Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (464)

Search Parameters:
Keywords = wireless power transfer (WPT) systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9745 KiB  
Article
Reconfigurable Wireless Power Transfer System with High Misalignment Tolerance Using Coaxial Antipodal Dual DD Coils for AUV Charging Applications
by Yonglu Liu, Mingxing Xiong, Qingxuan Zhang, Fengshuo Yang, Yu Lan, Jinhai Jiang and Kai Song
Energies 2025, 18(15), 4148; https://doi.org/10.3390/en18154148 - 5 Aug 2025
Viewed by 29
Abstract
Wireless power transfer (WPT) systems for autonomous underwater vehicles (AUVs) are gaining traction in marine exploration due to their operational convenience, safety, and flexibility. Nevertheless, disturbances from ocean currents and marine organisms frequently induce rotational, axial, and air-gap misalignments, significantly degrading the output [...] Read more.
Wireless power transfer (WPT) systems for autonomous underwater vehicles (AUVs) are gaining traction in marine exploration due to their operational convenience, safety, and flexibility. Nevertheless, disturbances from ocean currents and marine organisms frequently induce rotational, axial, and air-gap misalignments, significantly degrading the output power stability. To mitigate this issue, this paper proposes a novel reconfigurable WPT system utilizing coaxial antipodal dual DD (CAD-DD) coils, which strategically switches between a detuned S-LCC topology and a detuned S-S topology at a fixed operating frequency. By characterizing the output power versus the coupling coefficient (P-k) profiles under both reconfiguration modes, a parameter design methodology is developed to ensure stable power delivery across wide coupling variations. Experimental validation using a 1.2 kW AUV charging prototype demonstrates remarkable tolerance to misalignment: ±30° rotation, ±120 mm axial displacement, and 20–50 mm air-gap variation. Within this range, the output power fluctuation is confined to within 5%, while the system efficiency exceeds 85% consistently, peaking at 91.56%. Full article
(This article belongs to the Special Issue Advances in Wireless Power Transfer Technologies and Applications)
Show Figures

Figure 1

26 pages, 4981 KiB  
Article
Modeling and Characteristic Analysis of Mistuned Series–Series-Compensated Wireless Charging System for EVs
by Weihan Li, Yunhan Han and Chenxu Li
Energies 2025, 18(15), 4091; https://doi.org/10.3390/en18154091 - 1 Aug 2025
Viewed by 235
Abstract
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent [...] Read more.
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent simplification of mistuned parameters, we systematically examine the effects of compensation capacitances and coil inductances on input impedance, output power, and efficiency in SS-compensated topologies across wide load ranges and different coupling coefficients. Results reveal that transmitter-side parameter deviations exert more pronounced impacts on input impedance and power gain than receiver-side variations. Remarkably, under receiver-side inductance mistuning of −20%, a significant 32° shift in the input impedance angle was observed. Experimental validation on a 500 W prototype confirms ≤5% maximum deviation between calculated and measured values for efficiency, input impedance angle, and power gain. Full article
(This article belongs to the Special Issue Wireless Charging Technologies for Electric Vehicles)
Show Figures

Figure 1

14 pages, 3251 KiB  
Communication
Design and Optimization of a Miniaturized Wireless Power Transfer System Using Matching Media for Efficiency Enhancement at 1.6 GHz
by Aftab Ahmad, Ashfaq Ahmad and Dong-You Choi
Electronics 2025, 14(14), 2918; https://doi.org/10.3390/electronics14142918 - 21 Jul 2025
Viewed by 358
Abstract
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the [...] Read more.
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the receiver (Rx) comprises a slotted patch antenna miniaturized using two vertical vias. The initial power transfer efficiency (PTE), represented by the transmission coefficient S21, was measured to be −31 dB with a 25 mm separation between Tx and Rx. To enhance the efficiency of the system, a dielectric matching media (MM) was introduced between the transmitter and receiver. Through the implementation of the MM, the PTE improved significantly, with S21 increasing to −24 dB. A parametric study was conducted by varying the thickness of the MM from 1 mm to 10 mm and the relative permittivity (εr) from 5 to 30. The results demonstrate that both the thickness and dielectric constant of the MM play a crucial role in improving the coupling and overall efficiency of the WPT system. The optimal configuration was achieved with a matching media thickness of 10 mm and a relative permittivity of 25, which yielded the best improvement in transmission performance. This work offers a practical approach to enhance near-field WPT efficiency using simple matching structures and is particularly relevant for compact and low-profile energy transfer applications. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

