Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = xOpera

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4634 KB  
Article
On the Synthesis of Graphene Oxide/Titanium Dioxide (GO/TiO2) Nanorods and Their Application as Saturable Absorbers for Passive Q-Switched Fiber Lasers
by Zain ul Abedin, Ajaz ul Haq, Rizwan Ahmed, Tahani A. Alrebdi, Ali M. Alshehri, Muhammad Irfan and Haroon Asghar
Nanomaterials 2024, 14(20), 1682; https://doi.org/10.3390/nano14201682 - 20 Oct 2024
Cited by 5 | Viewed by 2577
Abstract
We report passively Q-switched pulse operation through an erbium-doped fiber laser (EDFL) utilizing graphene oxide/titania (GO/TiO2) nanorods as a saturable absorber. The GO/TiO2 nanorods were fabricated using a Sol–gel-assisted hydrothermal method. The optical and physical characterization of the GO/TiO2 [...] Read more.
We report passively Q-switched pulse operation through an erbium-doped fiber laser (EDFL) utilizing graphene oxide/titania (GO/TiO2) nanorods as a saturable absorber. The GO/TiO2 nanorods were fabricated using a Sol–gel-assisted hydrothermal method. The optical and physical characterization of the GO/TiO2 was then characterized using a field-emission-scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and diffuses reflectance spectroscopy (DRS). To investigate the performance of the Q-switched EDFL based on the GO/TiO2 SA, the prepared nanorods were mechanically deposited on the fiber ferrule employing adhesion effects of in-dex-matching gel. This integration of the nanorod SA resulted in a self-starting Q-switching opera-tion initiated at a pump power of 17.5 mW and sustained up to 306.9 mW. When the pump range was tuned from 17.5 to 306.9 mW, the emission wavelength varied from 1564.2 to 1562.9 nm, pulse repetition rates increased from 13.87 kHz to 83.33 kHz, and pulse width decreased from 30.27 µs to 3.75 µs. Moreover, at the maximum pump power of 306.9 mW, the laser exhibited an average output power of 0.74 mW, a peak power of 1.54 mW, and a pulse energy of 8.88 nJ. Furthermore, this study investigates the GO/TiO2 damage threshold and prolonged stability of the proposed EDFL system. Full article
(This article belongs to the Special Issue Nonlinear Optical Property and Sensing Applications of Nanomaterials)
Show Figures

Figure 1

11 pages, 581 KB  
Review
The Effect of Oxidative Stress on the Human Voice
by Shigeru Hirano, Haruhiko Inufusa and Fukka You
Int. J. Mol. Sci. 2024, 25(5), 2604; https://doi.org/10.3390/ijms25052604 - 23 Feb 2024
Cited by 3 | Viewed by 3002
Abstract
The vocal fold vibrates in high frequency to create voice sound. The vocal fold has a sophisticated histological “layered structure” that enables such vibration. As the vibration causes fricative damage to the mucosa, excessive voicing can cause inflammation or injury to the mucosa. [...] Read more.
The vocal fold vibrates in high frequency to create voice sound. The vocal fold has a sophisticated histological “layered structure” that enables such vibration. As the vibration causes fricative damage to the mucosa, excessive voicing can cause inflammation or injury to the mucosa. Chronic inflammation or repeated injury to the vocal fold occasionally induces scar formation in the mucosa, which can result in severe dysphonia, which is difficult to treat. Oxidative stress has been proven to be an important factor in aggravating the injury, which can lead to scarring. It is important to avoid excessive oxidative stress during the wound healing period. Excessive accumulation of reactive oxygen species (ROS) has been found in the injured vocal folds of rats during the early phase of wound healing. Antioxidants proved to be useful in preventing the accumulation of ROS during the period with less scar formation in the long-term results. Oxidative stress is also revealed to contribute to aging of the vocal fold, in which the mucosa becomes thin and stiff with a reduction in vibratory capacity. The aged voice can be characterized as weak and breathy. It has been confirmed that ROS gradually increases in rat vocal fold mucosa with age, which may cause further damage to the vocal fold. Antioxidants have also proved effective in avoiding aging of the vocal fold in rat models. Recently, human trials have shown significant effects of the antioxidant Twendee X for maintaining the voice of professional opera singers. In conclusion, it is suggested that oxidative stress has a great impact on the damage or deterioration of the vocal folds, and the use of antioxidants is effective for preventing damage of the vocal fold and maintaining the voice. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

