Plasma-Free Metanephrine and Normetanephrine Quantification for Clinical Applications Validated by Combining Solid-Phase Extraction and HPLC-MS/MS
Abstract
1. Introduction
2. Results
2.1. Accuracy
2.2. Precision
2.3. Linearity
2.4. Carryover
2.5. Lower Limit of Quantification
2.6. Ion Suppression
2.7. Inter-Laboratory Comparison
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sample Preparation
4.3. SPE
4.4. Analytical Procedure
- Solution A: 20 mM ammonium formate in 0.1% formic acid
- Solution B: 100% methanol.
4.5. Method Selection and Optimization (Fit-for-Purpose)
4.5.1. SPE Sorbent Rationale
4.5.2. Chromatographic Mode and Additives
4.5.3. Mobile-Phase Composition
4.5.4. MRM Transitions
4.6. Method Validation
- Sample A: spiked with the drug and IS before SPE (plasma + analyte/IS (pre-[SPE])
- Sample B: drug- and IS-spiked reconstitution solution without SPE (90% acetonitrile + analyte/IS [no matrix])
- Sample C: spiked with the drug and IS after SPE before drying with nitrogen gas (plasma [post-SPE] spiked after extraction)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CV | Coefficient of variation |
DOPA | Dihydroxyphenylalanine |
HPLC | High-performance liquid chromatography |
IS | Internal standard |
LC-MS/MS | Liquid chromatography and tandem mass spectrometry |
LLOQ | Lower limit of quantification |
SPE | Solid-phase extraction |
References
- De Silva, D.C.; Wijesiriwardene, B. The adrenal glands and their functions. Ceylon Med. J. 2009, 52, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G.; Lattke, P.; Herberg, M.; Siegert, G.; Qin, N.; Därr, R.; Hoyer, J.; Villringer, A.; Prejbisz, A.; Januszewicz, A.; et al. Reference intervals for plasma free metanephrines with an age adjustment for normetanephrine for optimized laboratory testing of phaeochromocytoma. Ann. Clin. Biochem. 2013, 50, 62–69. [Google Scholar] [CrossRef]
- Chan, E.C.; Ho, P.C. Chromatographic measurements of catecholamines and metanephrines. Chromatogr. Methods Clin. Chem. Toxicol. 2007, 101–126. [Google Scholar] [CrossRef]
- Meiser, J.; Weindl, D.; Hiller, K. Complexity of dopamine metabolism. Cell Commun. Signal. 2013, 11, 1–18. [Google Scholar] [CrossRef]
- Pacak, K.; Linehan, W.M.; Eisenhofer, G.; Walther, M.M.; Goldstein, D.S. Recent advances in genetics, diagnosis, localization, and treatment of pheochromocytoma. Ann. Intern. Med. 2001, 134, 315–329. [Google Scholar] [CrossRef]
- Knudson Jr, A.G.; Strong, L. Mutation and cancer: Neuroblastoma and pheochromocytoma. Am. J. Hum. Genet. 1972, 24, 514. [Google Scholar]
- Goldenberg, M.; Serlin, I.; Edwards, T.; Rapport, M.M. Chemical screening methods for the diagnosis of pheochromocytoma: I. Nor-epinephrine and epinephrine in human urine. Am. J. Med. 1954, 16, 310–327. [Google Scholar] [CrossRef]
- Smythe, G.; Edwards, G.; Graham, P.; Lazarus, L. Biochemical diagnosis of pheochromocytoma by simultaneous measurement of urinary excretion of epinephrine and norepinephrine. Clin. Chem. 1992, 38, 486–492. [Google Scholar] [CrossRef]
- Lenders, J.W.; Keiser, H.R.; Goldstein, D.S.; Willemsen, J.J.; Friberg, P.; Jacobs, M.-C.; Kloppenborg, P.W.; Thien, T.; Eisenhofer, G. Plasma metanephrines in the diagnosis of pheochromocytoma. Ann. Intern. Med. 1995, 123, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Raber, W.; Raffesberg, W.; Bischof, M.; Scheuba, C.; Niederle, B.; Gasic, S.; Waldhäusl, W.; Roden, M. Diagnostic efficacy of unconjugated plasma metanephrines for the detection of pheochromocytoma. Arch. Intern. Med. 2000, 160, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G. Biochemical diagnosis of pheochromocytoma—Is it time to switch to plasma-free metanephrines? J. Clin. Endocrinol. Metab. 2003, 88, 550–552. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Walther, M.; Keiser, H.; Lenders, J.; Friberg, P.; Pacak, K. Plasma metanephrines: A novel and cost-effective test for pheochromocytoma. Braz. J. Med. Biol. Res. 2000, 33, 1157–1169. [Google Scholar] [CrossRef] [PubMed]