15 pages, 3227 KiB  
Article
A Symmetrical Cross Double-D Coil with Improved Misalignment Tolerance for WPT Systems
by Ashwini Rathod, Satish M. Mahajan and Taiye Owu
World Electr. Veh. J. 2025, 16(7), 405; https://doi.org/10.3390/wevj16070405 - 18 Jul 2025
Viewed by 374
Abstract
Inductive Wireless Power Transfer (WPT) technologies are advancing significantly in the electric vehicle (EV) charging applications. Misalignment between transmitting and receiving coils can considerably affect power transmission efficiency in WPT systems. Prior research involved power electronics as well as electromagnetic couplers. This work [...] Read more.
Inductive Wireless Power Transfer (WPT) technologies are advancing significantly in the electric vehicle (EV) charging applications. Misalignment between transmitting and receiving coils can considerably affect power transmission efficiency in WPT systems. Prior research involved power electronics as well as electromagnetic couplers. This work focuses on the coil design aspect of electromagnetic couplers. A relatively new concept of Symmetrical Cross Double-D (SCDD) type of the coil design is introduced specifically to maximize tolerance to misalignment while sustaining significant amount of power transferred. Mutual inductance was determined for the perfect alignment and misalignment positions of the SCDD coils. Mutual inductance obtained from the simulation was validated from the experimental measurements. The SCDD electromagnetic coupler demonstrated almost 2.5 times superior tolerance to misalignment of coils compared to the conventional circular coupler while maintaining at least 78% of maximum power transfer even at a lateral misalignment of 40 mm. Full article
(This article belongs to the Special Issue Wireless Power Transfer Technology for Electric Vehicles)
Show Figures

Figure 1

23 pages, 5228 KiB  
Article
From Conventional to Electrified Pavements: A Structural Modeling Approach for Spanish Roads
by Gustavo Boada-Parra, Ronny Romero, Federico Gulisano, Freddy Apaza-Apaza, Damaris Cubilla, Andrea Serpi, Rafael Jurado-Piña and Juan Gallego
Coatings 2025, 15(7), 801; https://doi.org/10.3390/coatings15070801 - 9 Jul 2025
Viewed by 377
Abstract
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% [...] Read more.
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% of global car sales by 2035. However, widespread adoption requires smart infrastructure capable of enabling dynamic in-motion charging. In this context, Electric Road Systems (ERSs), particularly those based on Wireless Power Transfer (WPT) technologies, offer a promising solution by transferring energy between road-embedded transmitters and vehicle-mounted receivers. This study assesses the structural response and service life of conventional and electrified asphalt pavement sections representative of the Spanish road network. Several standard pavement configurations were analyzed under heavy traffic (dual axles, 13 tons) using a hybrid approach combining mechanistic–empirical multilayer modeling and three-dimensional Finite Element Method (FEM) simulations. The electrified designs integrate prefabricated charging units (CUs) placed at a 9 cm depth, disrupting the structural continuity of the pavement. The results reveal stress concentrations at the CU–asphalt interface and service life reductions of up to 50% in semiflexible pavements. Semirigid sections performed better, with average reductions close to 40%. These findings are based on numerical simulations of standard Spanish sections and do not include experimental validation. Full article
(This article belongs to the Special Issue Recent Research in Asphalt and Pavement Materials)
Show Figures

