Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = normetanephrine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4637 KB  
Article
Transcriptomic and Metabolomic Insights into the Hepatic Response to Dietary Carvacrol in Pengze Crucian Carp (Carassius auratus var. Pengze)
by Wenshu Liu, Yuzhu Wang, Xiaoze Guo, Jingjing Lu, Lingya Li, Siming Li, Yanqiang Tang and Haihong Xiao
Genes 2025, 16(12), 1491; https://doi.org/10.3390/genes16121491 - 13 Dec 2025
Viewed by 422
Abstract
Background/Objectives: Carvacrol, a major active component of oregano oil and common feed additive, has been widely studied for its effects on fish growth, immunity, and intestinal health. But its transcriptional/metabolic impacts on fish liver remain unclear. This study investigated these effects in Pengze [...] Read more.
Background/Objectives: Carvacrol, a major active component of oregano oil and common feed additive, has been widely studied for its effects on fish growth, immunity, and intestinal health. But its transcriptional/metabolic impacts on fish liver remain unclear. This study investigated these effects in Pengze crucian carp (Carassius auratus var. Pengze). Methods: Fish were fed a basal diet (control) or basal diet supplemented with 10% microencapsulated carvacrol (600 mg/kg) for 56 days; liver samples were analyzed via transcriptomics and metabolomics. Results: Transcriptomic analysis revealed 482 differentially expressed genes (DEGs) in the liver of Pengze crucian carp following carvacrol supplementation, with 158 upregulated and 324 downregulated genes. Functional annotation highlighted enrichment in translation, signal transduction, amino acid metabolism, and posttranslational modification pathways. GO analysis further identified key processes, including carboxylic acid transport, tRNA aminoacylation, and mitochondrial nucleoid function, while KEGG pathways were implicated in amino acid biosynthesis, lipid metabolism (e.g., alpha-linolenic acid), and insulin signaling. Metabolomic profiling identified 679 significantly altered metabolites, including 113 upregulated and 566 downregulated ones. Among these, upregulated compounds like L-asparaginyl-L-lysine (Log2FC = 4.36) and 2′-Deoxyadenosine-5′-diphosphate (Log2FC = 4.31) are linked to nucleotide metabolism, and downregulated peptides (e.g., Ala-Phe-Tyr-Arg) suggesting modulated protein turnover. Joint omics analysis revealed convergent pathways in glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, and autophagy. Notably, the chaperone gene dnaja3b was correlated strongly with neuroactive metabolites (e.g., normetanephrine), potentially implicating carvacrol in stress response regulation. Conclusions: Our findings demonstrate that carvacrol modulates liver gene expression and metabolic profiles, primarily influencing amino acid and lipid metabolism pathways, autophagy, and stress responses. The observed correlations between dnaja3b and specific metabolites offer mechanistic insights into the action of carvacrol in fish liver. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

27 pages, 610 KB  
Review
Sleep Deprivation and Its Impact on Insulin Resistance
by Margarida C. Pinheiro, Henrique E. Costa, Melissa Mariana and Elisa Cairrao
Endocrines 2025, 6(4), 49; https://doi.org/10.3390/endocrines6040049 - 11 Oct 2025
Cited by 2 | Viewed by 8486
Abstract
Background/Objectives: Adequate sleep has a fundamental role in human health, mainly in cognitive and physiological functions. However, the daily demands of modern society have led to a constant pursuit of better living conditions, requiring more active hours at the expense of sleeping [...] Read more.
Background/Objectives: Adequate sleep has a fundamental role in human health, mainly in cognitive and physiological functions. However, the daily demands of modern society have led to a constant pursuit of better living conditions, requiring more active hours at the expense of sleeping hours. This sleep deprivation has been associated with human health deterioration, namely an increase in Diabetes Mellitus incidence. This metabolic disease is a chronic pathology that imposes a big burden on health systems and is associated with the rise in insulin resistance. In this sense, the aim of this review is to analyze the relation between sleep deprivation and insulin resistance, emphasizing the metabolic parameters and hormones that may be involved in the subjacent mechanism. Methods: A literature review of the last 10 years was performed with specific terms related to “sleep deprivation” and “insulin resistance”. Results: Overall, the studies analyzed showed a decrease in insulin sensitivity in cases of sleep deprivation, even with different study protocols. In addition, an association between sleep deprivation and increased non-esterified fatty acids was also noticeable; however, other parameters such as cortisol, metanephrines, and normetanephrines showed no consistent results among the studies. Conclusions: This review allowed us to confirm the relationship between sleep deprivation and insulin resistance; however, despite the difficulties to monitor sleep, more research is needed to understand the related mechanisms that have not yet been clarified. Full article
Show Figures

