Annual Achievements Report
Available Now
 
19 pages, 925 KiB  
Review
Muscle Wasting and Treatment of Dyslipidemia in COPD: Implications for Patient Management
by Andrea Bianco, Raffaella Pagliaro, Angela Schiattarella, Domenica Francesca Mariniello, Vito D’Agnano, Roberta Cianci, Ersilia Nigro, Aurora Daniele, Filippo Scialò and Fabio Perrotta
Biomedicines 2025, 13(8), 1817; https://doi.org/10.3390/biomedicines13081817 (registering DOI) - 24 Jul 2025
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifactorial condition associated with significant systemic complications such as cardiovascular disease (CVD), metabolic disorders, muscle wasting, and sarcopenia. While Body Mass Index (BMI) is a well-established indicator of obesity and has prognostic value in COPD, its [...] Read more.
Chronic Obstructive Pulmonary Disease (COPD) is a multifactorial condition associated with significant systemic complications such as cardiovascular disease (CVD), metabolic disorders, muscle wasting, and sarcopenia. While Body Mass Index (BMI) is a well-established indicator of obesity and has prognostic value in COPD, its role in predicting disease outcomes is complex. Muscle wasting is prevalent in COPD patients and exacerbates disease severity, contributing to poor physical performance, reduced quality of life, and increased mortality. Additionally, COPD is linked to metabolic disorders, such as dyslipidemia and diabetes, which contribute to systemic inflammation and worse prognosis and, therefore, should be treated. The systemic inflammatory response plays a central role in the development of sarcopenia. In this review, we highlight the mixed efficacy of statins in managing dyslipidemia in COPD, considering side effects, including muscle toxicity in such a frail population. Alternative lipid-lowering therapies and nutraceuticals, in addition to standard treatment, have the potential to target hypercholesterolemia, which is a coexisting condition present in more than 50% of all COPD patients, without worsening muscle wasting. The interference between adipose tissue and lung, and particularly the potential protective role of adiponectin, an adipocytokine with anti-inflammatory properties, is also reviewed. Respiratory, metabolic and muscular health in COPD is comprehensively assessed. Identifying and managing dyslipidemia and paying attention to other relevant COPD comorbidities, such as sarcopenia and muscle wasting, is important to improve the quality of life and to reduce the clinical burden of COPD patients. Future research should focus on understanding the relationships between these intimate mechanisms to facilitate specific treatment for systemic involvement of COPD. Full article
Show Figures