Graphical abstract

32 pages, 8765 KiB  
Article
Hybrid Efficient Fast Charging Strategy for WPT Systems: Memetic-Optimized Control with Pulsed/Multi-Stage Current Modes and Neural Network SOC Estimation
by Marouane El Ancary, Abdellah Lassioui, Hassan El Fadil, Yassine El Asri, Anwar Hasni, Abdelhafid Yahya and Mohammed Chiheb
World Electr. Veh. J. 2025, 16(7), 379; https://doi.org/10.3390/wevj16070379 - 6 Jul 2025
Viewed by 446
Abstract
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a [...] Read more.
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a memetic algorithm (MA) to dynamically optimize the charging parameters, achieving an optimal balance between speed and battery longevity while maintaining 90.78% system efficiency at the SAE J2954-standard 85 kHz operating frequency. A neural-network-based state of charge (SOC) estimator provides accurate real-time monitoring, complemented by MA-tuned PI control for enhanced resonance stability and adaptive pulsed current–MCM profiles for the optimal energy transfer. Simulations and experimental validation demonstrate faster charging compared to that using the conventional constant current–constant voltage (CC-CV) methods while effectively preserving the battery’s state of health (SOH)—a critical advantage that reduces the environmental impact of frequent battery replacements and minimizes the carbon footprint associated with raw material extraction and battery manufacturing. By addressing both the technical challenges of high-power WPT systems and the ecological imperative of battery preservation, this research bridges the gap between fast charging requirements and sustainable EV adoption, offering a practical solution that aligns with global decarbonization goals through optimized resource utilization and an extended battery service life. Full article
Show Figures

Graphical abstract

15 pages, 3135 KiB  
Article
Resonance Circuit Design Eliminating RX-Side Series Capacitor in LCC-LCC WPT Systems Using an RX Shield Coil
by Yujun Shin, Jaewon Rhee and Seongho Woo
Electronics 2025, 14(13), 2686; https://doi.org/10.3390/electronics14132686 - 2 Jul 2025
Viewed by 232
Abstract
This paper presents a new resonance circuit design method for LCC-LCC wireless power transfer (WPT) systems that incorporate reactive shielding (SH) coils on the receiver (RX) side to suppress the electromagnetic field (EMF). While reactive SH coils are known to reduce leakage magnetic [...] Read more.
This paper presents a new resonance circuit design method for LCC-LCC wireless power transfer (WPT) systems that incorporate reactive shielding (SH) coils on the receiver (RX) side to suppress the electromagnetic field (EMF). While reactive SH coils are known to reduce leakage magnetic fields, they alter the equivalent inductance of the system, thereby disrupting resonance conditions. To address this, we derive the changes in the equivalent inductance caused by SH coils and propose a method to re-select the series capacitor on both the RX and TX sides. Furthermore, we investigate the adjustment of the required input voltage to maintain output power with the SH coils. The proposed methodology eliminates the need for a series capacitor on the RX side, simplifies the network, and reduces the magnetic leakage field by up to 55.6%, as verified by the simulation and measurement results. This study provides a new pathway toward compact, EMF-conscious and LCC-based WPT systems. Full article
(This article belongs to the Special Issue Wireless Power Transfer Systems and Applications)
Show Figures

Figure 1

40 pages, 5045 KiB  
Review
RF Energy-Harvesting Techniques: Applications, Recent Developments, Challenges, and Future Opportunities
by Stella N. Arinze, Emenike Raymond Obi, Solomon H. Ebenuwa and Augustine O. Nwajana
Telecom 2025, 6(3), 45; https://doi.org/10.3390/telecom6030045 - 1 Jul 2025
Viewed by 1281
Abstract
The increasing demand for sustainable and renewable energy solutions has made radio frequency energy harvesting (RFEH) a promising technique for powering low-power electronic devices. RFEH captures ambient RF signals from wireless communication systems, such as mobile networks, Wi-Fi, and broadcasting stations, and converts [...] Read more.
The increasing demand for sustainable and renewable energy solutions has made radio frequency energy harvesting (RFEH) a promising technique for powering low-power electronic devices. RFEH captures ambient RF signals from wireless communication systems, such as mobile networks, Wi-Fi, and broadcasting stations, and converts them into usable electrical energy. This approach offers a viable alternative for battery-dependent and hard-to-recharge applications, including streetlights, outdoor night/security lighting, wireless sensor networks, and biomedical body sensor networks. This article provides a comprehensive review of the RFEH techniques, including state-of-the-art rectenna designs, energy conversion efficiency improvements, and multi-band harvesting systems. We present a detailed analysis of recent advancements in RFEH circuits, impedance matching techniques, and integration with emerging technologies such as the Internet of Things (IoT), 5G, and wireless power transfer (WPT). Additionally, this review identifies existing challenges, including low conversion efficiency, unpredictable energy availability, and design limitations for small-scale and embedded systems. A critical assessment of current research gaps is provided, highlighting areas where further development is required to enhance performance and scalability. Finally, constructive recommendations for future opportunities in RFEH are discussed, focusing on advanced materials, AI-driven adaptive harvesting systems, hybrid energy-harvesting techniques, and novel antenna–rectifier architectures. The insights from this study will serve as a valuable resource for researchers and engineers working towards the realization of self-sustaining, battery-free electronic systems. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