19 pages, 7924 KB  
Article
High-Throughput Measure of Mitochondrial Superoxide Levels as a Marker of Coronary Artery Disease to Accelerate Drug Translation in Patient-Derived Endothelial Cells Using Opera Phenix® Technology
by Weiqian E. Lee, Marie Besnier, Elijah Genetzakis, Owen Tang, Katharine A. Kott, Stephen T. Vernon, Michael P. Gray, Stuart M. Grieve, Michael Kassiou and Gemma A. Figtree
Int. J. Mol. Sci. 2024, 25(1), 22; https://doi.org/10.3390/ijms25010022 - 19 Dec 2023
Cited by 4 | Viewed by 6080
Abstract
Improved human-relevant preclinical models of coronary artery disease (CAD) are needed to improve translational research and drug discovery. Mitochondrial dysfunction and associated oxidative stress contribute to endothelial dysfunction and are a significant factor in the development and progression of CAD. Endothelial colony-forming cells [...] Read more.
Improved human-relevant preclinical models of coronary artery disease (CAD) are needed to improve translational research and drug discovery. Mitochondrial dysfunction and associated oxidative stress contribute to endothelial dysfunction and are a significant factor in the development and progression of CAD. Endothelial colony-forming cells (ECFCs) can be derived from peripheral blood mononuclear cells (PBMCs) and offer a unique potentially personalised means for investigating new potential therapies targeting important components of vascular function. We describe the application of the high-throughput and confocal Opera Phenix® High-Content Screening System to examine mitochondrial superoxide (mROS) levels, mitochondrial membrane potential, and mitochondrial area in both established cell lines and patient-derived ECFCs simultaneously. Unlike traditional plate readers, the Opera Phenix® is an imaging system that integrates automated confocal microscopy, precise fluorescent detection, and multi-parameter algorithms to visualize and precisely quantify targeted biological processes at a cellular level. In this study, we measured mROS production in human umbilical vein endothelial cells (HUVECs) and patient-derived ECFCs using the mROS production probe, MitoSOXTM Red. HUVECs exposed to oxidized low-density lipoprotein (oxLDL) increased mROS levels by 47.7% (p < 0.0001). A pooled group of patient-derived ECFCs from participants with CAD (n = 14) exhibited 30.9% higher mROS levels compared to patients with no CAD when stimulated with oxLDL (n = 14; p < 0.05). When tested against a small group of candidate compounds, this signal was attenuated by PKT-100 (36.22% reduction, p = 0.03), a novel P2X7 receptor antagonist. This suggests the P2X7 receptor as a valid target against excess mROS levels. As such, these findings highlight the potential of the MitoSOX-Opera Phenix technique to be used for drug discovery efforts in CAD. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease)
Show Figures

Figure 1

36 pages, 28783 KB  
Article
Evaluation of Rain Estimates from Several Ground-Based Radar Networks and Satellite Products for Two Cases Observed over France in 2022
by Antoine Causse, Céline Planche, Emmanuel Buisson and Jean-Luc Baray
Atmosphere 2023, 14(12), 1726; https://doi.org/10.3390/atmos14121726 - 24 Nov 2023
Cited by 3 | Viewed by 2855
Abstract
The recent development of satellite products for observing precipitation based on different technologies (microwaves, infrared, etc.) allows for near-real-time meteorological studies. The purpose of this article is to evaluate 11 satellite products (GHE, PDIR, IMERG-Early v6, IMERG-Late v6, CMORPH v0.x, CMORPH-RT v0.x, GSMaP-NRT [...] Read more.
The recent development of satellite products for observing precipitation based on different technologies (microwaves, infrared, etc.) allows for near-real-time meteorological studies. The purpose of this article is to evaluate 11 satellite products (GHE, PDIR, IMERG-Early v6, IMERG-Late v6, CMORPH v0.x, CMORPH-RT v0.x, GSMaP-NRT v7, GSMaP-NRT-GC v7, GSMaP-NOW v7, GSMaP-NOW-GC v7, and DATABOURG) currently available and compare them to 2 ground-based radar networks (PANTHERE and OPERA) and the French rain-gauge network RADOME. Two case studies of intense precipitation over France (22 to 25 April 2022 and 24 to 29 June 2022) were selected. The radar estimations are closer to the RADOME observations than the satellite-based estimations, which tend to globally underestimate the precipitation amounts over the areas of interest while OPERA tends to strongly overestimate precipitation amounts during the June case study. The PANTHERE radar product and the carrier-to-noise product DATABOURG shows promising results. Near-real-time satellite products tend to have closer precipitation amounts to the reference dataset than satellite products with a shorter latency. The use of these datasets for nowcasting developments is plausible but further analyses must be conducted beforehand. Full article
Show Figures

Figure 1

25 pages, 751 KB  
Article
Modeling Different Deployment Variants of a Composite Application in a Single Declarative Deployment Model
by Miles Stötzner, Steffen Becker, Uwe Breitenbücher, Kálmán Képes and Frank Leymann
Algorithms 2022, 15(10), 382; https://doi.org/10.3390/a15100382 - 19 Oct 2022
Cited by 6 | Viewed by 3125
Abstract
For automating the deployment of composite applications, typically, declarative deployment models are used. Depending on the context, the deployment of an application has to fulfill different requirements, such as costs and elasticity. As a consequence, one and the same application, i.e., its components, [...] Read more.
For automating the deployment of composite applications, typically, declarative deployment models are used. Depending on the context, the deployment of an application has to fulfill different requirements, such as costs and elasticity. As a consequence, one and the same application, i.e., its components, and their dependencies, often need to be deployed in different variants. If each different variant of a deployment is described using an individual deployment model, it quickly results in a large number of models, which are error prone to maintain. Deployment technologies, such as Terraform or Ansible, support conditional components and dependencies which allow modeling different deployment variants of a composite application in a single deployment model. However, there are deployment technologies, such as TOSCA and Docker Compose, which do not support such conditional elements. To address this, we extend the Essential Deployment Metamodel (EDMM) by conditional components and dependencies. EDMM is a declarative deployment model which can be mapped to several deployment technologies including Terraform, Ansible, TOSCA, and Docker Compose. Preprocessing such an extended model, i.e., conditional elements are evaluated and either preserved or removed, generates an EDMM conform model. As a result, conditional elements can be integrated on top of existing deployment technologies that are unaware of such concepts. We evaluate this by implementing a preprocessor for TOSCA, called OpenTOSCA Vintner, which employs the open-source TOSCA orchestrators xOpera and Unfurl to execute the generated TOSCA conform models. Full article
(This article belongs to the Collection Parallel and Distributed Computing: Algorithms and Applications)
Show Figures

Figure 1

12 pages, 32118 KB  
Article
Targeted Radiotherapy Using Contact X-ray Brachytherapy 50 kV
by Jean-Pierre Gerard, Arthur Sun Myint, Nicolas Barbet, Catherine Dejean, Brice Thamphya, Jocelyn Gal, Lucile Montagne and Te Vuong
Cancers 2022, 14(5), 1313; https://doi.org/10.3390/cancers14051313 - 3 Mar 2022
Cited by 10 | Viewed by 5081
Abstract
Rectal adenocarcinoma is a quite radioresistant tumor. In order to achieve non-operative management (NOM) radiotherapy plays a major role. Targeted radiotherapy aiming at high precision 3D radiotherapy uses stereotactic image-guided external beam radiotherapy machines. To further safely increase the tumor dose, endocavitary brachytherapy [...] Read more.
Rectal adenocarcinoma is a quite radioresistant tumor. In order to achieve non-operative management (NOM) radiotherapy plays a major role. Targeted radiotherapy aiming at high precision 3D radiotherapy uses stereotactic image-guided external beam radiotherapy machines. To further safely increase the tumor dose, endocavitary brachytherapy (ECB) is an original approach. There are two different ways to perform such an ECB: contact X-ray brachytherapy (CXB) using a 50 kV X-ray generator with an X-ray tube positioned under eye guidance into the rectal cavity and high-dose-rate brachytherapy (HDRB) using iridium-192 sources positioned into the rectal cavity under image guidance. This study focused on CXB. CXB uses a small mobile generator that produces 50 kV X-rays with limited penetration. This technique is well adapted to accessible tumors of limited size and especially needs a high dose rate (≥15 Gy/minutes) for rectal tumors. It is performed on an ambulatory basis. A total dose between 80–110 Gy is delivered in 3–4 fractions over 3 to 6 weeks into a small volume (5 cm3). CXB was pioneered in the 1970s by Papillon using the Philips RT 50TM. Since 2009, the Papillon P50TM has been used in 11 institutions in Europe. The OPERA Phase III trial tested the hypothesis that a CXB boost (90 Gy/3 fr) compared to an EBRT boost (9 Gy/5 fr) for T2–T3 ab < 5 cm and N0–N1 < 8 mm will increase the 3-year organ preservation (OP) rate when combined with 45 Gy/5 weeks with concomitant capecitabine. Out of more than 300 patients with tumors < 3 cm (1962–1992), Papillon reported a long-term local control close to 85%. Similar results were published in Europe and USA at that time. The Lyon R96-2 Phase III trial (2004) demonstrated that, when combined with preoperative EBRT, a CXB boost (90 Gy/3 fr) significantly increased the rate of clinical complete response (cCR) and sphincter preservation, with some patients having OP at 10 years. With more than 2000 patients treated in Europe (2010–2020) using the Papillon 50TM, organ preservation appears possible in close to 80% of cases in selected early T2–T3. The OPERA trial closed after 141 inclusions (2015–2020) after an independent data monitoring committee recommendation because of promising results. At the 2-year follow-up (blinded data), the rate of cCR and OP were 77% and 72%, respectively, for the 141 tumors, and for T < 3 cm (61 pts), they were 86% and 85%, respectively, with good bowel function. The final results should be available in 2022. Organ preservation using NOM appears to be a promising approach for rectal cancer. A CXB boost with chemoradiotherapy in selected early T2–T3 could become an attractive option to achieve a planned OP. This approach should be proposed to well-informed patients after discussion in an MDT. Full article
(This article belongs to the Special Issue Non Operative Management of Patients with Rectal Cancer)
Show Figures