Figure 1

20 pages, 2783 KiB  
Article
Inverse Kinematics-Augmented Sign Language: A Simulation-Based Framework for Scalable Deep Gesture Recognition
by Binghao Wang, Lei Jing and Xiang Li
Algorithms 2025, 18(8), 463; https://doi.org/10.3390/a18080463 (registering DOI) - 24 Jul 2025
Abstract
In this work, we introduce IK-AUG, a unified algorithmic framework for kinematics-driven data augmentation tailored to sign language recognition (SLR). Departing from traditional augmentation techniques that operate at the pixel or feature level, our method integrates inverse kinematics (IK) and virtual simulation to [...] Read more.
In this work, we introduce IK-AUG, a unified algorithmic framework for kinematics-driven data augmentation tailored to sign language recognition (SLR). Departing from traditional augmentation techniques that operate at the pixel or feature level, our method integrates inverse kinematics (IK) and virtual simulation to synthesize anatomically valid gesture sequences within a structured 3D environment. The proposed system begins with sparse 3D keypoints extracted via a pose estimator and projects them into a virtual coordinate space. A differentiable IK solver based on forward-and-backward constrained optimization is then employed to reconstruct biomechanically plausible joint trajectories. To emulate natural signer variability and enhance data richness, we define a set of parametric perturbation operators spanning spatial displacement, depth modulation, and solver sensitivity control. These operators are embedded into a generative loop that transforms each original gesture sample into a diverse sequence cluster, forming a high-fidelity augmentation corpus. We benchmark our method across five deep sequence models (CNN3D, TCN, Transformer, Informer, and Sparse Transformer) and observe consistent improvements in accuracy and convergence. Notably, Informer achieves 94.1% validation accuracy with IK-AUG enhanced training, underscoring the framework’s efficacy. These results suggest that algorithmic augmentation via kinematic modeling offers a scalable, annotation free pathway for improving SLR systems and lays the foundation for future integration with multi-sensor inputs in hybrid recognition pipelines. Full article
13 pages, 1401 KiB  
Article
Cost-Effectiveness of Endoscopic Stricturotomy Versus Resection Surgery for Crohn’s Disease Strictures
by Kate Lee Karlin, Grace Kim, Francesca Lim, Adam S. Faye, Chin Hur and Bo Shen
Healthcare 2025, 13(15), 1801; https://doi.org/10.3390/healthcare13151801 (registering DOI) - 24 Jul 2025
Abstract
Background: Endoscopic therapies for Crohn’s disease (CD) strictures, including endoscopic balloon dilation (EBD) and endoscopic stricturotomy (ESt), are less invasive interventions compared to surgery. ESt is advantageous for strictures that are longer, more fibrotic, or adjacent to anatomic structures requiring precision, and it [...] Read more.
Background: Endoscopic therapies for Crohn’s disease (CD) strictures, including endoscopic balloon dilation (EBD) and endoscopic stricturotomy (ESt), are less invasive interventions compared to surgery. ESt is advantageous for strictures that are longer, more fibrotic, or adjacent to anatomic structures requiring precision, and it has shown a high rate of surgery-free survival. Methods: We designed a microsimulation state-transition model comparing ESt to surgical resection for CD strictures. We calculated quality-adjusted life years (QALYs) over a 10-year time horizon; secondary outcomes included costs (in 2022 USD) and incremental cost-effectiveness ratios (ICERs). We used a societal perspective to compare our strategies at a willingness-to-pay (WTP) threshold of 100,000 USD/QALY. Sensitivity analyses, both deterministic and probabilistic, were performed. Results: The surgery strategy cost more than 2.5 times the ESt strategy, but resulted in nine more QALYs per 100 persons. The ICER for the surgery strategy was 308,787 USD/QALY; thus, the ESt strategy was determined more cost-effective. One-way sensitivity analyses showed that quality of life after ESt as compared to that after surgery, the likelihood of repeat intervention, and surgical mortality and cost were the most influential parameters shifting cost-effectiveness. Probabilistic sensitivity analyses favored ESt in most (65.5%) iterations. Conclusions: Our study finds endoscopic stricturotomy to be a cost-effective strategy to manage primary or anastomotic Crohn’s disease strictures. Post-intervention quality of life and probabilities of requiring repeated interventions exert most influence on cost-effectiveness. The decision between ESt and surgery should be made considering patient and stricture characteristics, preferences, and cost-effectiveness. Full article
(This article belongs to the Section Healthcare Quality and Patient Safety)
18 pages, 2885 KiB  
Article
Research on Microseismic Magnitude Prediction Method Based on Improved Residual Network and Transfer Learning
by Huaixiu Wang and Haomiao Wang
Appl. Sci. 2025, 15(15), 8246; https://doi.org/10.3390/app15158246 (registering DOI) - 24 Jul 2025
Abstract
To achieve more precise and effective microseismic magnitude estimation, a classification model based on transfer learning with an improved deep residual network is proposed for predicting microseismic magnitudes. Initially, microseismic waveform images are preprocessed through cropping and blurring before being used as inputs [...] Read more.
To achieve more precise and effective microseismic magnitude estimation, a classification model based on transfer learning with an improved deep residual network is proposed for predicting microseismic magnitudes. Initially, microseismic waveform images are preprocessed through cropping and blurring before being used as inputs to the model. Subsequently, the microseismic waveform image dataset is divided into training, testing, and validation sets. By leveraging the pretrained ResNet18 model weights from ImageNet, a transfer learning strategy is implemented, involving the retraining of all layers from scratch. Following this, the CBAM is introduced for model optimization, resulting in a new network model. Finally, this model is utilized in seismic magnitude classification research to enable microseismic magnitude prediction. The model is validated and compared with other commonly used neural network models. The experiment uses microseismic waveform data and images of magnitudes 0–3 from the Stanford Earthquake Dataset (STEAD) as training samples. The results indicate that the model achieves an accuracy of 87% within an error range of ±0.2 and 94.7% within an error range of ±0.3. This model demonstrates enhanced stability and reliability, effectively addressing the issue of missing data labels. It validates that using ResNet transfer learning combined with an attention mechanism yields higher accuracy in microseismic magnitude prediction, as well as confirming the effectiveness of the CBAM. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 3093 KiB  
Article
Light Propagation and Multi-Scale Enhanced DeepLabV3+ for Underwater Crack Detection
by Wenji Ai, Jiaxuan Zou, Zongchao Liu, Shaodi Wang and Shuai Teng
Algorithms 2025, 18(8), 462; https://doi.org/10.3390/a18080462 (registering DOI) - 24 Jul 2025
Abstract
Achieving state-of-the-art performance (82.5% IoU, 85.6% F1), this paper proposes an enhanced DeepLabV3+ model for robust underwater crack detection through three integrated innovations: a physics-based light propagation correction model for illumination distortion, multi-scale feature extraction for variable crack dimensions, and curvature flow-guided loss [...] Read more.
Achieving state-of-the-art performance (82.5% IoU, 85.6% F1), this paper proposes an enhanced DeepLabV3+ model for robust underwater crack detection through three integrated innovations: a physics-based light propagation correction model for illumination distortion, multi-scale feature extraction for variable crack dimensions, and curvature flow-guided loss for boundary precision. Our approach significantly outperforms DeepLabV3+, SCTNet, and LarvSeg by 10.6–13.4% IoU, demonstrating particular strength in detecting small cracks (78.1% IoU) under challenging low-light/high-turbidity conditions. The solution provides a practical framework for automated underwater infrastructure inspection. Full article
(This article belongs to the Special Issue Machine Learning for Pattern Recognition (3rd Edition))
22 pages, 1016 KiB  
Article
Toxic Threats from the Fern Pteridium Aquilinum: A Multidisciplinary Case Study in Northern Spain
by L. María Sierra, Isabel Feito, Mª Lucía Rodríguez, Ana Velázquez, Alejandra Cué, Jaime San-Juan-Guardado, Marta Martín, Darío López, Alexis E. Peña, Elena Canga, Guillermo Ramos, Juan Majada, José Manuel Alvarez and Helena Fernández
Int. J. Mol. Sci. 2025, 26(15), 7157; https://doi.org/10.3390/ijms26157157 (registering DOI) - 24 Jul 2025
Abstract
Pteridium aquilinum (bracken fern) poses a global threat to biodiversity and to the health of both animals and humans due to its toxic metabolites and aggressive ecological expansion. In northern Spain, particularly in regions of intensive livestock farming, these risks may be exacerbated, [...] Read more.
Pteridium aquilinum (bracken fern) poses a global threat to biodiversity and to the health of both animals and humans due to its toxic metabolites and aggressive ecological expansion. In northern Spain, particularly in regions of intensive livestock farming, these risks may be exacerbated, calling for urgent assessment and monitoring strategies. In this study, we implemented a multidisciplinary approach to evaluate the toxicological and ecological relevance of P. aquilinum through four key actions: (a) quantification of pterosins A and B in young fronds (croziers) using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS); (b) analysis of in vivo genotoxicity of aqueous extracts using Drosophila melanogaster as a model organism; (c) a large-scale survey of local livestock farmers to assess awareness and perceived impact of bracken; and (d) the development and field application of a drone-based mapping tool to assess the spatial distribution of the species at the regional level. Our results confirm the consistent presence of pterosins A and B in croziers, with concentrations ranging from 0.17 to 2.20 mg/g dry weight for PtrB and 13.39 to 257 µg/g for PtrA. Both metabolite concentrations and genotoxicity levels were found to correlate with latitude and, importantly, with each other. All tested samples exhibited genotoxic activity, with notable differences among them. The farmer survey (n = 212) revealed that only 50% of respondents were aware of the toxic risks posed by bracken, indicating a need for targeted outreach. The drone-assisted mapping approach proved to be a promising tool for identifying bracken-dominated areas and provides a scalable foundation for future ecological monitoring and land management strategies. Altogether, our findings emphasize that P. aquilinum is not merely a local concern but a globally relevant toxic species whose monitoring and control demand coordinated scientific and policy-based efforts. Full article
(This article belongs to the Special Issue The Transcendental World of Plant Toxic Compounds)
15 pages, 1111 KiB  
Article
Analytical Approximations as Close as Desired to Special Functions
by Aviv Orly
Axioms 2025, 14(8), 566; https://doi.org/10.3390/axioms14080566 (registering DOI) - 24 Jul 2025
Abstract
We introduce a modern methodology for constructing global analytical approximations of special functions over their entire domains. By integrating the traditional method of matching asymptotic expansions—enhanced with Padé approximants—with differential evolution optimization, a modern machine learning technique, we achieve high-accuracy approximations using elegantly [...] Read more.
We introduce a modern methodology for constructing global analytical approximations of special functions over their entire domains. By integrating the traditional method of matching asymptotic expansions—enhanced with Padé approximants—with differential evolution optimization, a modern machine learning technique, we achieve high-accuracy approximations using elegantly simple expressions. This method transforms non-elementary functions, which lack closed-form expressions and are often defined by integrals or infinite series, into simple analytical forms. This transformation enables deeper qualitative analysis and offers an efficient alternative to existing computational techniques. We demonstrate the effectiveness of our method by deriving an analytical expression for the Fermi gas pressure that has not been previously reported. Additionally, we apply our approach to the one-loop correction in thermal field theory, the synchrotron functions, common Fermi–Dirac integrals, and the error function, showcasing superior range and accuracy over prior studies. Full article
Show Figures

