from Glehnia littoralis and its application in preparation of nano-silver. Int. J. Biol. Macromol. 2021, 183, 1317–1326. [Google Scholar] [CrossRef]
- Qamar, S.; Torres, Y.J.M.; Parekh, H.S.; Robert Falconer, J. Extraction of medicinal cannabinoids through supercritical carbon dioxide technologies: A review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1167, 122581. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Tan, Z. Separation and Purification of Astragalus membranaceus Polysaccharides by Deep Eutectic Solvents-Based Aqueous Two-Phase System. Molecules 2022, 27, 5288. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Yu, P.; Li, X.; Lai, X.; Yang, M.; Liu, F.; Luan, F.; Meng, X. Polysaccharides from Spirulina platensis: Extraction methods, structural features and bioactivities diversity. Int. J. Biol. Macromol. 2023, 231, 123211. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, J.; Liu, G.; Li, Y.; Liang, L.; Liu, X.; Xu, X.; Wen, C. Advance in Morchella sp. polysaccharides: Isolation, structural characterization and structure-activity relationship: A review. Int. J. Biol. Macromol. 2023, 247, 125819. [Google Scholar] [CrossRef]
- Li, K.X. Study on the Polysaccharides of Cynanchum stauntonii and Glehnia littoralis. Master’s Thesis, Shandong University of Traditional Chinese Medicine, Tianjin, China, 2021; pp. 23–35. [Google Scholar] [CrossRef]
- He, C.B.; Li, L.; Tang, F.X.; Xiong, H.J. Isolation and structure characterization of polysaccharide from Morinda officinalis How. Chem. J. Chin. Univ. 2009, 30, 2391–2395. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Xia, J.; Lin, S. Antioxidant activity and physicochemical properties of an acidic polysaccharide from Morinda officinalis. Int. J. Biol. Macromol. 2013, 58, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Du, B.X.; Xiang, M.R.; Fu, Y.P.; Zhang, J.; Jiang, H.Q.; Rong, R. Investigation of isolation, purification, structural identification and in vitro Immunological function of polysaccharides in Glehniae Radix. Chin. J. Exp. Tradit. Medl. Form. 2018, 24, 27–31. [Google Scholar] [CrossRef]
- Jing, Y.S.; Zhang, H.; Cheng, W.J.; Zhang, Y.M.; Zhang, D.S.; Zheng, Y.G. Research progress on extraction process, physicochemical properties and biological activity of polysaccharides from Glehniae Radix. J. Food Saf. Food Qual. 2022, 13, 2610–2617. [Google Scholar] [CrossRef]
- Ren, Y.; Bai, Y.; Zhang, Z.; Cai, W.; Del Rio Flores, A. The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development. Molecules 2019, 24, 3122. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.X.; Tang, Y.X.; Mao, J.L. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydr. Polym. 2020, 228, 115381. [Google Scholar] [CrossRef]
- Du, B.X. Isolation, Purification, Structural Analysis and Biological Activities of Water-Soluble Polysaccharide from the Root of Glehnia littoralis. Master’s Thesis, Shandong University of Traditional Chinese Medicine, Jinan, China, 2019; pp. 43–50. [Google Scholar] [CrossRef]
- Fang, X.D.; You, M.; Ying, W.B.; Sun, Z.M.; Shen, P.Z.; Shi, Z.Y.; Ye, Q.W. The immunosuppressive activities of polysaccharides from Glehnia littoralis (bei sha shen). Acta Pharm. Sin. 1986, 21, 931–934. [Google Scholar] [CrossRef]
- Luo, S.Y.; Jiang, Y.; Yu, X.L.; Liu, J.L.; Li, B.N.; Zhang, K.Y.; Wang, S.L.; XIE, T. Research Progress on Structure Characteristics, Biological Activity, Structure-Activity Relationship and Product Development of Dendrobium Polysaccharides. Sci. Technol. Food Ind. 2024, 45, 429–442. [Google Scholar] [CrossRef]