Graphical abstract

14 pages, 1654 KB  
Article
Plasma-Free Metanephrine and Normetanephrine Quantification for Clinical Applications Validated by Combining Solid-Phase Extraction and HPLC-MS/MS
by Hyebin Choi, Jisook Yim, Jiwon Yun, Jong Kwon Lee, Keun Ju Kim, Minjeong Nam, Myung Hyun Nam, Yunjung Cho and Seung Gyu Yun
Molecules 2025, 30(19), 3847; https://doi.org/10.3390/molecules30193847 - 23 Sep 2025
Viewed by 2263
Abstract
Plasma-free metanephrines are the most sensitive and specific biochemical markers for diagnosing catecholamine-secreting tumors, such as pheochromocytoma and paraganglioma. In this study, we developed and validated a liquid chromatography–tandem mass spectrometry method for quantifying metanephrine and normetanephrine in human plasma, using solid-phase extraction [...] Read more.
Plasma-free metanephrines are the most sensitive and specific biochemical markers for diagnosing catecholamine-secreting tumors, such as pheochromocytoma and paraganglioma. In this study, we developed and validated a liquid chromatography–tandem mass spectrometry method for quantifying metanephrine and normetanephrine in human plasma, using solid-phase extraction with a weak cation-exchange mechanism. Validation was performed according to the FDA Bioanalytical Method Validation Guidance and CLSI guideline C62-A. The method showed excellent linearity over concentration ranges of 0.11–13.92 nmol/L for metanephrine and 0.14–26.43 nmol/L for normetanephrine, with correlation coefficients exceeding 0.999. The accuracy, precision, and lower limit of quantification met the acceptance criteria of the study. Matrix effect evaluation revealed a process efficiency of 121% for metanephrine at the lowest concentration, slightly exceeding the acceptable range of 100 ± 15%. This was likely because of matrix-induced ion enhancement or variability in extraction efficiency. However, all other tested concentrations were within the acceptable limits. Overall, this method demonstrated high sensitivity, specificity, and reproducibility, making it suitable for routine clinical applications. Minor deviations at low concentrations do not compromise reliability; however, future optimizations, such as matrix-matched calibration, may further improve performance. Full article
(This article belongs to the Special Issue Recent Developments in Chromatographic Applications in Medicine)
Show Figures

Figure 1

23 pages, 7105 KB  
Article
Attenuation of Stress Responses to Human Handling Through Habituation in Goats
by Tharun Tej Erukulla, Phaneendra Batchu, Priyanka Gurrapu, Arshad Shaik, Thomas H. Terrill and Govind Kannan
Animals 2025, 15(10), 1385; https://doi.org/10.3390/ani15101385 - 10 May 2025
Cited by 1 | Viewed by 1722
Abstract
Goats raised on pastures are seldom handled except for purposes such as weighing and providing veterinary care. Regular positive interactions with human caretakers have been reported to attenuate fear and stress responses to routine human handling; however, this has not been adequately studied [...] Read more.
Goats raised on pastures are seldom handled except for purposes such as weighing and providing veterinary care. Regular positive interactions with human caretakers have been reported to attenuate fear and stress responses to routine human handling; however, this has not been adequately studied in meat goats. This experiment was conducted to determine the effects of habituation to handling on behavioral, physiological, and metabolomic responses in goats when subjected to routine handling. Seventy-two male (uncastrated) Spanish goats (6 mo; BW = 25.2 ± 0.37 kg) were randomly allocated to one of two treatment (Trt) groups: (i) regularly handled by stroking the back of each goat before feeding time for 90 days (handled: H) or (ii) not subjected to handling during the same period, but all other conditions were the same (non-handled: NH). After the 90-day habituation period, the goats were subjected to an arena test in the presence of an observer. Immediately after the test, the goats were subjected to routine veterinary exams that involved blood sampling (0 min) and measuring heart rate (HR), respiratory rate (RR), rectal temperature (RT), and body weight (BW). Blood samples were also collected after the veterinary exam (20 min) to determine physiological and metabolomic responses. Data from the arena test were analyzed using a Mann–Whitney U Test, and blood physiological responses were analyzed using MIXED procedures in SAS with sampling time (Time) as a repeated measure. Unpaired t-tests showed that the increase in BW was higher in the H goats (p < 0.01) compared to the NH goats over the 90 d habituation period. The approach distance from the observer (p < 0.05) and frequency of urination (p < 0.05) were greater in the NH goats during the arena test. HR (p < 0.01) and RR (p < 0.01) were higher in the NH group compared to the H group. Plasma cortisol concentrations were higher at 20 min than at 0 min (p < 0.05), while epinephrine (p < 0.05), metanephrine, normetanephrine, phenylethylamine, and 5-methoxytryptamine concentrations were higher (p < 0.05) in the NH goats than in the H goats. A targeted metabolomics analysis showed that six of the eight affected amino acids were lower (p < 0.05), and six of the seven affected phosphatidylcholines were higher (p < 0.05) in the NH goats compared to the H goats. The results show that habituation reduces fear and stress responses to routine handling, in addition to increasing BW, which can improve the welfare of meat goats. Full article
(This article belongs to the Special Issue Advances in Small Ruminant Welfare)
Show Figures