Figure 1

15 pages, 3018 KiB  
Article
Ultrasonographic Assessment of Meniscus Damage in the Context of Clinical Manifestations
by Tomasz Poboży, Wojciech Konarski, Kacper Janowski, Klaudia Michalak, Kamil Poboży and Julia Domańska-Poboża
Medicina 2025, 61(8), 1339; https://doi.org/10.3390/medicina61081339 (registering DOI) - 24 Jul 2025
Abstract
Background and Objectives: Meniscal pathologies are common abnormalities of the knee joint and a frequent cause of knee pain. Prompt and accurate diagnosis is essential to ensure appropriate treatment. Ultrasonography is increasingly used due to its accessibility, cost- and time-efficiency, and capacity [...] Read more.
Background and Objectives: Meniscal pathologies are common abnormalities of the knee joint and a frequent cause of knee pain. Prompt and accurate diagnosis is essential to ensure appropriate treatment. Ultrasonography is increasingly used due to its accessibility, cost- and time-efficiency, and capacity for dynamic assessment. This study aimed to evaluate the usefulness of ultrasonography in identifying specific types of meniscal tears and to assess their frequency of occurrence. Materials and Methods: A retrospective study was conducted to assess the frequency and sonographic appearance of various meniscal pathologies. The study population included all patients who underwent ultrasonographic examination of the knee in our clinic over one year for various indications (n = 430). Archived ultrasound images were retrospectively reviewed and analyzed. Results: Meniscal pathologies were identified in 134 patients. The findings included 95 cases of degenerative lesions (70.9%), 18 meniscal cyst-related pathologies (13.4%), 8 complex tears (6.0%), 5 flap tears (3.7%), 3 vertical pericapsular tears (2.2%), 3 partial thickness tears (2.2%), and 2 bucket-handle-type tears (1.5%). Each lesion type was characterized and illustrated through representative ultrasound images. Conclusions: Ultrasound imaging of meniscal pathology offers a valuable diagnostic option. By characterizing and visually documenting different meniscal lesions, this study highlights the practical potential of ultrasonography in routine clinical settings. These findings may enhance diagnostic accuracy and guide more targeted management strategies. Moreover, the results contribute to the expanding body of research on musculoskeletal ultrasonography and may encourage broader adoption of ultrasound in orthopedic diagnostics. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

13 pages, 1357 KiB  
Article
On the Computational Determination of the pKa of Some Arylboronic Acids
by André Gustavo Horta Barbosa, João Guilherme Siqueira Monteiro, Noemi de Jesus Hiller and Daniela de Luna Martins
Compounds 2025, 5(3), 28; https://doi.org/10.3390/compounds5030028 (registering DOI) - 24 Jul 2025
Abstract
An important property of arylboronic acids, particularly when considering their use in medicinal chemistry, is their pKa in aqueous solution. The results of computational determination of absolute pKas of arylboronic acids can be very disappointing in comparison to available experimental [...] Read more.
An important property of arylboronic acids, particularly when considering their use in medicinal chemistry, is their pKa in aqueous solution. The results of computational determination of absolute pKas of arylboronic acids can be very disappointing in comparison to available experimental results, particularly in the case of large substituents. In this paper, the main origin of this problem is identified. It is shown that in order to obtain accurate pKa values for arylboronic acids from computational quantum chemistry, it is necessary to consider the effect of different possible conformations of the hydroxyl groups in the acid and its conjugate base together with the low-energy conformations of their substituents. An improved practical procedure for the computational determination of the pKas of arylboronic acids is proposed and applied to a set of recently synthesized arylboronic acids, yielding consistent results. Full article
Show Figures

Graphical abstract

15 pages, 1041 KiB  
Article
Clinical Characterization of the Lacrimal Functional Unit in Patients with Chronic Ocular Pain Associated with Dry Eye Disease
by Marta Blanco-Vázquez, Andrea Novo-Diez, Amanda Vázquez, Amalia Enríquez-de-Salamanca, María J. González-García and Margarita Calonge
J. Clin. Med. 2025, 14(15), 5250; https://doi.org/10.3390/jcm14155250 (registering DOI) - 24 Jul 2025
Abstract
Background/Objectives: The purpose of this study was to clinically characterize the lacrimal functional unit (LFU) of patients with chronic ocular pain associated with dry eye disease (DED). Methods: Ninety-three participants were included in this cross-sectional study: 28 patients with chronic ocular [...] Read more.
Background/Objectives: The purpose of this study was to clinically characterize the lacrimal functional unit (LFU) of patients with chronic ocular pain associated with dry eye disease (DED). Methods: Ninety-three participants were included in this cross-sectional study: 28 patients with chronic ocular pain associated with DED (pain-DED), 35 patients with DED but no pain (no pain-DED), and 30 subjects without DED or ocular pain (controls). The following examinations were performed: symptom questionnaires, visual function assessment, tear meniscus, ocular surface evaluation, meibography, corneal sensitivity, Schirmer test, and in vivo corneal confocal microscopy. Results: Both DED groups presented increased DED-related symptoms (p < 0.001), corneal staining (p < 0.001), Meibomian gland loss (p < 0.010), and dendritic cell density (p < 0.001) compared with controls. Comparing both DED groups, the pain-DED group showed higher DED-related symptoms (p < 0.002) and increased microneuroma density (p < 0.001). Additionally, significant positive correlations were observed between symptom questionnaires and corneal staining (vs. OSDI: r = 0.514, p < 0.001; vs. m-SIDEQ: r = 0.504, p < 0.001; vs. NRS: r = 0.361, p < 0.001; vs. WBFPRS: r = 0.317, p = 0.002), dendritic cell density (vs. OSDI: r = 0.429, p < 0.001; vs. m-SIDEQ: r = 0.440, p < 0.001), and microneuroma density (vs. NRS: r = 0.405, p < 0.001; vs. WBFPRS: r = 0.416, p < 0.001). Conclusions: Differences in the LFU, especially in the morphology of sub-basal corneal nerves, are related to the presence of DED and chronic ocular pain and, along with ocular clinical questionnaires, can help phenotype these patients. Full article
Show Figures