- Fang, X.D.; Sun, Z.M.; Ying, W.B.; You, M.; Shen, P.Z.; Shi, Z.Y. Studies on the polysaccharide composition of Glehniae radix. Chin. Tradit. Pat. Med. 1987, 8, 25–27. [Google Scholar]
- Yu, Q.H.; Du, B.X.; Du, Y.Q.; Yang, J.; Ma, Q.Y.; Wen, R.; Rong, R. Effects of isolation and purification of polysaccharides from Beishenthus annuus and their degradation by intestinal flora on the proliferation of immune cells in vitro. Chin. Tradit. Pat. Med. 2020, 42, 1362–1366. [Google Scholar] [CrossRef]
- Jing, Y.S.; Jin, S.; Zhang, D.S.; Zhang, R.J.; Zhang, F.F.; Zhang, Y.G.; Wu, L.F. Ethanol fractional purification, physicochemical properties and antioxidant activity of polysaccharides from Glehnia radix. Food Mach. 2020, 36, 175–180+226. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, M.; Wang, K.P.; Chen, Z.X.; Dai, L.Q.; Liu, J.Y.; Zeng, F. Structure, chain conformation and antitumor activity of a novel polysaccharide from Lentinus edodes. Fitoterapia 2010, 81, 1163–1170. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, X.; Wang, Y.; Wang, D.; Li, W.; Chen, L.; Pan, W.; Mehmood, S.; Chen, Y. Immunomodulating activity of the polysaccharide TLH-3 from Tricholomalobayense in RAW264.7 macrophages. Int. J. Biol. Macromol. 2018, 107, 2679–2685. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Reactive oxygen species (ROS), oxygen radicals and antioxidants: Where are we now, where is the field going and where should we go? Biochem. Biophys. Res. Commun. 2022, 633, 17–19. [Google Scholar] [CrossRef]
- Ng, T.B.; Liu, F.; Wang, H.X. The antioxidant effects of aqueous and organic extracts of Panax quinquefolium, Panax notoginseng, Codonopsis pilosula, Pseudostellaria heterophylla and Glehnia littoralis. J. Ethnopharmacol. 2004, 93, 285–288. [Google Scholar] [CrossRef]
- Li, J.G.; Li, Q.D. Free radical scavenging of adenophora polysaccharides. China Brew. 2011, 03, 66–68. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Mallappa, K.S.; Godavarthi, A.; Subbanarasiman, B.; Maniyam, A. Evaluation of antioxidant, in vitro cytotoxicity of micropropagated and naturally grown plants of Leptadenia reticulata (Retz.) Wight & Arn.—An endangered medicinal plant. Asian Pac. J. Trop. Med. 2014, 7, S267–S271. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, N.; Li, Y.; Zhao, Y.N.; Zhang, L.; Sun, Y.J.; Ohizumi, Y.; Xu, J.; Guo, Y.Q. A novel polysaccharide from Paeonia lactiflora exerts anti-tumor activity via immunoregulation. Arab. J. Chem. 2022, 15, 104132. [Google Scholar] [CrossRef]
- Kong, C.S.; Um, Y.R.; Im Lee, J.; Kim, Y.A.; Yea, S.S.; Seo, Y. Constituents isolated from Glehnia littoralis suppress proliferations of human cancer cells and MMP expression in HT1080 cells. Food Chem. 2010, 120, 385–394. [Google Scholar] [CrossRef]



| Method | Optimization Factors | Optimization Methods | Other Extraction Conditions | Results | Ref. | ||
|---|---|---|---|---|---|---|---|
| Degree Ranking | Optimization Results | Extraction Rate (%) | |||||
| Hot water extraction | Extraction times (A) Extraction temperature (B) Extraction time (C) Solid–liquid ratio (D) | Univariate investigation Orthogonal design method | 95% ethanol | C > B > A > D | A (3) B (90 °C) C (4 h) D (1:30) | 15.59 | [2,27,42,43,44,45,46] |