Figure 1

14 pages, 1142 KB  
Article
Motor and Non-Motor Effects of Acute MPTP in Adult Zebrafish: Insights into Parkinson’s Disease
by Niki Tagkalidou, Marija Stevanović, Irene Romero-Alfano, Gustavo Axel Elizalde-Velázquez, Selene Elizabeth Herrera-Vázquez, Eva Prats, Cristian Gómez-Canela, Leobardo Manuel Gómez-Oliván and Demetrio Raldúa
Int. J. Mol. Sci. 2025, 26(4), 1674; https://doi.org/10.3390/ijms26041674 - 16 Feb 2025
Cited by 6 | Viewed by 3122
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disorder, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been extensively used in different animal species to [...] Read more.
Parkinson’s disease (PD), the second most common neurodegenerative disorder, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been extensively used in different animal species to develop chemical models of PD. This study aimed to evaluate the effects of acute exposure to MPTP (3 × 150 mg/kg, intraperitoneally) on adult zebrafish by assessing the neurochemical, transcriptional, and motor changes associated with PD pathogenesis. MPTP treatment resulted in a significant decrease in brain catecholamines, including dopamine, norepinephrine, and normetanephrine. Additionally, a trend towards decreased levels of dopamine precursors (tyrosine and L-DOPA) and degradation products (3-MT and DOPAC) was also observed, although these changes were not statistically significant. Gene expression analysis showed the downregulation of dbh, while the expression of other genes involved in catecholamine metabolism (th1, th2, mao, comtb) and transport (slc6a3 and slc18a2) remained unaltered, suggesting a lack of dopaminergic neuron degeneration. Behavioral assessments revealed that MPTP-exposed zebrafish exhibited reduced motor activity, consistent with the observed decrease in dopamine levels. In contrast, the kinematic parameters of sharp turning were unaffected. A significant impairment in the sensorimotor gating of the ASR was detected in the MPTP-treated fish, consistent with psychosis. Despite dopamine depletion and behavioral impairments, the absence of neurodegeneration and some hallmark PD motor symptoms suggests limitations in the validity of this model for fully recapitulating PD pathology. Further studies are needed to refine the use of MPTP in zebrafish PD models. Full article
(This article belongs to the Special Issue Zebrafish as a Model for Biomedical Studies—2nd Edition)
Show Figures

Figure 1

17 pages, 2061 KB  
Article
Acute Hemodynamic, Metabolic, and Hormonal Responses to a Boxing Exergame with and without Blood Flow Restriction in Non-Athlete Young Individuals
by Zohreh Karimi, Zeynabalsadat Mousavi, Michael Nordvall, Alexei Wong, Reza Bagheri and Frederic Dutheil
Sports 2024, 12(3), 68; https://doi.org/10.3390/sports12030068 - 23 Feb 2024
Cited by 1 | Viewed by 3563
Abstract
Background: This study aimed to compare acute hemodynamic, metabolic (glucose and blood lactate concentrations), hormonal (growth hormone and normetanephrine), heart rate variability (HRV), and rating of perceived exertion (RPE) responses before and after bouts of a boxing exergame with and without blood flow [...] Read more.
Background: This study aimed to compare acute hemodynamic, metabolic (glucose and blood lactate concentrations), hormonal (growth hormone and normetanephrine), heart rate variability (HRV), and rating of perceived exertion (RPE) responses before and after bouts of a boxing exergame with and without blood flow restriction (BFR) in non-athlete young individuals. Methods: Fourteen participants (age: 30 ± 10 y; BMI: 21 ± 3 kg.m−2) participated in two sessions of a 20 min boxing exergame. During week one, the participants were randomly divided into two groups and played against one another under normal (n = 7) and BFR (n = 7) conditions. Over the next exercise session, participants were then reallocated to the opposite condition (normal vs. BFR) for data collection. Hemodynamic, metabolic, HRV, and hormonal parameters were measured before and immediately after the exercise protocols. Results: Playing exergame led to a significant increase in hemodynamic variables (except for diastolic blood pressure) regardless of BFR condition with no between-group differences. Regarding HRV, significant reductions in total power (TP) and low-frequency (LF) waves were identified in the non-BFR group (p < 0.0001) compared with the BFR group. Conversely, a significant increase in very LF (VLF) waves was noted for the BFR group (p = 0.050), compared with the non-BFR group. Significant increases were observed in serum concentrations of growth hormone, normetanephrine, and blood lactate concentration from pre- to post-exercise under both conditions (p ≤ 0.05), with no significant differences between the groups. Moreover, no statistically significant changes were observed in glucose levels. RPE responses were significantly greater (p ≤ 0.05) in the BFR group compared with the non-BFR group throughout the exercise session. Conclusions: We observed similar hemodynamic, hormonal, and metabolic responses after an acute boxing exergame session in young individuals, whether conducted with or without BFR. However, notable differences were observed in certain HRV markers and RPE. Specifically, the inclusion of BFR resulted in an elevation of VLF and a heightened perceived exertion. These findings suggest that BFR may alter cardiac autonomic and perceptual responses during exergaming. Further research is warranted to understand the long-term implications and potential benefits of incorporating BFR into exergaming routines. Full article
Show Figures