Figure 1

18 pages, 557 KiB  
Article
Physical Activity and Mental Health After COVID-19: The Role of Levels and Domains of Physical Activity
by Miloš Stamenković, Saša Pantelić, Saša Bubanj, Bojan Bjelica, Nikola Aksović, Ovidiu Galeru, Tatiana-Nela Balint, Alina-Mihaela Cristuță, Carmina-Mihaela Gorgan and Tatiana Dobrescu
Life 2025, 15(8), 1179; https://doi.org/10.3390/life15081179 (registering DOI) - 24 Jul 2025
Abstract
(1) Background: Physical activity (PA) plays a crucial role in preserving and enhancing mental health, particularly in the aftermath of major health crises such as the COVID-19 pandemic. However, the specific levels and domains of physical activity that have the greatest impact on [...] Read more.
(1) Background: Physical activity (PA) plays a crucial role in preserving and enhancing mental health, particularly in the aftermath of major health crises such as the COVID-19 pandemic. However, the specific levels and domains of physical activity that have the greatest impact on alleviating symptoms of anxiety, depression, and stress in the post-COVID-19 period remain unclear. The aim of this study was to examine the influence of different levels and domains of PA on mental health parameters, specifically symptoms of anxiety, depression, and stress, in individuals who had recovered from COVID-19. (2) Methods: The study included initial measurements (2–4 weeks post-recovery) and final measurements (14–16 weeks post-recovery). The sample comprised 288 participants aged 20 to 60 years (M = 47.06; SD = 12.41), with 95 men and 193 women. PA was assessed using the long version of the IPAQ questionnaire, while mental health was evaluated using the long version of the DASS scale. (3) Results: Stepwise regression analysis revealed that low- (p = 0.010) and moderate-intensity (p = 0.022) PA was significantly associated with reductions in anxiety symptoms as well as lower stress levels (low PA: p = 0.014; moderate PA: p = 0.042). Total PA (p < 0.001) and vigorous-intensity PA (p = 0.008) emerged as significant predictors of reduced depression levels. Among the domains of PA, home-based activities had a statistically significant impact on all three mental health components: anxiety (p = 0.005), depression (p = 0.002), and stress (p = 0.041). Transport-related PA was significantly associated with anxiety (p = 0.011) and stress (p = 0.022), but not with depression. (4) Conclusions: The results suggest that a combined model incorporating different levels and domains of PA may represent an effective approach to improving mental health in individuals recovering from COVID-19. Further longitudinal studies are needed to establish more precise causal relationships. Full article
(This article belongs to the Section Physiology and Pathology)
16 pages, 780 KiB  
Article
AI-Driven Automated Test Generation Framework for VCU: A Multidimensional Coupling Approach Integrating Requirements, Variables and Logic
by Guangyao Wu, Xiaoming Xu and Yiting Kang
World Electr. Veh. J. 2025, 16(8), 417; https://doi.org/10.3390/wevj16080417 (registering DOI) - 24 Jul 2025
Abstract
This paper proposes an AI-driven automated test generation framework for vehicle control units (VCUs), integrating natural language processing (NLP) and dynamic variable binding. To address the critical limitation of traditional AI-generated test cases lacking executable variables, the framework establishes a closed-loop transformation from [...] Read more.
This paper proposes an AI-driven automated test generation framework for vehicle control units (VCUs), integrating natural language processing (NLP) and dynamic variable binding. To address the critical limitation of traditional AI-generated test cases lacking executable variables, the framework establishes a closed-loop transformation from requirements to executable code through a five-layer architecture: (1) structured parsing of PDF requirements using domain-adaptive prompt engineering; (2) construction of a multidimensional variable knowledge graph; (3) semantic atomic decomposition of requirements and logic expression generation; (4) dynamic visualization of cause–effect graphs; (5) path-sensitization-driven optimization of test sequences. Validated on VCU software from a leading OEM, the method achieves 97.3% variable matching accuracy and 100% test case executability, reducing invalid cases by 63% compared to conventional NLP approaches. This framework provides an explainable and traceable automated solution for intelligent vehicle software validation, significantly enhancing efficiency and reliability in automotive testing. Full article
(This article belongs to the Special Issue Intelligent Electric Vehicle Control, Testing and Evaluation)
17 pages, 5711 KiB  
Article
Impact of High-Temperature Exposure on Reinforced Concrete Structures Supported by Steel Ring-Shaped Shear Connectors
by Atsushi Suzuki, Runze Yang and Yoshihiro Kimura
Buildings 2025, 15(15), 2626; https://doi.org/10.3390/buildings15152626 (registering DOI) - 24 Jul 2025
Abstract
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical [...] Read more.
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical and lateral load paths in containment systems. Scaled-down cyclic loading tests were performed on pedestal specimens with and without prior thermal exposure, simulating post-accident conditions observed at a damaged nuclear power plant. Experimental results show that thermal degradation significantly reduces lateral stiffness, with failure mechanisms concentrating at the interface between the concrete and the embedded steel skirt. Complementary finite element analyses, incorporating temperature-dependent material degradation, highlight the crucial role of load redistribution to steel components when concrete strength is compromised. Parametric studies reveal that while geometric variations in the inner skirt have limited influence, thermal history is the dominant factor affecting vertical capacity. Notably, even with substantial section loss in the concrete, the steel inner skirt maintained considerable load-bearing capacity. This study establishes a validated analytical framework for assessing structural performance under extreme conditions, offering critical insights for risk evaluation and retrofit strategies in the context of nuclear facility decommissioning. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 1257 KiB  
Article
Collagen Remodeling of Strattice™ Firm in a Nonhuman Primate Model of Abdominal Wall Repair
by Kelly Bolden, Jared Lombardi, Nimesh Kabaria, Eric Stec and Maryellen Gardocki-Sandor
Bioengineering 2025, 12(8), 796; https://doi.org/10.3390/bioengineering12080796 (registering DOI) - 24 Jul 2025
Abstract
This study characterized collagen remodeling in an electron-beam-sterilized porcine acellular dermal matrix (E-PADM) by evaluating host response kinetics during wound healing. E-PADM (n = 6 lots/time point) was implanted in an abdominal wall bridging defect in nonhuman primates (N = 24). [...] Read more.
This study characterized collagen remodeling in an electron-beam-sterilized porcine acellular dermal matrix (E-PADM) by evaluating host response kinetics during wound healing. E-PADM (n = 6 lots/time point) was implanted in an abdominal wall bridging defect in nonhuman primates (N = 24). Histological, immunohistochemical, and biochemical assessments were conducted. Pro-inflammatory tissue cytokines peaked 1 month post-implantation and subsided to baseline by 6 months. E-PADM-specific serum immunoglobulin G antibodies increased by 213-fold from baseline at 1 month, then decreased to <10-fold by 6–9 months. The mean percentage tissue area staining positively for matrix metalloproteinase-1 plateaued at 3 months (40.3 ± 16.9%), then subsided by 6 months (16.3 ± 11.1%); tissue inhibitor matrix metalloproteinase-1 content plateaued at 1 month (39.0 ± 14.3%), then subsided by 9 months (13.0 ± 8.8%). Mean E-PADM thickness (1.7 ± 0.2 mm pre-implant) increased at 3 months (2.9 ± 1.5 mm), then decreased by 9 months (1.9 ± 1.1; equivalent to pre-implant). Histology demonstrated mild inflammation between 1−3 months, then a peak in host tissue deposition, with ≈75%−100% E-PADM collagen turnover, and fibroblast infiltration and neovascularization between 3−6 months. Picrosirius red staining revealed that mature E-PADM collagen was replaced by host-associated neo-collagen by 6 months. E-PADM implantation induced wound healing, which drove dermal E-PADM collagen remodeling to native, functional fascia-like tissue at the implant site. Full article
(This article belongs to the Special Issue Advances and Innovations in Wound Repair and Regeneration)
16 pages, 123395 KiB  
Article
Semi-Supervised Image-Dehazing Network Based on a Trusted Library
by Wan Li and Chenyang Chang
Electronics 2025, 14(15), 2956; https://doi.org/10.3390/electronics14152956 (registering DOI) - 24 Jul 2025
Abstract
In the field of image dehazing, many deep learning-based methods have demonstrated promising results. However, these methods often neglect crucial frequency-domain information and rely heavily on labeled datasets, which limits their applicability to real-world hazy images. To address these issues, we propose a [...] Read more.
In the field of image dehazing, many deep learning-based methods have demonstrated promising results. However, these methods often neglect crucial frequency-domain information and rely heavily on labeled datasets, which limits their applicability to real-world hazy images. To address these issues, we propose a semi-supervised image-dehazing network based on a trusted library (WTS-Net). We construct a dual-branch wavelet transform network (DBWT-Net). It fuses high- and low-frequency features via a frequency-mixing module and enhances global context through attention mechanisms. Building on DBWT-Net, we embed this backbone in a teacher–student model to reduce reliance on labeled data. To enhance the reliability of the teacher network, we introduce a trusted library guided by NR-IQA. In addition, we employ a two-stage training strategy for the network. Experiments show that WTS-Net achieves superior generalization and robustness in both synthetic and real-world dehazing scenarios. Full article
Show Figures