- Grossman, E.; Goldstein, D.S.; Hoffman, A.; Keiser, H.R. Glucagon and clonidine testing in the diagnosis of pheochromocytoma. Hypertension 1991, 17, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Pappachan, J.M.; Tun, N.N.; Arunagirinathan, G.; Sodi, R.; Hanna, F.W. Pheochromocytomas and hypertension. Curr. Hypertens. Rep. 2018, 20, 1–13. [Google Scholar] [CrossRef]
- Griffin, T.P.; Bogdanet, D.; Navin, P.; Callagy, G.; O’Shea, P.M.; Bell, M. The importance of standardisation of measurement and reference intervals for detection of phaeochromocytoma and paraganglioma (PPGL). Ir. J. Med. Sci. 2018, 187, 993–998. [Google Scholar] [CrossRef]
- Peitzsch, M.; Novos, T.; Kaden, D.; Kurlbaum, M.; van Herwaarden, A.E.; Muller, D.; Adaway, J.; Grouzmann, E.; McWhinney, B.; Hoad, K.; et al. Harmonization of LC-MS/MS Measurements of Plasma Free Normetanephrine, Metanephrine, and 3-Methoxytyramine. Clin. Chem. 2021, 67, 1098–1112. [Google Scholar] [CrossRef]
- Adaway, J.E.; Peitzsch, M.; Keevil, B.G. A novel method for the measurement of plasma metanephrines using online solid phase extraction-liquid chromatography tandem mass spectrometry. Ann. Clin. Biochem. 2015, 52, 361–369. [Google Scholar] [CrossRef]
- van Faassen, M.; Bischoff, R.; Eijkelenkamp, K.; de Jong, W.H.A.; van der Ley, C.P.; Kema, I.P. In Matrix Derivatization Combined with LC-MS/MS Results in Ultrasensitive Quantification of Plasma Free Metanephrines and Catecholamines. Anal. Chem. 2020, 92, 9072–9078. [Google Scholar] [CrossRef]
- de Jong, W.H.; Graham, K.S.; van der Molen, J.C.; Links, T.P.; Morris, M.R.; Ross, H.A.; de Vries, E.G.; Kema, I.P. Plasma free metanephrine measurement using automated online solid-phase extraction HPLC–tandem mass spectrometry. Clin. Chem. 2007, 53, 1684–1693. [Google Scholar] [CrossRef]
- Petteys, B.J.; Graham, K.S.; Parnás, M.L.; Holt, C.; Frank, E.L. Performance characteristics of an LC–MS/MS method for the determination of plasma metanephrines. Clin. Chim. Acta. 2012, 413, 1459–1465. [Google Scholar] [CrossRef]
- de Jong, W.H.; de Vries, E.G.; Kema, I.P. Current status and future developments of LC-MS/MS in clinical chemistry for quantification of biogenic amines. Clin. Biochem. 2011, 44, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Peaston, R.T.; Graham, K.S.; Chambers, E.; van der Molen, J.C.; Ball, S. Performance of plasma free metanephrines measured by liquid chromatography–tandem mass spectrometry in the diagnosis of pheochromocytoma. Clin. Chim. Acta. 2010, 411, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Lenders, J.; Eisenhofer, G.; Armando, I.; Keiser, H.; Goldstein, D.; Kopin, I. Determination of metanephrines in plasma by liquid chromatography with electrochemical detection. Clin. Chem. 1993, 39, 97–103. [Google Scholar] [CrossRef]