Figure 1

10 pages, 915 KB  
Brief Report
Plasma-Metanephrines in Patients with Autoimmune Addison’s Disease with and without Residual Adrenocortical Function
by Anna-Karin Åkerman, Åse Bjorvatn Sævik, Per Medbøe Thorsby, Paal Methlie, Marcus Quinkler, Anders Palmstrøm Jørgensen, Charlotte Höybye, Aleksandra J. Debowska, Bjørn Gunnar Nedrebø, Anne Lise Dahle, Siri Carlsen, Aneta Tomkowicz, Stina Therese Sollid, Ingrid Nermoen, Kaja Grønning, Per Dahlqvist, Guri Grimnes, Jakob Skov, Trine Finnes, Jeanette Wahlberg, Synnøve Emblem Holte, Katerina Simunkova, Olle Kämpe, Eystein Sverre Husebye, Marianne Øksnes and Sophie Bensingadd Show full author list remove Hide full author list
J. Clin. Med. 2023, 12(10), 3602; https://doi.org/10.3390/jcm12103602 - 22 May 2023
Viewed by 2700
Abstract
Purpose: Residual adrenocortical function, RAF, has recently been demonstrated in one-third of patients with autoimmune Addison’s disease (AAD). Here, we set out to explore any influence of RAF on the levels of plasma metanephrines and any changes following stimulation with cosyntropin. Methods: We [...] Read more.
Purpose: Residual adrenocortical function, RAF, has recently been demonstrated in one-third of patients with autoimmune Addison’s disease (AAD). Here, we set out to explore any influence of RAF on the levels of plasma metanephrines and any changes following stimulation with cosyntropin. Methods: We included 50 patients with verified RAF and 20 patients without RAF who served as controls upon cosyntropin stimulation testing. The patients had abstained from glucocorticoid and fludrocortisone replacement > 18 and 24 h, respectively, prior to morning blood sampling. The samples were obtained before and 30 and 60 min after cosyntropin stimulation and analyzed for serum cortisol, plasma metanephrine (MN), and normetanephrine (NMN) by liquid-chromatography tandem-mass pectrometry (LC-MS/MS). Results: Among the 70 patients with AAD, MN was detectable in 33%, 25%, and 26% at baseline, 30 min, and 60 min after cosyntropin stimulation, respectively. Patients with RAF were more likely to have detectable MN at baseline (p = 0.035) and at the time of 60 min (p = 0.048) compared to patients without RAF. There was a positive correlation between detectable MN and the level of cortisol at all time points (p = 0.02, p = 0.04, p < 0.001). No difference was noted for NMN levels, which remained within the normal reference ranges. Conclusion: Even very small amounts of endogenous cortisol production affect MN levels in patients with AAD. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

15 pages, 1210 KB  
Article
Investigation of Imidazolium-Based Ionic Liquids as Additives for the Separation of Urinary Biogenic Amines via Capillary Electrophoresis
by Natalia Kaczmarczyk, Natalia Treder, Piotr Kowalski, Alina Plenis, Anna Roszkowska, Tomasz Bączek and Ilona Olędzka
Separations 2023, 10(2), 116; https://doi.org/10.3390/separations10020116 - 7 Feb 2023
Cited by 3 | Viewed by 2480
Abstract
Ionic liquids (ILs), such as imidazoles, can be used to prevent the sorption of analytes onto the walls of the capillary. Prior works have confirmed that coating the capillary wall with a cationic layer can increase its surface stability, thereby improving the repeatability [...] Read more.
Ionic liquids (ILs), such as imidazoles, can be used to prevent the sorption of analytes onto the walls of the capillary. Prior works have confirmed that coating the capillary wall with a cationic layer can increase its surface stability, thereby improving the repeatability of the separation process. In this study, micellar electrokinetic chromatography (MEKC) is employed to evaluate how two ILs with different anions—namely, 1-hexyl-3-methylimidazolium chloride [HMIM+Cl] and 1-hexyl-3-methylimidazolium tetrafluoroborate [HMIM+BF4]—affect the separation efficiency for biogenic amines (BAs) such as metanephrine (M), normetanephrine (NM), vanilmandelic acid (VMA), and homovanillic acid (HVA) in urine samples. To this end, solid-phase extraction (SPE) is employed using different sample pH values, with the results demonstrating that HVA and VMA is easily extracted at a sample pH of 5.5, while a sample pH of 9.0 facilitated the extraction of M and NM. In the applied SPE protocol, selected analytes were isolated from urine samples using hydrophilic–lipophilic-balanced (HLB) columns and eluted with methanol (MeOH). The validation data confirmed the method’s linearity (R2 > 0.996) for all analytes within the range of 0.25–10 µg/mL. The applicability of the optimized SPE-MEKC-UV method was confirmed by employing it to quantify clinically relevant BAs in real urine samples from pediatric neuroblastoma (NBL) patients. Full article
(This article belongs to the Special Issue Ionic Liquids in Separation Technology)
Show Figures