Figure 1

17 pages, 6752 KiB  
Article
Controlled Synthesis and Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-b-polysarcosine Block Copolymers
by Zi-Xian Li, Chen Yang, Lei Guo, Jun Ling and Jun-Ting Xu
Molecules 2025, 30(15), 3108; https://doi.org/10.3390/molecules30153108 (registering DOI) - 24 Jul 2025
Abstract
Poly(ε-caprolactone)-b-polysarcosine (PCL-b-PSar) block copolymers (BCPs) emerge as a promising alternative to conventional poly(ε-caprolactone)-b-poly(ethylene oxide) BCPs for biomedical applications, leveraging superior biocompatibility and biodegradability. In this study, we synthesized two series of PCL-b-PSar BCPs [...] Read more.
Poly(ε-caprolactone)-b-polysarcosine (PCL-b-PSar) block copolymers (BCPs) emerge as a promising alternative to conventional poly(ε-caprolactone)-b-poly(ethylene oxide) BCPs for biomedical applications, leveraging superior biocompatibility and biodegradability. In this study, we synthesized two series of PCL-b-PSar BCPs with controlled polymerization degrees (DP of PCL: 45/67; DP of PSar: 28–99) and low polydispersity indexes (Đ ≤ 1.1) and systematically investigated their crystallization-driven self-assembly (CDSA) in alcohol solvents (ethanol, n-butanol, and n-hexanol). It was found that the limited solubility of PSar in alcohols resulted in competition between micellization and crystallization during self-assembly of PCL-b-PSar, and thus coexistence of lamellae and spherical micelles. To overcome this morphological heterogeneity, we developed a modified self-seeding method by employing a two-step crystallization strategy (i.e., Tc1 = 33 °C and Tc2 = 8 °C), achieving conversion of micelles into crystals and yielding uniform self-assembled structures. PCL-b-PSar BCPs with short PSar blocks tended to form well-defined two-dimensional lamellar crystals, while those with long PSar blocks induced formation of hierarchical structures in the PCL45 series and polymer aggregation on crystal surfaces in the PCL67 series. Solvent quality notably influenced the self-assembly pathways of PCL45-b-PSar28. Lamellar crystals were formed in ethanol and n-butanol, but micrometer-scale dendritic aggregates were generated in n-hexanol, primarily due to a significant Hansen solubility parameter mismatch. This study elucidated the CDSA mechanism of PCL-b-PSar in alcohols, enabling precise structural control for biomedical applications. Full article
Show Figures