| Extraction times (A) Extraction temperature (B) Solid–liquid ratio (C) | Not Reported | Centrifugation (3000 r/min, 15 min) | Not Reported | A (2) B (94.9 °C) C (1:20) | Not Reported | [2] | |
| Extraction times (A) Extraction temperature (B) Extraction time (C) | Not Reported | Centrifugation (4000 r/min, 10 min) | Not Reported | A (3) B (90 °C) C (3 h) | Not Reported | [42] | |
| Extraction temperature (A) Extraction time (B) Solid–liquid ratio (C) | central composite design and response surface methodology | Extraction times (2) | C > A > B | A (94.9 °C) B (2 h) C (1:25) | 10.78 | [43] | |
| Acid-assisted extraction | Extraction time (A) Solid–liquid ratio (B) Extraction temperature (C) | Not Reported | Extraction times (2); HCl (0.3 mol/L) | Not Reported | A (2 h) B (1:30) C (50 °C) | 39.62 | [22,47] |
| Alkali-assisted extraction | Extraction time (A) Solid–liquid ratio (B) Extraction temperature (C) | Not Reported | Extraction times (2); NaoH (0.3 mol/L) | Not Reported | A (2 h) B (1:30) C (25 °C) | 24.80 | [22] |
| Ultrasonic-assisted extraction | Extraction temperature (A) Extraction time (B) Solid–liquid ratio (C) | Single factor test and Response surface method | 95% ethanol Extraction times (2); Centrifugation (8000 rpm, 4 min) | A > B > C | A (65 °C) B (22 min) C (1:22) | 12.13 | [48] |
| Solid–liquid ratio (A) Ultrasonic power (B) Extraction time (C) | Single factor test and Response surface method | The solvent is water | B, C > A | A (1:19) B (460 W) C (23 min) | 60.15 | [49] | |
| Extraction temperature (A) Extraction time (B) Solid–liquid ratio (C) | Not Reported | Ultrasonic power (198 W) | Not Reported | A (74 °C) B (27 min) C (1:103) | GLP80-1 4.34 | [34] | |
| Enzymatic extraction | Cellulase (A) Enzymatic hydrolysis time (B) Solid–liquid ratio (C) | Response surface method | Enzymatic hydrolysis temperature (70 °C); Ultrasonic power (210 W) | A > C > B | A (3%) B (3 h) C (1:30) | 22.04 | [40] |
| Microwave-assisted Extraction | Solid–liquid ratio (A) Microwave processing (B) Microwave power (C) | Univariate investigation Orthogonal design method | Extraction times (3) Soak (30 min) | Not Reported | A (1:30) B (100 S) C (800 W) | 39.30 | [36,50] |
| Multi-method joint extraction | Cellulase (A) Enzymatic hydrolysis time (B) Extraction time (C) Extraction temperature (D) Solid–liquid ratio (E) | Univariate investigation Orthogonal design method | Ultrasonic power (210 W) | Not Reported | A (2%) B (1.87 h) C (40.8 min) D (65 °C) E (1:30) | 40.60 | [26,41] |
| Name | Naming Rules | Method | Column Chromatography | Relative Molecular Mass | Monosaccharide Composition | Configuration Glycosidic Bonds | References |
|---|---|---|---|---|---|---|---|
| GRP-1 | GRP is eluted with water to obtain GRP-1 | Water extraction and alcohol precipitation | DEAE—52, Sephadex G—75 | 2.301 × 104 | Man, GlcA, Rha, Glc, Gal, Ara = 81.86:0.12:0.17:1259.7:0.54:0.33 | Contains an α-glycosidic bond-linked | [63] |
| GRP-2 | GRP is eluted with 0.05 mol/L NaCl to obtain GRP-2 | Water extraction and alcohol precipitation | DEAE—52, Sephadex G—75 | Not Reported | Man, GlcA, Rha, Glc, Gal, Fuc = 24.15:0.4:0.46:541.3:8.25:2.50 | Not Reported | [63] |
| GRP-3 | GRP is eluted with 0.1 mol/L NaCl to obtain GRP-3 | Water extraction and alcohol precipitation | DEAE—52, Sephadex G—75 | Not Reported | Man, GlcA, Rha, Glc, Gal, Ara, Fuc = 94.7:1.23:0.48:110:2.73:0.8:13.4 | Not Reported | [63] |
| GLP80-1 | After purification, GLP was named as GLP-80 | ultrasonic-assisted extraction and ethanol precipitation | (DEAE)-cellulose 52; Sephadex G—100 | 1.63 × 104 | Glc, GlcA, Gal, Ara = 0.91:0.04:0.03:0.02 | (1 → 4)-α-D-Glc, (1 →4,6)-α-D-Glc, (1→)-α-D-Glc | [34] |
| GLP | Named after the polysaccharide of GL | Water extraction and alcohol precipitation | DEAE-cellulose 52, Sephadex G-100 | 1.37 × 105 | Glc | the main chain linkage was → 4)-α-D-Glcp-(1→glycosidic bond, the terminal group α-D-Glcp-(1→ through →4,6)-α-D-Glcp-(1→ O-6 bond was connected to the main chain | [55] |
| GLP90-2 | GL extracted with ethanol as GL-90. GL90 is eluted with 0.1 mol/L NaCl to obtain GLP90-2 | Water extraction and alcohol precipitation | DEAE-FF, Sephadex G-75 | 7.76 × 103 | Ara | α-l-Araf-(1→,→5)-α-l-Araf-(1→,→3,5)-α-l-Araf-(1→,→3,5)-α-l-Araf-(1→) | [42] |
| GRP | Named after the polysaccharide of GL | Water extraction and alcohol precipitation | DEAE—52, Sephadex G—75 | 1.33 × 104 | Glc | α-D-glucan, (1→6)-linked and (1 →3)-linked backbone with a branch of one (1→6)linked and one terminal glucoses submitting at the C-4 position every fourteen residues | [2] |
| GL-100 | GLP is eluted with water to obtain GL-100 | Water extraction and alcohol precipitation | DEAE—32, Sephadex G—200 | 7.90 × 104 | Glc | α-(1→4) glycosidic bond-linked α-(1→4) glycosidic bond-linked glucan | [70] |
| GL-103 | GLP is eluted with 0.05 mol/L phosphoric acid buffer solution to obtain GL-103 | Water extraction and alcohol precipitation | DEAE-32, Sephadex G—200 | 7.00 × 104 | Glc | α-(1→4) glycosidic bond-linked α-(1→4) glycosidic bond-linked glucan | [70] |
| GL-120 | GLP is eluted with 0.15 mol/L phosphoric acid buffer solution to obtain GL-120 | Water extraction and alcohol precipitation | DEAE-32 | Not Reported | Not Reported | Not Reported | [70] |
| GL-122 | GLP is eluted with 0.2 mol/L NaCl to obtain GL-122 | Water extraction and alcohol precipitation | DEAE-32 | Not Reported | Not Reported | Not Reported | [70] |
| GLP-E | Enzyme extraction process of GL | enzymatic extraction | DEAE-52 | 4.66 × 106, 3.77 × 105, 1.04 × 104 | GlcA, Glc, Gal, Ara | Not Reported | [40] |
| GLP-E1 | GLP-E is eluted with water to obtain GLP-E1 | enzymatic extraction | DEAE-52 | 4.22 × 106, 3.78 × 105 | GlcA, Glc, Ara | Not Reported | [40] |
| GLP-E2 | GLP-E is eluted with 1 mol/L NaCl to obtain GLP-E2 | enzymatic extraction | DEAE-52 | 4.63 × 106, 1.02 × 104 | Glc | Not Reported | [40] |
| GLP-D1 | GLP is eluted with water to obtain GLP-D1 | Water extraction and alcohol precipitation | DEAE-52 | Not Reported | Glc | Not Reported | [71] |
| GLP-D2 | GLP is eluted with 0.05 mol/L NaCl to obtain GLP-D2 | Water extraction and alcohol precipitation | DEAE-52 | Not Reported | Rha, Ara, Xyl, Glc, Gal = 16.58:5.4:1:104.24:7.75 | Not Reported | [71] |
| GLP-30 | Named according to different concentrations of ethanol extracts. The final concentration of ethanol is 30% | Water extraction and alcohol precipitation | Not Reported | 6.75 × 105, 1.22 × 105, 5.08 × 105 | Glc, Gal, Ara, GalA | Not Reported | [72] |
| GLP-50 | Named according to different concentrations of ethanol extracts. The final concentration of ethanol is 50% | Water extraction and alcohol precipitation | Not Reported | 4.95 × 105, 1.37 × 105 | Glc, Gal, Ara, GalA | Not Reported | [72] |
| GLP-70 | Named according to different concentrations of ethanol extracts. The final concentration of ethanol is 70% | Water extraction and alcohol precipitation | Not Reported | 4.26 × 105 | Man, GalA, Glc, Gal, Ara, | Not Reported | [72] |