Figure 1

12 pages, 1310 KB  
Article
Long-Term Excessive Dietary Phosphate Intake Increases Arterial Blood Pressure, Activates the Renin–Angiotensin–Aldosterone System, and Stimulates Sympathetic Tone in Mice
by Nejla Latic, Mirko Peitzsch, Ana Zupcic, Jens Pietzsch and Reinhold G. Erben
Biomedicines 2022, 10(10), 2510; https://doi.org/10.3390/biomedicines10102510 - 7 Oct 2022
Cited by 10 | Viewed by 4039
Abstract
Increased dietary phosphate intake has been associated with severity of coronary artery disease, increased carotid intima–media thickness, left ventricular hypertrophy (LVH), and increased cardiovascular mortality and morbidity in individuals with normal renal function as well as in patients suffering from chronic kidney disease. [...] Read more.
Increased dietary phosphate intake has been associated with severity of coronary artery disease, increased carotid intima–media thickness, left ventricular hypertrophy (LVH), and increased cardiovascular mortality and morbidity in individuals with normal renal function as well as in patients suffering from chronic kidney disease. However, the underlying mechanisms are still unclear. To further elucidate the cardiovascular sequelae of long-term elevated phosphate intake, we maintained male C57BL/6 mice on a calcium, phosphate, and lactose-enriched diet (CPD, 2% Ca, 1.25% P, 20% lactose) after weaning them for 14 months and compared them with age-matched male mice fed a normal mouse diet (ND, 1.0% Ca, 0.7% P). Notably, the CPD has a balanced calcium/phosphate ratio, allowing the effects of elevated dietary phosphate intake largely independent of changes in parathyroid hormone (PTH) to be investigated. In agreement with the rationale of this experiment, mice maintained on CPD for 14 months were characterized by unchanged serum PTH but showed elevated concentrations of circulating intact fibroblast growth factor-23 (FGF23) compared with mice on ND. Cardiovascular phenotyping did not provide evidence for LVH, as evidenced by unchanged LV chamber size, normal cardiomyocyte area, lack of fibrosis, and unchanged molecular markers of hypertrophy (Bnp) between the two groups. However, intra-arterial catheterization revealed increases in systolic pressure, mean arterial pressure, and pulse pressure in mice fed the CPD. Interestingly, chronically elevated dietary phosphate intake stimulated the renin–angiotensin–aldosterone system (RAAS) as evidenced by increased urinary aldosterone in animals fed the CPD, relative to the ND controls. Furthermore, the catecholamines epinephrine, norepinephrine, and dopamine as well as the catecholamine metabolites metanephrine. normetanephrine and methoxytyramine as measured by mass spectrometry were elevated in the urine of mice on CPD, relative to mice on the ND. These changes were partially reversed by switching 14-month-old mice on CPD back to ND for 2 weeks. In conclusion, our data suggest that excess dietary phosphate induces a rise in blood pressure independent of secondary hyperparathyroidism, and that this effect may be mediated through activation of the RAAS and stimulation of the sympathetic tone. Full article
Show Figures