Graphical abstract

20 pages, 1067 KiB  
Article
Motion Sickness Suppression Strategy Based on Dynamic Coordination Control of Active Suspension and ACC
by Fang Zhou, Dengfeng Zhao, Yudong Zhong, Pengpeng Wang, Junjie Jiang, Zhenwei Wang and Zhijun Fu
Machines 2025, 13(8), 650; https://doi.org/10.3390/machines13080650 (registering DOI) - 24 Jul 2025
Abstract
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in [...] Read more.
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in the longitudinal, lateral, and vertical directions, involving ACC, LKA, active suspension, etc. Existing motion sickness control method focuses on optimizing the longitudinal, lateral, and vertical directions separately, or coordinating the optimization control of the longitudinal and lateral directions, while there is relatively little research on the coupling effect and coupled optimization of the longitudinal and vertical directions. This study proposes a coupled framework of ACC and active suspension control system based on MPC. By adding pitch angle changes caused by longitudinal acceleration to the suspension model, a coupled state equation of half-car vertical dynamics and ACC longitudinal dynamics is constructed to achieve integrated optimization of ACC and suspension for motion suppression. The suspension active forces and vehicle acceleration are regulated coordinately to optimize vehicle vertical, longitudinal, and pitch dynamics simultaneously. Simulation experiments show that compared to decoupled control of ACC and suspension, the integrated control framework can be more effective. The research results confirm that the dynamic coordination between the suspension and ACC system can effectively suppress the motion sickness, providing a new idea for solving the comfort conflict in the human vehicle environment coupling system. Full article
(This article belongs to the Section Vehicle Engineering)
21 pages, 7303 KiB  
Article
Effect of AF Surface Nanostructure on AFRP Interface Properties Under Temperature: A MD Simulation Study
by Zhaohua Zhang, Guowei Xia, Chunying Qiao, Longyin Qiao, Fei Gao, Qing Xie and Jun Xie
Polymers 2025, 17(15), 2024; https://doi.org/10.3390/polym17152024 (registering DOI) - 24 Jul 2025
Abstract
The insulating rod of aramid fiber-reinforced epoxy resin composites (AFRP) is an important component of gas-insulated switchgear (GIS). Under complex working conditions, the high temperature caused by voltage, current, and external climate change becomes one of the important factors that aggravate the interface [...] Read more.
The insulating rod of aramid fiber-reinforced epoxy resin composites (AFRP) is an important component of gas-insulated switchgear (GIS). Under complex working conditions, the high temperature caused by voltage, current, and external climate change becomes one of the important factors that aggravate the interface degradation between aramid fiber (AF) and epoxy resin (EP). In this paper, molecular dynamics (MD) simulation software is used to study the effect of temperature on the interfacial properties of AF/EP. At the same time, the mechanism of improving the interfacial properties of three nanoparticles with different properties (insulator Al2O3, semiconductor ZnO, and conductor carbon nanotube (CNT)) is explored. The results show that the increase in temperature will greatly reduce the interfacial van der Waals force, thereby reducing the interfacial binding energy between AF and EP, making the interfacial wettability worse. Furthermore, the addition of the three fillers can improve the interfacial adhesion of the composite material. Among them, Al2O3 and CNT maintain a large dipole moment at high temperature, making the van der Waals force more stable and the adhesion performance attenuation less. The Mulliken charge and energy gap of Al2O3 and ZnO decrease slightly with temperature but are still higher than AF, which is conducive to maintaining good interfacial insulation performance. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
21 pages, 930 KiB  
Article
Revocable Identity-Based Matchmaking Encryption with Equality Test for Smart Healthcare
by Xiaokun Zheng, Dong Zheng and Yinghui Zhang
Sensors 2025, 25(15), 4588; https://doi.org/10.3390/s25154588 (registering DOI) - 24 Jul 2025
Abstract
Smart healthcare establishes a safe, reliable, and efficient medical information system for the public with the help of the Internet of Things, cloud storage, and other Internet technologies. To enable secure data sharing and case-matching functions in smart healthcare, we construct a revocable [...] Read more.
Smart healthcare establishes a safe, reliable, and efficient medical information system for the public with the help of the Internet of Things, cloud storage, and other Internet technologies. To enable secure data sharing and case-matching functions in smart healthcare, we construct a revocable identity-based matchmaking encryption with an equality test (RIBME-ET) scheme for smart healthcare. Our scheme not only ensures the confidentiality and authenticity of messages and protects the privacy of users, but also enables a cloud server to perform equality tests on encrypted ciphertexts from different identities to determine whether they contain the same plaintext and protects the confidentiality of data in the system through a user revocation mechanism. Compared with the existing identity-based encryption with equality test (IBEET) and identity-based matchmaking encryption with equality test (IBME-ET) schemes, we have improved the efficiency of the scheme and reduced communication overhead. In addition, the scheme’s security is proven in the random oracle model under the computational bilinear Diffie–Hellman (CBDH) assumption. Finally, the feasibility and effectiveness of the proposed scheme are verified by performance analysis. Full article
Show Figures