13 pages, 31731 KiB  
Article
Optimized Coupling Coil Geometry for High Wireless Power Transfer Efficiency in Mobile Devices
by Fahad M. Alotaibi
J. Low Power Electron. Appl. 2025, 15(2), 36; https://doi.org/10.3390/jlpea15020036 - 17 Jun 2025
Viewed by 428
Abstract
Wireless Power Transfer (WPT) enables efficient, contactless charging for mobile devices by eliminating mechanical connectors and wiring, thereby enhancing user experience and device longevity. However, conventional WPT systems remain prone to performance issues such as coil misalignment, resonance instability, and thermal losses. Addressing [...] Read more.
Wireless Power Transfer (WPT) enables efficient, contactless charging for mobile devices by eliminating mechanical connectors and wiring, thereby enhancing user experience and device longevity. However, conventional WPT systems remain prone to performance issues such as coil misalignment, resonance instability, and thermal losses. Addressing these challenges involves designing coil geometries that operate at lower resonant frequencies to strengthen magnetic coupling and decrease resistance. This work introduces a WPT system with a performance-driven coil design aimed at maximizing magnetic coupling and mutual inductance between the transmitting (Tx) and receiving (Rx) coils in mobile devices. Due to the nonlinear behavior of magnetic flux and the high computational cost of simulations, exploring the full design space for coils using ANSYS Maxwell becomes impractical. To address this complexity, a machine learning (ML)-based optimization framework is developed to efficiently navigate the design space. The framework integrates a hybrid sequential neural network and multivariate regression model to optimize coil winding and ferrite core geometry. The optimized structure achieves a mutual inductance of 12.52 μH with a conventional core, outperforming many existing ML models. Finite element simulations and experimental results validate the robustness of the method, which offers a scalable solution for efficient wireless charging in compact, misalignment-prone environments. Full article
Show Figures

Figure 1

14 pages, 2404 KiB  
Article
The Development of a 1 kW Mid-Range Wireless Power Transfer Platform for Autonomous Guided Vehicle Applications Using an LCC-S Resonant Compensator
by Worapong Pairindra, Suwaphit Phongsawat, Teeraphon Phophongviwat and Surin Khomfoi
World Electr. Veh. J. 2025, 16(6), 322; https://doi.org/10.3390/wevj16060322 - 9 Jun 2025
Cited by 1 | Viewed by 700
Abstract
This study presents the development, simulation, and hardware implementation of a 48 V, 1 kW mid-range wireless power transfer (WPT) platform for autonomous guided vehicle (AGV) charging in industrial applications. The system uses an LCC-S compensation topology, selected for its ability to maintain [...] Read more.
This study presents the development, simulation, and hardware implementation of a 48 V, 1 kW mid-range wireless power transfer (WPT) platform for autonomous guided vehicle (AGV) charging in industrial applications. The system uses an LCC-S compensation topology, selected for its ability to maintain a constant output voltage and deliver high efficiency even under load variations at a typical coil distance of 15 cm. It can also operate at different distances by adjusting the compensator circuit. A proportional–integral (PI) controller is implemented for current regulation, offering a practical, low-cost solution well suited to industrial embedded systems. Compared to advanced control strategies, the PI controller provides sufficient accuracy with minimal computational demand, enabling reliable operation in real-world environments. Current adjustment can be dynamically carried out in response to real-time changes and continuously monitored based on the AGV battery’s state of charge (SOC). Simulation and experimental results validate the system’s performance, achieving over 80% efficiency and demonstrating its feasibility for scalable, robust AGV charging in Industry 4.0 Manufacturing Settings. Full article
(This article belongs to the Special Issue Wireless Power Transfer Technology for Electric Vehicles)
Show Figures