Figure 1

30 pages, 3856 KB  
Article
Bromocriptine-QR Therapy Reduces Sympathetic Tone and Ameliorates a Pro-Oxidative/Pro-Inflammatory Phenotype in Peripheral Blood Mononuclear Cells and Plasma of Type 2 Diabetes Subjects
by Anthony H. Cincotta, Eugenio Cersosimo, Mariam Alatrach, Michael Ezrokhi, Christina Agyin, John Adams, Robert Chilton, Curtis Triplitt, Bindu Chamarthi, Nicholas Cominos and Ralph A. DeFronzo
Int. J. Mol. Sci. 2022, 23(16), 8851; https://doi.org/10.3390/ijms23168851 - 9 Aug 2022
Cited by 11 | Viewed by 5844
Abstract
Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic [...] Read more.
Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic nervous system activity and central hypodopaminergic function has been demonstrated to potentiate an immune system pro-oxidative/pro-inflammatory condition and this immune phenotype is known to contribute significantly to the advancement of cardiovascular disease (CVD). Therefore, the possibility exists that bromocriptine-QR therapy may reduce adverse cardiovascular events in type 2 diabetes subjects via attenuation of this underlying chronic pro-oxidative/pro-inflammatory state. The present study was undertaken to assess the impact of bromocriptine-QR on a wide range of immune pro-oxidative/pro-inflammatory biochemical pathways and genes known to be operative in the genesis and progression of CVD. Inflammatory peripheral blood mononuclear cell biology is both a significant contributor to cardiovascular disease and also a marker of the body’s systemic pro-inflammatory status. Therefore, this study investigated the effects of 4-month circadian-timed (within 2 h of waking in the morning) bromocriptine-QR therapy (3.2 mg/day) in type 2 diabetes subjects whose glycemia was not optimally controlled on the glucagon-like peptide 1 receptor agonist on (i) gene expression status (via qPCR) of a wide array of mononuclear cell pro-oxidative/pro-inflammatory genes known to participate in the genesis and progression of CVD (OXR1, NRF2, NQO1, SOD1, SOD2, CAT, GSR, GPX1, GPX4, GCH1, HMOX1, BiP, EIF2α, ATF4, PERK, XBP1, ATF6, CHOP, GSK3β, NFkB, TXNIP, PIN1, BECN1, TLR2, TLR4, TLR10, MAPK8, NLRP3, CCR2, GCR, L-selectin, VCAM1, ICAM1) and (ii) humoral measures of sympathetic tone (norepinephrine and normetanephrine), whole-body oxidative stress (nitrotyrosine, TBARS), and pro-inflammatory factors (IL-1β, IL-6, IL-18, MCP-1, prolactin, C-reactive protein [CRP]). Relative to pre-treatment status, 4 months of bromocriptine-QR therapy resulted in significant reductions of mRNA levels in PBMC endoplasmic reticulum stress-unfolded protein response effectors [GRP78/BiP (34%), EIF2α (32%), ATF4 (29%), XBP1 (25%), PIN1 (14%), BECN1 (23%)], oxidative stress response proteins [OXR1 (31%), NRF2 (32%), NQO1 (39%), SOD1 (52%), CAT (26%), GPX1 (33%), GPX4 (31%), GCH1 (30%), HMOX1 (40%)], mRNA levels of TLR pro-inflammatory pathway proteins [TLR2 (46%), TLR4 (20%), GSK3β (19%), NFkB (33%), TXNIP (18%), NLRP3 (32%), CCR2 (24%), GCR (28%)], mRNA levels of pro-inflammatory cellular receptor proteins CCR2 and GCR by 24% and 28%, and adhesion molecule proteins L-selectin (35%) and VCAM1 (24%). Relative to baseline, bromocriptine-QR therapy also significantly reduced plasma levels of norepinephrine and normetanephrine by 33% and 22%, respectively, plasma pro-oxidative markers nitrotyrosine and TBARS by 13% and 10%, respectively, and pro-inflammatory factors IL-18, MCP1, IL-1β, prolactin, and CRP by 21%,13%, 12%, 42%, and 45%, respectively. These findings suggest a unique role for circadian-timed bromocriptine-QR sympatholytic dopamine agonist therapy in reducing systemic low-grade sterile inflammation to thereby reduce cardiovascular disease risk. Full article
Show Figures

Figure 1

10 pages, 856 KB  
Article
A Pilot Study on Plasma and Urine Neurotransmitter Levels in Children with Tic Disorders
by Qiao-Qiao Qian, Qian-Qian Tan, Dan Sun, Qing Lu, Ying-Ying Xin, Qian Wu, Yong Zhou, Yang-Xi Liu, Pei-Chao Tian and Zhi-Sheng Liu
Brain Sci. 2022, 12(7), 880; https://doi.org/10.3390/brainsci12070880 - 4 Jul 2022
Cited by 10 | Viewed by 5250
Abstract
Background: Tic disorders (TDs), including Tourette syndrome, are childhood-onset neuropsychiatric disorders characterized by motor and/or vocal tics that commonly affect children’s physical and mental health. The pathogenesis of TDs may be related to abnormal neurotransmitters in the cortico-striatal-thalamo-cortical circuitry, especially dopaminergic, glutamatergic, and [...] Read more.
Background: Tic disorders (TDs), including Tourette syndrome, are childhood-onset neuropsychiatric disorders characterized by motor and/or vocal tics that commonly affect children’s physical and mental health. The pathogenesis of TDs may be related to abnormal neurotransmitters in the cortico-striatal-thalamo-cortical circuitry, especially dopaminergic, glutamatergic, and serotonergic neurotransmitters. The purpose of this study was to preliminarily investigate the differences in the three types of neurotransmitters in plasma and urine between children with TD and healthy children. Methods: We collected 94 samples of plasma and 69 samples of urine from 3–12-year-old Chinese Han children with TD before treatment. The plasma and urine of the same number of healthy Chinese Han children, matched for age and sex, participating in a physical examination, were collected. Ultra-performance liquid chromatography-tandem mass spectrometry was used to detect the three types of neurotransmitters in the above samples. Results: The plasma levels of norepinephrine, glutamic acid, and γ-aminobutyric acid, and the urine levels of normetanephrine and 5-hydroxyindoleacetic acid were higher in the TD children than in healthy children. The area under the curve (AUC) values of the above neurotransmitters in plasma and urine analyzed by receiver operating characteristic curve analysis were all higher than 0.6, with significant differences. Among them, the combined AUC of dopamine, norepinephrine, normetanephrine, glutamic acid, and γ-aminobutyric acid in the 8–12-year-old subgroup was 0.930, and the sensitivity and specificity for TD were 0.821 and 0.974, respectively (p = 0.000). Conclusions: There are differences in plasma and urine neurotransmitters between TD children and healthy children, which lays a foundation for further research on the pathogenesis of TD. Full article
(This article belongs to the Special Issue New Insights in Neurobiology and Genetics of Tourette Syndrome)
Show Figures