Figure 1

10 pages, 1188 KB  
Article
Influence of Conventional Polymer, Hybrid Polymer and Zinc Phosphate Luting Agents on the Bond Strength of Customized Zirconia Post in Premolars—An In-Vitro Evaluation
by Khulud A. AlAali, Abdulaziz AlHelal, Jawaher R. Almahri, Aroob A. Albakri, Ragad M. Albani, Yasmeen A. Alhaizan, Mai M. Alhamdan, Naif A. Alaql, Mashael Binhasan, Eman M. Alhamdan, Ahmed H. Albaqawi, Fahim Vohra and Tariq Abduljabbar
Polymers 2022, 14(4), 758; https://doi.org/10.3390/polym14040758 - 15 Feb 2022
Cited by 7 | Viewed by 2568
Abstract
The aim was to identify the influence of conventional polymeric resin based cement (RC), hybrid polymer modified glass ionomer (RMGIC) and Zinc phosphate cement (ZPC) on the pull out strength of the customized zirconia post in premolars. Access cavity and root canals were [...] Read more.
The aim was to identify the influence of conventional polymeric resin based cement (RC), hybrid polymer modified glass ionomer (RMGIC) and Zinc phosphate cement (ZPC) on the pull out strength of the customized zirconia post in premolars. Access cavity and root canals were performed in sixty premolar teeth with the standardized crown down technique (ProTaper Universal, Dentsply). Post space impressions were scanned, and the pre-sintered Zenostar Zr Translucent blanks (Weiland Dental, Pforzheim) were milled with the Opera-system to form the post. All prepared specimens were divided equally in three groups based on the cement type employed for luting as follows: group A: ZPC; group B (GC Fuji PLUS Capsule): RMGIC; group C (and RC (3M RelyX ARC). Ten specimens in each group were thermocycled (TC) at 5 and 55 °C in distilled water baths (40,000 cycles). Pull out bond strength was assessed using a universal testing machine at 0.5 mm/min. The means and standard deviations were compared using ANOVA and Tukey Kramer multiple comparisons tests. A significant difference among the cement groups as well as between TC and non-thermocycled (NTC) groups (p < 0.05) was observed. The highest tensile stress was demonstrated among group C (Resin, 69.89 ± 4.81 (NTC), 64.06 ± 4.36 (TC)) with the least in group A, (zinc phosphate, 43.66 ± 5.02 (NTC), 37.70 ± 5.10 (TC)) for both groups. Group A presented with 100% adhesive bond failures, followed by 80% in group C and 70% in group B, respectively. A similar outcome was observed in the TC group for the cement; however, unlike the NTC group, the TC group showed more cohesive failures compared to the NTC mixed failure. Dual cure polymer based cement demonstrated higher bond strength and efficient adhesive bonding of the customized Zr post with root dentine compared to zinc phosphate (non-polymeric) and RMGIC (hybrid polymer). Thermocycling compromised Zr post adhesive bonding to root dentin. Full article
(This article belongs to the Special Issue Bioactive Polymer Composites and Their Clinical Applications)
Show Figures

Graphical abstract

Back to TopTop