| Method | Instruments | Tructural Information | Ref. |
|---|---|---|---|
| Complete acid hydrolysis | GC, HPLC | Monosaccharide composition and ratio | [67,71] |
| periodate oxidation | UV-Vis | Types and ratios of glycosidic bonds | [67] |
| Smith Degradation | GC GC-MS | Determination of the type of glycosidic bond | [67,73] |
| partial acid hydrolysis | HPAEC, MALDI-TOF-MS | Composition of main and branch chains | [67] |
| Methylation assay | GC-MS, NMR | Sugar ring, sugar residue linkage | [55,60] |
| Not Reported | FT-IR | Judgement of Characteristic Groups | [72] |
| Not Reported | NMR | Heterodimeric conformation, sugar residue linkage order | [60,67] |
| Not Reported | HPGPC, GPC | Molecular weight size and distribution | [40,63] |
| Pharmacological | Name | Dose of GLPs | Animal Model | Mode of Action | References |
|---|---|---|---|---|---|
| Immunomodulatory effect | GLP, GLP80-1 | 0.5~250 μg/mL | splenic lymphocyte and RAW264.7 cells | promote proliferation of mouse spleen lymphocytes and RAW 264.7 cells | [34,55] |
| Immunomodulatory effect | GLP | 2000 μg/mL | lymphocyte | Inhibition of PHA, COA and PWM induced lymphocyte proliferation | [68] |
| antitumor activity | GLP90-2 | 100~400 μg/mL | transgenic zebrafish experiments RAW264.7 cells | It works with TLR-4, PD-1 and VEGF to activate immunity and inhibit angiogenesis, thus inhibiting tumor growth and spread | [42] |
| antitumor activity | GLP | 40, 160, 380 μg/mL | lung cancer cell line A549 cells | GLP reduces PCNA expression, leading to S and G2/M phase cell cycle arrest, inhibition of cell proliferation, migration, and induction of apoptosis | [15] |
| immunomodulatory activity, certain anti-inflammatory and anti-tumor activity, | GRP | 15.6~500 μg/mL | splenic lymphocyte, RAW264.7 cells, A549 cells | Promotes proliferation of splenic lymphocytes and RAW264.7 cells and inhibits proliferation of A549 cells | [2] |
| immunomodulatory activity | GRP-1 | 7.8~31.25 μg/mL | splenic lymphocyte | Promotes proliferation of splenic lymphocytes | [63] |
| immunomodulatory activity | GRP-2 | 7.8~15.625 μg/mL | splenic lymphocyte | Promotes proliferation of splenic lymphocytes | [63] |
| immunomodulatory activity | GRP-3 | 7.8~62.5 μg/mL | splenic lymphocyte | Promotes proliferation of splenic lymphocytes | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Z.; Gao, Q.; Liu, M.; Zhang, Q.; Shi, D.; Gao, P.; Dai, Y. Extraction, Purification, Structure, and Bioactivities of Polysaccharides from Glehnia littoralis: A Review. Molecules 2025, 30, 4173. https://doi.org/10.3390/molecules30214173
Qu Z, Gao Q, Liu M, Zhang Q, Shi D, Gao P, Dai Y. Extraction, Purification, Structure, and Bioactivities of Polysaccharides from Glehnia littoralis: A Review. Molecules. 2025; 30(21):4173. https://doi.org/10.3390/molecules30214173
Chicago/Turabian StyleQu, Zhenni, Qi Gao, Menghan Liu, Qiang Zhang, Dianhua Shi, Peng Gao, and Yanpeng Dai. 2025. "Extraction, Purification, Structure, and Bioactivities of Polysaccharides from Glehnia littoralis: A Review" Molecules 30, no. 21: 4173. https://doi.org/10.3390/molecules30214173
APA StyleQu, Z., Gao, Q., Liu, M., Zhang, Q., Shi, D., Gao, P., & Dai, Y. (2025). Extraction, Purification, Structure, and Bioactivities of Polysaccharides from Glehnia littoralis: A Review. Molecules, 30(21), 4173. https://doi.org/10.3390/molecules30214173
