Topic Editors

Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583, USA
Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA
Pediatrics Department, University of Nebraska Medical Center, Omaha, NE 68198, USA

Novel Therapeutic Nutrient Molecules, 2nd Volume

Abstract submission deadline
closed (30 September 2024)
Manuscript submission deadline
closed (31 December 2024)
Viewed by
10698

Topic Information

Dear Colleagues,

This Topic entitled “Novel Therapeutic Nutrient Molecules, 2nd Volume” will focus on the protective role of bioactive nutrient molecules as a therapeutic approach and against disease pathogenesis. The identification of novel nutrient molecules for therapeutics or to prevent disease pathogenesis has been an attractive approach due to the ease of their translation to the general population. The field of bioactive nutrient molecules protecting against human health outcomes has recently grown thanks to new knowledge. Our Topic Issue will consider original articles, commentaries, and review articles that focus on (but are not limited to) the following potential topics:

  • Investigations related to the nutrients of foods and their effects in improving human health;
  • Investigations related to novel nutrient compounds and their impact on the human gut microbiome and gut health;
  • Investigations related to the gut bioactive metabolites of nutrient molecules and their impact on human health;
  • The novel protective roles of vitamins and their metabolites against adverse health outcomes.

Dr. Sathish Kumar Natarajan
Dr. Jiujiu Yu
Dr. Corrine K Hanson
Dr. Melissa Thoene
Topic Editors

Keywords

  • bioactive nutrients
  • plant-derived exosome like nano particles
  • extracellular vesicles
  • gut microbial metabolites
  • gut-derived metabolites
  • nutrient signaling
  • phytochemicals

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
BioMed
biomed
- - 2021 21.9 Days CHF 1000
Biomedicines
biomedicines
3.9 5.2 2013 14.6 Days CHF 2600
Current Issues in Molecular Biology
cimb
2.8 2.9 1999 15.8 Days CHF 2200
Foods
foods
4.7 7.4 2012 14.5 Days CHF 2900
Nutrients
nutrients
4.8 9.2 2009 13.5 Days CHF 2900

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (3 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
29 pages, 1560 KiB  
Review
Unraveling the Biological Properties of Whey Peptides and Their Role as Emerging Therapeutics in Immune Tolerance
by Laura Quintieri, Anna Luparelli, Leonardo Caputo, William Schirinzi, Federica De Bellis, Leonardo Smiriglia and Linda Monaci
Nutrients 2025, 17(6), 938; https://doi.org/10.3390/nu17060938 - 7 Mar 2025
Viewed by 1002
Abstract
Whey is a natural by-product of the cheese-making process and represents a valuable source of nutrients, including vitamins, all essential amino acids and proteins with high quality and digestibility characteristics. Thanks to its different techno-functional characteristics, such as solubility, emulsification, gelling and foaming, [...] Read more.
Whey is a natural by-product of the cheese-making process and represents a valuable source of nutrients, including vitamins, all essential amino acids and proteins with high quality and digestibility characteristics. Thanks to its different techno-functional characteristics, such as solubility, emulsification, gelling and foaming, it has been widely exploited in food manufacturing. Also, advances in processing technologies have enabled the industrial production of a variety of whey-based products exerting biological activities. The beneficial properties of whey proteins (WPs) include their documented effects on cardiovascular, digestive, endocrine, immune and nervous systems, and their putative role in the prevention and treatment of non-communicable diseases (NCDs). In this regard, research on their application for health enhancement, based on the optimization of product formulation and the development of pharmaceuticals, is highly relevant. Beyond the health and nutritionally relevant effects as in in vivo animal studies, the allergenicity of WPs and WP hydrolysates is also herein tackled and discussed, as well as their potential role as therapeutics for immune tolerance and so-called tolerogenic effects. Grounded on the WPs’ health-promoting functions, this paper presents the latest research showing the potential of whey-derived peptides as an alternative strategy in NCD treatment. This work also reports a careful analysis of their current use, also revealing which obstacles limit their full exploitation, thus highlighting the future challenges in the field. Concluding, safety considerations, encompassing WP allergenicity, are also discussed, providing some insights on the role of WPs and peptides in milk allergen immunotolerance. Full article
(This article belongs to the Topic Novel Therapeutic Nutrient Molecules, 2nd Volume)
Show Figures