Figure 1

27 pages, 516 KiB  
Article
How Does Migrant Workers’ Return Affect Land Transfer Prices? An Investigation Based on Factor Supply–Demand Theory
by Mengfei Gao, Rui Pan and Yueqing Ji
Land 2025, 14(8), 1528; https://doi.org/10.3390/land14081528 (registering DOI) - 24 Jul 2025
Abstract
Given the significant shifts in rural labor mobility patterns and their continuous influence on the transformation of the land factor market, it is crucial to understand the relationship between labor factor prices and land factor prices. This understanding is essential to keep land [...] Read more.
Given the significant shifts in rural labor mobility patterns and their continuous influence on the transformation of the land factor market, it is crucial to understand the relationship between labor factor prices and land factor prices. This understanding is essential to keep land factor prices within a reasonable range. This study establishes a theoretical framework to investigate how migrant workers’ return shapes land price formation mechanisms. Using 2023 micro-level survey data from eight counties in Jiangsu Province, China, this study empirically examines how migrant workers’ return affects land transfer prices and its underlying mechanisms through OLS regression and instrumental variable approaches. The findings show that under the current pattern of labor mobility, the outflow factor alone is no longer sufficient to exert substantial downward pressure on land transfer prices. Instead, the localized return of labor has emerged as a key driver behind the rise in land transfer prices. This upward mechanism is primarily realized through the following pathways. First, factor substitution effect: this effect lowers labor prices and increases the relative marginal output value of land factors. Second, supply–demand effect: migrant workers’ return simultaneously increases land demand and reduces supply, intensifying market shortages and driving up transfer prices. Lastly, the results demonstrate that enhancing the stability of land tenure security or increasing local non-agricultural employment opportunities can mitigate the effect of rising land transfer prices caused by the migrant workers’ return. According to the study’s findings, stabilizing land factor prices depends on full non-agricultural employment for migrant workers. This underscores the significance of policies that encourage employment for returning rural labor. Full article
Show Figures

Figure 1

20 pages, 4182 KiB  
Article
Beyond White-Nose Syndrome: Mitochondrial Rearrangements and Functional Genomics of Pseudogymnoascus destructans
by Ilia V. Popov, Svetoslav D. Todorov, Michael L. Chikindas, Koen Venema, Alexey M. Ermakov and Igor V. Popov
J. Fungi 2025, 11(8), 550; https://doi.org/10.3390/jof11080550 (registering DOI) - 24 Jul 2025
Abstract
White-Nose Syndrome (WNS) has devastated insectivorous bat populations, particularly in North America, leading to severe ecological and economic consequences. Despite extensive research, many aspects of the evolutionary history, mitochondrial genome organization, and metabolic adaptations of its etiological agent, Pseudogymnoascus destructans, remain unexplored. [...] Read more.
White-Nose Syndrome (WNS) has devastated insectivorous bat populations, particularly in North America, leading to severe ecological and economic consequences. Despite extensive research, many aspects of the evolutionary history, mitochondrial genome organization, and metabolic adaptations of its etiological agent, Pseudogymnoascus destructans, remain unexplored. Here, we present a multi-scale genomic analysis integrating pangenome reconstruction, phylogenetic inference, Bayesian divergence dating, comparative mitochondrial genomics, and refined functional annotation. We show that P. destructans exhibits extensive mitochondrial genome rearrangements absent in its nonpathogenic relatives from the Leotiomycetes class, suggesting a potential link between mitochondrial evolution and pathogenic adaptation. Our divergence dating analysis reveals that P. destructans separated from its Antarctic relatives approximately 141 million years ago, before adapting to bat hibernacula in the Northern Hemisphere. Additionally, our refined functional annotation significantly expands the known functional landscape of P. destructans, revealing an extensive repertoire of previously uncharacterized proteins involved in carbohydrate metabolism and secondary metabolite biosynthesis—key processes that likely contribute to its pathogenic success. By providing new insights into the genomic basis of P. destructans adaptation and pathogenicity, our study refines the evolutionary framework of this fungal pathogen and creates the foundation for future research on WNS mitigation strategies. Full article
(This article belongs to the Special Issue Diversity, Taxonomy and Ecology of Ascomycota, 2nd Edition)
Show Figures