- Lenders, J.W.; Duh, Q.Y.; Eisenhofer, G.; Gimenez-Roqueplo, A.P.; Grebe, S.K.; Murad, M.H.; Naruse, M.; Pacak, K.; Young, W.F., Jr. Pheochromocytoma and paraganglioma: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2014, 99, 1915–1942. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Prejbisz, A.; Peitzsch, M.; Pamporaki, C.; Masjkur, J.; Rogowski-Lehmann, N.; Langton, K.; Tsourdi, E.; Pęczkowska, M.; Fliedner, S.; et al. Biochemical Diagnosis of Chromaffin Cell Tumors in Patients at High and Low Risk of Disease: Plasma versus Urinary Free or Deconjugated O-Methylated Catecholamine Metabolites. Clin. Chem. 2018, 64, 1646–1656. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, H.; Zhou, X.; Huang, X.; Li, Y.; Xiao, H.; Cao, X. Accuracy of Plasma Free Metanephrines in the Diagnosis of Pheochromocytoma and Paraganglioma: A Systematic Review and Meta-analysis. Endocr. Pr. 2017, 23, 1169–1177. [Google Scholar] [CrossRef]
- Shen, Y.; Luo, X.; Li, H.; Guan, Q.; Cheng, L. A simple and robust liquid chromatography tandem mass spectrometry assay for determination of plasma free metanephrines and its application to routine clinical testing for diagnosis of pheochromocytoma. Biomed. Chromatogr. 2019, 33, e4622. [Google Scholar] [CrossRef]
- Weismann, D.; Peitzsch, M.; Raida, A.; Prejbisz, A.; Gosk, M.; Riester, A.; Willenberg, H.S.; Klemm, R.; Manz, G.; Deutschbein, T.; et al. Measurements of plasma metanephrines by immunoassay vs liquid chromatography with tandem mass spectrometry for diagnosis of pheochromocytoma. Eur. J. Endocrinol. 2015, 172, 251–260. [Google Scholar] [CrossRef]
- Clarke, M.W.; Cooke, B.; Hoad, K.; Glendenning, P. Improved plasma free metadrenaline analysis requires mixed mode cation exchange solid-phase extraction prior to liquid chromatography tandem mass spectrometry detection. Ann. Clin. Biochem. 2011, 48, 352–357. [Google Scholar] [CrossRef]
- Dubbelman, A.C.; van Wieringen, B.; Roman Arias, L.; van Vliet, M.; Vermeulen, R.; Harms, A.C.; Hankemeier, T. Strategies for Using Postcolumn Infusion of Standards to Correct for Matrix Effect in LC-MS-Based Quantitative Metabolomics. J. Am. Soc. Mass. Spectrom. 2024, 35, 3286–3295. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, Y.; Zhao, R. Quantitative Measurement of Plasma Free Metanephrines by a Simple and Cost-Effective Microextraction Packed Sorbent with Porous Graphitic Carbon and Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Methods Chem. 2021, 2021, 8821276. [Google Scholar] [CrossRef]
- Fu, Y.; Li, W.; Picard, F. Assessment of matrix effect in quantitative LC-MS bioanalysis. Bioanalysis 2024, 16, 631–634. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, Q.; Liu, Z.; Zhao, H.; Zhou, W.; Zhang, C. Commutability Assessment of Processed Human Plasma Samples for Normetanephrine and Metanephrine Measurements Based on the Candidate Reference Measurement Procedure. Ann. Lab. Med. 2022, 42, 575–584. [Google Scholar] [CrossRef]
- Choi, H.; Yim, J.; Cha, J.H.; Kim, J.; Kim, K.J.; Nam, M.; Nam, M.H.; Lee, C.K.; Cho, Y.; Yun, S.G. HPLC-MS/MS Method Validation for Antifungal Agents in Human Serum in Clinical Application. Clin. Lab. 2023, 69, 1916–1923. [Google Scholar] [CrossRef]
- Lee, C.; Choi, H.; Cha, J.H.; Kim, J.; Nam, M.-H.; Nam, M.; Lee, C.K.; Cho, Y.; Yun, S.G. Development and Validation of a U-HPLC-MS/MS Method for the Concurrent Measurement of four Immunosuppressants in Whole Blood. Clin. Lab. 2022, 68, 2554–2563. [Google Scholar] [CrossRef] [PubMed]
Analyte | Nominal Concentration (nmol/L) | Mean | SD | Accuracy (%) |
---|---|---|---|---|
Metanephrine | 0.30 | 0.30 | 0.01 | 101.5 |
0.93 | 0.90 | 0.02 | 96.5 | |
4.94 | 4.76 | 0.06 | 96.3 | |
Normetanephrine | 0.67 | 0.65 | 0.02 | 98.1 |
1.50 | 1.44 | 0.06 | 96.2 | |
8.26 | 7.91 | 0.20 | 95.7 |
Analyte | Nominal Concentration (nmol/L) | Within Run (n = 20) | Between Run (n = 20) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | CV (%) | SD | Accuracy (%) | Mean | CV (%) | SD | Accuracy (%) | ||
Metanephrine | 0.30 | 0.30 | 1.4 | 0.00 | 99.8 | 0.30 | 1.7 | 0.01 | 100.7 |
4.94 | 4.77 | 1.4 | 0.07 | 96.5 | 4.77 | 1.5 | 0.07 | 96.5 | |
Normetanephrine | 0.67 | 0.66 | 4.2 | 0.03 | 98.0 | 0.62 | 7.0 | 0.04 | 93.1 |
8.26 | 8.13 | 1.8 | 0.15 | 98.4 | 7.95 | 3.0 | 0.24 | 96.3 |
Analyte | Low 1 (n = 10) | Low 3 (n = 10) | F Test p-Value | t-Test p-Value | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Metanephrine | 0.31 | 0.03 | 0.30 | 0.03 | 0.34 | 0.29 |
Normetanephrine | 0.69 | 0.13 | 0.62 | 0.04 | 0.45 | 0.07 |
Analyte | Expected Concentration (nmol/L) | Average Concentration (nmol/L, n = 5) | CV (%) | Accuracy (%) |
---|---|---|---|---|
Metanephrine | 0.307 | 0.301 | 3.9 | 98.1 |
0.245 | 0.247 | 2.8 | 100.7 | |
0.184 | 0.185 | 2.9 | 100.4 | |
0.123 | 0.126 | 5.5 | 102.8 | |
0.061 | 0.072 | 7.3 | 118.1 | |
Normetanephrine | 0.541 | 0.502 | 10.9 | 92.8 |
0.432 | 0.409 | 11.0 | 94.6 | |
0.324 | 0.272 | 6.4 | 84.0 | |
0.216 | 0.150 | 37.1 | 69.6 | |
0.108 | 0.072 | 27.1 | 66.8 |
Analyte | Analyte Concentration (nmol/L) | Recovery | Matrix Factor | Process Efficiency | IS-Normalized Recovery | IS-Normalized Matrix Factor | IS-Normalized Process Efficiency |
---|---|---|---|---|---|---|---|
A/C (%) | C/B (%) | A/B (%) | (Aanalytes/Canalytes)/ (AIS/CIS) (%) | (Canalytes/Banalytes)/ (CIS/BIS) (%) | (Aanalytes/Banalytes)/ (AIS/BIS) (%) | ||
Metanephrine | 0.6 | 122% | 94% | 11% | 108% | 112% | 121% |
1.3 | 122% | 88% | 12% | 107% | 102% | 110% | |
2.5 | 116% | 97% | 11% | 111% | 101% | 112% | |
Normetanephrine | 1.3 | 170% | 58% | 2% | 86% | 106% | 92% |
2.5 | 140% | 91% | 3% | 101% | 111% | 111% | |
5.0 | 129% | 89% | 4% | 112% | 98% | 110% |
Analyte | Precursor Ion (m/z) | Product Ion (m/z) | RT (min) | DP (V) | CE (V) | CXP (V) |
---|---|---|---|---|---|---|
Metanephrine | 180.036 | 148.2 | 2.16 | 136 | 23 | 10 |
Metanephrine-d3 | 183.051 | 151.2 | 2.16 | 141 | 23 | 8 |
Normetanephrine | 166.100 | 134.1 | 2.68 | 100 | 26 | 7 |
Normetanephrine-d3 | 169.400 | 137.2 | 2.68 | 100 | 26 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Yim, J.; Yun, J.; Lee, J.K.; Kim, K.J.; Nam, M.; Nam, M.H.; Cho, Y.; Yun, S.G. Plasma-Free Metanephrine and Normetanephrine Quantification for Clinical Applications Validated by Combining Solid-Phase Extraction and HPLC-MS/MS. Molecules 2025, 30, 3847. https://doi.org/10.3390/molecules30193847
Choi H, Yim J, Yun J, Lee JK, Kim KJ, Nam M, Nam MH, Cho Y, Yun SG. Plasma-Free Metanephrine and Normetanephrine Quantification for Clinical Applications Validated by Combining Solid-Phase Extraction and HPLC-MS/MS. Molecules. 2025; 30(19):3847. https://doi.org/10.3390/molecules30193847
Chicago/Turabian StyleChoi, Hyebin, Jisook Yim, Jiwon Yun, Jong Kwon Lee, Keun Ju Kim, Minjeong Nam, Myung Hyun Nam, Yunjung Cho, and Seung Gyu Yun. 2025. "Plasma-Free Metanephrine and Normetanephrine Quantification for Clinical Applications Validated by Combining Solid-Phase Extraction and HPLC-MS/MS" Molecules 30, no. 19: 3847. https://doi.org/10.3390/molecules30193847
APA StyleChoi, H., Yim, J., Yun, J., Lee, J. K., Kim, K. J., Nam, M., Nam, M. H., Cho, Y., & Yun, S. G. (2025). Plasma-Free Metanephrine and Normetanephrine Quantification for Clinical Applications Validated by Combining Solid-Phase Extraction and HPLC-MS/MS. Molecules, 30(19), 3847. https://doi.org/10.3390/molecules30193847