Graphical abstract

11 pages, 905 KiB  
Article
Dietary Inflammatory Potential and Bone Outcomes in Midwestern Post-Menopausal Women
by Mariah Kay Jackson, Laura D. Bilek, Nancy L. Waltman, Jihyun Ma, James R. Hébert, Sherry Price, Laura Graeff-Armas, Jill A. Poole, Lynn R. Mack, Didier Hans, Elizabeth R. Lyden and Corrine Hanson
Nutrients 2023, 15(19), 4277; https://doi.org/10.3390/nu15194277 - 7 Oct 2023
Cited by 6 | Viewed by 3641
Abstract
Little is known about the inflammatory potential of diet and its relation to bone health. This cross-sectional study examined the association between the inflammatory potential of diet and bone-related outcomes in midwestern, post-menopausal women enrolled in the Heartland Osteoporosis Prevention Study (HOPS) randomized [...] Read more.
Little is known about the inflammatory potential of diet and its relation to bone health. This cross-sectional study examined the association between the inflammatory potential of diet and bone-related outcomes in midwestern, post-menopausal women enrolled in the Heartland Osteoporosis Prevention Study (HOPS) randomized controlled trial. Dietary intake from the HOPS cohort was used to calculate Dietary Inflammatory Index (DII®) scores, which were energy-adjusted (E-DIITM) and analyzed by quartile. The association between E-DII and lumbar and hip bone mineral density (BMD) and lumbar trabecular bone scores (TBS; bone structure) was assessed using ANCOVA, with pairwise comparison to adjust for relevant confounders (age, education, race/ethnicity, smoking history, family history of osteoporosis/osteopenia, BMI, physical activity, and calcium intake). The cohort included 272 women, who were predominately white (89%), educated (78% with college degree or higher), with a mean BMI of 27 kg/m2, age of 55 years, and E-DII score of −2.0 ± 1.9 (more anti-inflammatory). After adjustment, E-DII score was not significantly associated with lumbar spine BMD (p = 0.53), hip BMD (p = 0.29), or TBS at any lumbar location (p > 0.05). Future studies should examine the longitudinal impact of E-DII scores and bone health in larger, more diverse cohorts. Full article
(This article belongs to the Topic Novel Therapeutic Nutrient Molecules, 2nd Volume)
Show Figures

Figure 1

12 pages, 1702 KiB  
Article
Glutamine Supplementation Preserves Glutamatergic Neuronal Activity in the Infralimbic Cortex, Which Delays the Onset of Mild Cognitive Impairment in 3×Tg-AD Female Mice
by Ji Hyeong Baek, Jae Soon Kang, Miyoung Song, Dong Kun Lee and Hyun Joon Kim
Nutrients 2023, 15(12), 2794; https://doi.org/10.3390/nu15122794 - 19 Jun 2023
Cited by 7 | Viewed by 3060
Abstract
It was recently found that glutamine (Gln) supplementation activates glutamatergic neurotransmission and prevents chronic-stress-induced mild cognitive impairment (MCI). In this study, we evaluated the effects of Gln on glutamatergic activity in the medial prefrontal cortex and the onset of cognitive impairment in a [...] Read more.
It was recently found that glutamine (Gln) supplementation activates glutamatergic neurotransmission and prevents chronic-stress-induced mild cognitive impairment (MCI). In this study, we evaluated the effects of Gln on glutamatergic activity in the medial prefrontal cortex and the onset of cognitive impairment in a triple-transgenic Alzheimer’s disease mouse model (3×Tg-AD). Female 3×Tg-AD mice were fed a normal diet (3×Tg) or a Gln-supplemented diet (3×Tg+Gln) from 2 to 6 months of age. Glutamatergic neuronal activity was analyzed at 6 months, and cognitive function was examined at 2, 4, and 6 months. 3×Tg mice exhibited a decrease in glutamatergic neurotransmission in the infralimbic cortex, but 3×Tg+Gln mice did not. The 3×Tg group showed MCI at 6 months of age, but the 3×Tg+Gln group did not. The expressions of amyloid peptide, inducible nitric oxide synthase, and IBA-1 were not elevated in the infralimbic cortex in the 3×Tg+Gln group. Therefore, a Gln-supplemented diet could delay the onset of MCI even in a mouse model predisposed to cognitive impairment and dementia through genetic modification. Full article
(This article belongs to the Topic Novel Therapeutic Nutrient Molecules, 2nd Volume)
Show Figures

Figure 1

Back to TopTop