Figure 1

20 pages, 8312 KiB  
Article
Experimental Investigation of Magnetic Abrasive Finishing for Post-Processing Additive Manufactured Inconel 939 Parts
by Michał Marczak, Dorota A. Moszczyńska and Aleksander P. Wawrzyszcz
Appl. Sci. 2025, 15(15), 8233; https://doi.org/10.3390/app15158233 (registering DOI) - 24 Jul 2025
Abstract
This study explores the efficacy of magnetic abrasive finishing (MAF) with planetary kinematics for post-processing Inconel 939 components fabricated by laser powder bed fusion (LPBF). Given the critical limitations in surface quality of LPBF-produced parts—especially in hard-to-machine superalloys like Inconel 939—there is a [...] Read more.
This study explores the efficacy of magnetic abrasive finishing (MAF) with planetary kinematics for post-processing Inconel 939 components fabricated by laser powder bed fusion (LPBF). Given the critical limitations in surface quality of LPBF-produced parts—especially in hard-to-machine superalloys like Inconel 939—there is a pressing need for advanced, adaptable finishing techniques that can operate effectively on complex geometries. This research focuses on optimizing the process parameters—eccentricity, rotational speed, and machining time—to enhance surface integrity following preliminary vibratory machining. Custom-designed samples underwent sequential machining, including heat treatment and 4 h vibratory machining, before MAF was applied under controlled conditions using ferromagnetic Fe-Si abrasives. Surface roughness measurements demonstrated a significant reduction, achieving Ra values from 1.21 µm to below 0.8 µm in optimal conditions, representing more than a fivefold improvement compared to the as-printed state (5.6 µm). Scanning Electron Microscopy (SEM) revealed progressive surface refinement, with MAF effectively removing adhered particles left by prior processing. Statistical analysis confirmed the dominant influence of eccentricity on the surface profile parameters, particularly Rz. The findings validate the viability of MAF as a precise, controllable, and complementary finishing method for LPBF-manufactured Inconel 939 components, especially for geometrically complex or hard-to-reach surfaces. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Genome-Wide Identification of the SiNHX Gene Family in Foxtail Millet (Setaria Italica) and Functional Characterization of SiNHX7 in Arabidopsis
by Xiaoqian Chu, Dan-Ying Chen, Mengmeng Sun, Jiajing Zhang, Minghua Zhang, Hejing Wu, Hongzhi Wang, Shuqi Dong, Xiangyang Yuan, Xiaorui Li, Lulu Gao, Guanghui Yang and Jia-Gang Wang
Int. J. Mol. Sci. 2025, 26(15), 7139; https://doi.org/10.3390/ijms26157139 (registering DOI) - 24 Jul 2025
Abstract
Plant growth is susceptible to abiotic stresses like salt and drought, and Na+/H+ antiporters (NHXs) play a pivotal role in stress responses. NHX proteins belong to the CPAs (cation/proton antiporters) family with a conserved Na+ (K+)/H+ [...] Read more.
Plant growth is susceptible to abiotic stresses like salt and drought, and Na+/H+ antiporters (NHXs) play a pivotal role in stress responses. NHX proteins belong to the CPAs (cation/proton antiporters) family with a conserved Na+ (K+)/H+ exchange domain, which is widely involved in plant growth, development, and defense. While NHX genes have been extensively studied in model plants (e.g., Arabidopsis thaliana and Oryza sativa), research in other species remains limited. In this study, we identified nine NHX genes in foxtail millet (Setaria italica) and analyzed their systematic phylogeny, gene structure, protein characteristics, distribution of the chromosome, collinearity relationship, and cis-elements prediction at the promoter region. Phylogenetic analysis revealed that the members of the SiNHX gene family were divided into four subgroups. RT-qPCR analysis of the SiNHX family members showed that most genes were highly expressed in roots of foxtail millet, and their transcriptional levels responded to salt stress treatment. To determine SiNHX7’s function, we constructed overexpression Arabidopsis lines for each of the two transcripts of SiNHX7, and found that the overexpressed plants exhibited salt tolerance. These findings provide valuable insights for further study of the function of SiNHX genes and are of great significance for breeding new varieties of salt-resistant foxtail millet. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 4075 KiB  
Article
Hybrid Wind–Solar Generation and Analysis for Iberian Peninsula: A Case Study
by Jesús Polo
Energies 2025, 18(15), 3966; https://doi.org/10.3390/en18153966 (registering DOI) - 24 Jul 2025
Abstract
Hybridization of solar and wind energy sources is a promising solution to enhance the dispatch capability of renewables. The complementarity of wind and solar radiation, as well as the sharing of transmission lines and other infrastructures, can notably benefit the deployment of renewable [...] Read more.
Hybridization of solar and wind energy sources is a promising solution to enhance the dispatch capability of renewables. The complementarity of wind and solar radiation, as well as the sharing of transmission lines and other infrastructures, can notably benefit the deployment of renewable power. Mapping of hybrid solar–wind potential can help identify new emplacements or existing power facilities where an extension with a hybrid system might work. This paper presents an analysis of a hybrid solar–wind potential by considering a reference power plant of 40 MW in the Iberian Peninsula and comparing the hybrid and non-hybrid energy generated. The generation of energy is estimated using SAM for a typical meteorological year, using PVGIS and ERA5 meteorological information as input. Modeling the hybrid plant in relation to individual PV and wind power plants minimizes the dependence on technical and economic input data, allowing for the expression of potential hybridization analysis in relative numbers through maps. Correlation coefficient and capacity factor maps are presented here at different time scales, showing the complementarity in most of the spatial domain. In addition, economic analysis in comparison with non-hybrid power plants shows a reduction of around 25–30% in the LCOE in many areas of interest. Finally, a sizing sensitivity analysis is also performed to select the most beneficial sharing between PV and wind. Full article
(This article belongs to the Special Issue Advances in Forecasting Technologies of Solar Power Generation)
22 pages, 63949 KiB  
Article
Functionalised Mesoporous Silica Thin Films as ROS-Generating Antimicrobial Coatings
by Magdalena Laskowska, Paweł Kowalczyk, Agnieszka Karczmarska, Katarzyna Pogoda, Maciej Zubko and Łukasz Laskowski
Int. J. Mol. Sci. 2025, 26(15), 7154; https://doi.org/10.3390/ijms26157154 (registering DOI) - 24 Jul 2025
Abstract
The recent COVID-19 pandemic has made the public aware of the importance of combating pathogenic microorganisms before they enter the human body. This growing threat from microorganisms prompted us to conduct research into a new type of coating that would be an alternative [...] Read more.
The recent COVID-19 pandemic has made the public aware of the importance of combating pathogenic microorganisms before they enter the human body. This growing threat from microorganisms prompted us to conduct research into a new type of coating that would be an alternative to the continuous disinfection of touch surfaces. Our goal was to design, synthesise and thoroughly characterise such a coating. In this work, we present a nanocomposite material composed of a thin-layer mesoporous SBA-15 silica matrix containing copper phosphonate groups, which act as catalytic centres responsible for the generation of reactive oxygen species (ROS). In order to verify the structure of the material, including its molecular structure, microscopic observations and Raman spectroscopy were performed. The generation of ROS was confirmed by fluorescence microscopy analysis using a fluorogenic probe. The antimicrobial activity was tested against a wide spectrum of Gram-positive and Gram-negative bacteria, while cytotoxicity was tested on BALB/c3T3 mouse fibroblast cells and HeLa cells. The studies fully confirmed the expected structure of the obtained material, its antimicrobial activity, and the absence of cytotoxicity towards fibroblast cells. The results obtained confirmed the high application potential of the tested nanocomposite coating. Full article
(This article belongs to the Special Issue Nanomaterials for Biomedical and Environmental Applications)
Show Figures

Figure 1

14 pages, 244 KiB  
Article
Exploring and Navigating Power Dynamics: A Case Study of Systemic Barriers to Inclusion and Equity for Black Women in Social Work Education
by Arlene P. Weekes
Soc. Sci. 2025, 14(8), 455; https://doi.org/10.3390/socsci14080455 (registering DOI) - 24 Jul 2025
Abstract
This paper explores the complex power dynamics of UK social work higher education through an autoethnographic account of a Black woman course leader’s experiences over a period of two years, focusing on issues related to race, internalized oppression, and class. Drawing on Critical [...] Read more.
This paper explores the complex power dynamics of UK social work higher education through an autoethnographic account of a Black woman course leader’s experiences over a period of two years, focusing on issues related to race, internalized oppression, and class. Drawing on Critical Race Theory (CRT), narrative analysis, and lived experience, it examines how systemic inequities manifest through three interlinked themes: (a) academic contrapower harassment (ACPH), (b) internalized oppression and toxic team dynamics, and (c) the interplay of harassment, institutional failure, managerial inaction, and the marginalization of social work as a discipline. This study illustrates how the intersectionality of multiple identities—namely, race, gender, and professional identity—impacts career progression, well-being, and institutional inclusion. This study examines the tensions between social work’s ethical foundations and performance-driven academic environments, advocating for systemic and policy interventions to stimulate institutional reform and cultivate a more equitable culture that enhances educational outcomes and, ultimately, improves social work practice. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop