Topic Editors

Department of Molecular Biology, Area of Microbiology, Universidad de León, 24071 Leon, Spain
Health Sciences Research Centre, University of Roehampton, London SW15 4JD, UK

Redox in Microorganisms, 2nd Edition

Abstract submission deadline
closed (31 January 2024)
Manuscript submission deadline
31 July 2024
Viewed by
1652

Topic Information

Dear Colleagues,

This is the second edition of “Redox in Microorganisms”( https://www.mdpi.com/topics/Redox_Microorganisms). The mechanisms by which microorganisms fight oxidative stress are essential for their survival in different environments. These include a large arsenal of molecular strategies to prevent or repair the oxidation of proteins, lipids, or nucleic acids, including antioxidants or enzymes that may rescue different vital components from irreversible oxidation. The molecular factors involved in these processes are relevant for pathogenesis, bioremediation, or industrial microbiology. Therefore, the study of redox biology in microorganisms is providing new insights into very diverse fields, and their translational potential is rapidly increasing. We invite you to submit your latest research findings or a review article on this special topic, which focuses on any aspect of the redox biology of microorganisms. We look forward to your contribution.

Dr. Michal Letek
Dr. Volker Behrends
Topic Editors

Keywords

  • redox biology
  • oxidative stress
  • virus
  • bacteria
  • archaea
  • protists
  • fungi
  • algae
  • infection
  • bioremediation
  • ROS-generating antimicrobials

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Antibiotics
antibiotics
4.8 5.5 2012 13.7 Days CHF 2900 Submit
Antioxidants
antioxidants
7.0 8.8 2012 13.9 Days CHF 2900 Submit
Journal of Fungi
jof
4.7 4.9 2015 18.4 Days CHF 2600 Submit
Microbiology Research
microbiolres
1.5 1.3 2010 16.6 Days CHF 1600 Submit
Microorganisms
microorganisms
4.5 6.4 2013 15.1 Days CHF 2700 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (2 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
19 pages, 1881 KiB  
Article
Unravelling the Role of Candida albicans Prn1 in the Oxidative Stress Response through a Proteomics Approach
by Victor Arribas, Lucia Monteoliva, María Luisa Hernáez, Concha Gil and Gloria Molero
Antioxidants 2024, 13(5), 527; https://doi.org/10.3390/antiox13050527 - 26 Apr 2024
Viewed by 159
Abstract
Candida albicans Prn1 is a protein with an unknown function similar to mammalian Pirin. It also has orthologues in other pathogenic fungi, but not in Saccharomyces cerevisiae. Prn1 highly increases its abundance in response to H2O2 treatment; thus, to [...] Read more.
Candida albicans Prn1 is a protein with an unknown function similar to mammalian Pirin. It also has orthologues in other pathogenic fungi, but not in Saccharomyces cerevisiae. Prn1 highly increases its abundance in response to H2O2 treatment; thus, to study its involvement in the oxidative stress response, a C. albicans prn1∆ mutant and the corresponding wild-type strain SN250 have been studied. Under H2O2 treatment, Prn1 absence led to a higher level of reactive oxygen species (ROS) and a lower survival rate, with a higher percentage of death by apoptosis, confirming its relevant role in oxidative detoxication. The quantitative differential proteomics studies of both strains in the presence and absence of H2O2 indicated a lower increase in proteins with oxidoreductase activity after the treatment in the prn1∆ strain, as well as an increase in proteasome-activating proteins, corroborated by in vivo measurements of proteasome activity, with respect to the wild type. In addition, remarkable differences in the abundance of some transcription factors were observed between mutant and wild-type strains, e.g., Mnl1 or Nrg1, an Mnl1 antagonist. orf19.4850, a protein orthologue to S. cerevisiae Cub1, has shown its involvement in the response to H2O2 and in proteasome function when Prn1 is highly expressed in the wild type. Full article
(This article belongs to the Topic Redox in Microorganisms, 2nd Edition)
19 pages, 9810 KiB  
Article
The Fecal Redox Potential in Healthy and Diarrheal Pigs and Their Correlation with Microbiota
by Ni Feng, Rongying Xu, Dongfang Wang, Lian Li, Yong Su and Xiaobo Feng
Antioxidants 2024, 13(1), 96; https://doi.org/10.3390/antiox13010096 - 12 Jan 2024
Viewed by 793
Abstract
The redox potential plays a critical role in sustaining the stability of gut microbiota. This study measured the fecal redox potential in healthy and diarrheal pigs using direct and dilution methods and investigated their correlation with microbiota. The results showed that the fluctuations [...] Read more.
The redox potential plays a critical role in sustaining the stability of gut microbiota. This study measured the fecal redox potential in healthy and diarrheal pigs using direct and dilution methods and investigated their correlation with microbiota. The results showed that the fluctuations in the redox potential of healthy pig feces were consistent using two different methods and the two methods are equivalent based on an equivalence test. The redox potential was positively correlated with the number of fungi and negatively related to the total bacteria. The relative or absolute abundances of many bacteria at the phyla and genus levels were associated with redox potential. In diarrheal pigs, the potentiometric trends of the two methods demonstrated an opposing pattern and the correlation with total bacteria was reversed. Precipitously elevated redox potential was detected post-diarrhea using dilution methods. The absolute abundance of Escherichia-Shigella and Fuurnierella was positively correlated with redox potential, while both relative and absolute abundances of Limosilactobacillus were positively correlated. These results suggest that both methods are suitable for detecting gut redox potential in healthy pigs, while the dilution method is more suitable for diarrheal pigs. The findings on the correlation of Limosilactobacillus, Prevotella, and Escherichia-Shigella with redox potential offer novel insights for targeted modulation of intestinal health. Full article
(This article belongs to the Topic Redox in Microorganisms, 2nd Edition)
Show Figures

Figure 1

Back to TopTop