Figure 1

12 pages, 2541 KB  
Article
Dual-Template Magnetic Molecularly Imprinted Polymer for Simultaneous Determination of Spot Urine Metanephrines and 3-Methoxytyramine for the Diagnosis of Pheochromocytomas and Paragangliomas
by Hongyu Zeng, Xiaoqing Zhang, Qianna Zhen, Yifan He, Haoran Wang, Yang Zhu, Qi Sun and Min Ding
Molecules 2022, 27(11), 3520; https://doi.org/10.3390/molecules27113520 - 30 May 2022
Cited by 5 | Viewed by 3072
Abstract
A novel dual-template magnetic molecularly imprinted polymer (MMIP) was synthesized to extract normetanephrine (NMN), metanephrine (MN) and 3-methoxytyramine (3-MT) from spot urine samples. As the adsorbent of dispersive solid-phase extraction (d-SPE), the MMIP was prepared using dopamine and MN as dual templates, methacrylic [...] Read more.
A novel dual-template magnetic molecularly imprinted polymer (MMIP) was synthesized to extract normetanephrine (NMN), metanephrine (MN) and 3-methoxytyramine (3-MT) from spot urine samples. As the adsorbent of dispersive solid-phase extraction (d-SPE), the MMIP was prepared using dopamine and MN as dual templates, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the crosslinking reagent and magnetic nanoparticles as the magnetic core. NMN, MN, 3-MT and creatinine (Cr) in spot urine samples were selectively enriched by d-SPE and detected by HPLC-fluorescence detection/ultraviolet detection. The peak area (A) ratios of NMN, MN and 3-MT to Cr were used for the diagnosis of pheochromocytomas and paragangliomas (PPGLs). The results showed that the adsorption efficiencies of MMIP for target analytes were all higher than 89.0%, and the coefficient variation precisions of intra-assay and inter-assay for the analytes were within 4.9% and 6.3%, respectively. The recoveries of the analytes were from 93.2% to 112.8%. The MMIP was still functional within 14 days and could be reused at least seven times. The d-SPE and recommended solid-phase extraction (SPE) were both used to pretreat spot urine samples from 18 PPGLs patients and 22 healthy controls. The correlation coefficients of ANMN/ACr and AMN/ACr between d-SPE and SPE were both higher than 0.95. In addition, the areas under the receiver operator curves for spot urine ANMN/ACr, AMN/ACr and plasma free NMN and MN were 0.975, 0.773 and 0.990, 0.821, respectively, indicating the two methods had the similar performances. The d-SPE method took only 20 min, which was effective in clinical application. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

7 pages, 5778 KB  
Case Report
Bilateral Pheochromocytoma with Germline MAX Variant without Family History
by Shinnosuke Hata, Mai Asano, Hiroyuki Tominaga, Masahide Hamaguchi, Fumiya Hongo, Takeshi Usui, Eiichi Konishi and Michiaki Fukui
Clin. Pract. 2022, 12(3), 299-305; https://doi.org/10.3390/clinpract12030035 - 7 May 2022
Cited by 2 | Viewed by 3036
Abstract
Recently, the genetic background of pheochromocytomas/paragangliomas (PPGLs) has been rapidly revealed. These tumors have been referred to as the “ten percent tumor”; however, the frequency of genetic variants of PPGLs has turned out to be more common than expected. PPGLs are potentially hereditary [...] Read more.
Recently, the genetic background of pheochromocytomas/paragangliomas (PPGLs) has been rapidly revealed. These tumors have been referred to as the “ten percent tumor”; however, the frequency of genetic variants of PPGLs has turned out to be more common than expected. PPGLs are potentially hereditary tumors and appear clinically sporadic. Here, we report a case of bilateral pheochromocytoma (PCC) with a variant in the MYC-associated factor X (MAX) gene (c.295 + 1G > A). A male patient was diagnosed with adrenal pheochromocytoma (PCC) and underwent a left adrenalectomy at the age of 40. A new tumor in the right adrenal gland was detected at the age of 43. Urinary metanephrine and normetanephrine concentrations gradually increased. The size of the right adrenal PCC continued to increase one year after detection. Genetic testing of the peripheral blood revealed the presence of a pathogenic variant in MAX. The natural history of adrenal PCCs with the MAX variant has not yet been clarified, because the number of reported cases is not sufficient. Thus, clinicians should consider a MAX variant when they find bilateral or multiple PCCs. Full article
Show Figures

Figure 1

13 pages, 2870 KB  
Article
Comparison of Cortisol, Androstenedione and Metanephrines to Assess Selectivity and Lateralization of Adrenal Vein Sampling in Primary Aldosteronism
by Giulio Ceolotto, Giorgia Antonelli, Brasilina Caroccia, Michele Battistel, Giulio Barbiero, Mario Plebani and Gian Paolo Rossi
J. Clin. Med. 2021, 10(20), 4755; https://doi.org/10.3390/jcm10204755 - 17 Oct 2021
Cited by 31 | Viewed by 2938
Abstract
Success of adrenal vein sampling (AVS) is verified by the selectivity index (SI), i.e., by a step-up of cortisol levels between the adrenal vein and the infrarenal inferior vena cava samples, beyond a given cut-off. We tested the hypothesis that androstenedione, metanephrine, and [...] Read more.
Success of adrenal vein sampling (AVS) is verified by the selectivity index (SI), i.e., by a step-up of cortisol levels between the adrenal vein and the infrarenal inferior vena cava samples, beyond a given cut-off. We tested the hypothesis that androstenedione, metanephrine, and normetanephrine, which have higher gradients than cortisol, could increase the rate of AVS studies judged to be bilaterally successful and usable for the clinical decision making. We prospectively compared within-patient, head-to-head, the selectivity index of androstenedione (SIA), metanephrine (SIM), and normetanephrine (SINM), and cortisol (SIC) in consecutive hypertensive patients with primary aldosteronism submitted to AVS. Main outcome measures were rate of bilateral success, SI values, and identification of unilateral PA. We recruited 136 patients (55 + 10 years, 35% women). Compared to the SIC, the SIA values were 3.5-fold higher bilaterally, and the SIM values were 7-fold and 4.4-fold higher on the right and the left side, respectively. With the SIA and the SIM the rate of bilaterally successful AVS increased by 14% and 15%, respectively without impairing the identification of unilateral PA. We concluded that androstenedione and metanephrine outperformed cortisol for ascertaining AVS success, thus increasing the AVS studies useable for the clinical decision making. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

15 pages, 2716 KB  
Article
Epithelial Cell Line Derived from Endometriotic Lesion Mimics Macrophage Nervous Mechanism of Pain Generation on Proteome and Metabolome Levels
by Benjamin Neuditschko, Marlene Leibetseder, Julia Brunmair, Gerhard Hagn, Lukas Skos, Marlene C. Gerner, Samuel M. Meier-Menches, Iveta Yotova and Christopher Gerner
Biomolecules 2021, 11(8), 1230; https://doi.org/10.3390/biom11081230 - 17 Aug 2021
Cited by 7 | Viewed by 5872
Abstract
Endometriosis is a benign disease affecting one in ten women of reproductive age worldwide. Although the pain level is not correlated to the extent of the disease, it is still one of the cardinal symptoms strongly affecting the patients’ quality of life. Yet, [...] Read more.
Endometriosis is a benign disease affecting one in ten women of reproductive age worldwide. Although the pain level is not correlated to the extent of the disease, it is still one of the cardinal symptoms strongly affecting the patients’ quality of life. Yet, a molecular mechanism of this pathology, including the formation of pain, remains to be defined. Recent studies have indicated a close interaction between newly generated nerve cells and macrophages, leading to neurogenic inflammation in the pelvic area. In this context, the responsiveness of an endometriotic cell culture model was characterized upon inflammatory stimulation by employing a multi-omics approach, including proteomics, metabolomics and eicosanoid analysis. Differential proteomic profiling of the 12-Z endometriotic cell line treated with TNFα and IL1β unexpectedly showed that the inflammatory stimulation was able to induce a protein signature associated with neuroangiogenesis, specifically including neuropilins (NRP1/2). Untargeted metabolomic profiling in the same setup further revealed that the endometriotic cells were capable of the autonomous production of 7,8-dihydrobiopterin (BH2), 7,8-dihydroneopterin, normetanephrine and epinephrine. These metabolites are related to the development of neuropathic pain and the former three were found up-regulated upon inflammatory stimulation. Additionally, 12-Z cells were found to secrete the mono-oxygenated oxylipin 16-HETE, a known inhibitor of neutrophil aggregation and adhesion. Thus, inflammatory stimulation of endometriotic 12-Z cells led to specific protein and metabolite expression changes suggesting a direct involvement of these epithelial-like cells in endometriosis pain development. Full article
(This article belongs to the Special Issue Integrative Multi-Omics in Biomedical Research)
Show Figures

Figure 1

Back to TopTop