Figure 1

19 pages, 998 KiB  
Article
Neural Network Method for Distance Prediction and Impedance Matching of a Wireless Power Transfer System
by Lorenzo Sabino, Davide Milillo, Fabio Crescimbini and Francesco Riganti Fulginei
Appl. Sci. 2025, 15(11), 6351; https://doi.org/10.3390/app15116351 - 5 Jun 2025
Viewed by 493
Abstract
This study introduces a novel and versatile application of neural networks (NNs) to enhance two distinct aspects of Wireless Power Transfer (WPT) systems. First, a compact NN architecture is presented for accurate distance estimation and automated impedance matching in a WPT system. Trained [...] Read more.
This study introduces a novel and versatile application of neural networks (NNs) to enhance two distinct aspects of Wireless Power Transfer (WPT) systems. First, a compact NN architecture is presented for accurate distance estimation and automated impedance matching in a WPT system. Trained on either impedance measurements or scattering parameters acquired from the transmitter side, this NN effectively predicts the inter-coil distance and identifies optimal capacitance values for maximizing power transfer. Validation using both simulated and experimental data demonstrates consistently low prediction error rates. Second, a separate NN is employed to predict the optimal transmission frequency for minimizing the phase angle between voltage and current, thereby maximizing the power factor. This NN, validated on experimental data spanning various load conditions and inter-coil distances, achieves performance comparable to traditional PI control, but with significantly faster prediction speeds. This speed advantage is crucial for real-time applications and directly contributes to improved power efficiency. The results presented in this study, including the high accuracy of distance and capacitance prediction and the rapid determination of optimal frequencies for power factor maximization, showcase the significant potential of NNs for optimizing WPT systems. These findings open the way for more efficient, adaptable, and intelligent wireless energy transfer solutions, with potential applications ranging from dynamic charging of electric vehicles to real-time optimization of implantable medical devices. Full article
(This article belongs to the Special Issue New Insights into Wireless Power Transmission Systems)
Show Figures

Figure 1

20 pages, 8191 KiB  
Article
Improving Ultrasonic Power Transfer in Air Through Hybrid S-Parameter Modeling and High-Efficiency Compensation
by Liu Liu and Waleed H. Abdulla
Sensors 2025, 25(11), 3340; https://doi.org/10.3390/s25113340 - 26 May 2025
Viewed by 436
Abstract
Ultrasonic Power Transfer (UPT) offers several advantages over electromagnetic-based wireless power transfer (WPT), but its implementation in the air still faces significant challenges. The low transmission efficiency caused by substantial acoustic energy scattering and absorption and limited output power restricts its use in [...] Read more.
Ultrasonic Power Transfer (UPT) offers several advantages over electromagnetic-based wireless power transfer (WPT), but its implementation in the air still faces significant challenges. The low transmission efficiency caused by substantial acoustic energy scattering and absorption and limited output power restricts its use in high-power scenarios. Electrical compensation has proven effective in improving circuit-level performance among various optimization methods, yet its application in air UPT remains underexplored due to the lack of an accurate mathematical model. Traditional modeling approaches, such as the Butterworth–Van Dyke (BVD) model, are unsuitable for air-based UPT systems due to weak coupling and high energy loss. To address these limitations, this paper presents a novel hybrid S-parameter model approach by integrating S-parameter theory with two-port network analysis to improve accuracy and reduce complexity. Based on this model, a novel double-side CL compensation scheme was designed, significantly enhancing the UPT system’s performance while simplifying the compensation circuit design using the Smith chart. Experimental results demonstrate that the proposed scheme enhances efficiency to 2.14% and increases output power to 13.5 mW, significantly improving the transmission performance of the UPT system in the air and offering an effective and practical solution. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 1018 KiB  
Article
Overview and Comparison of Feedback-Based Dynamic Beam Focusing Techniques for Long-Range Wireless Power Transfer
by Charleston Dale Ambatali
Electronics 2025, 14(11), 2155; https://doi.org/10.3390/electronics14112155 - 26 May 2025
Viewed by 362
Abstract
Due to the rise of gigascale antenna arrays considered to implement long-range wireless power transfer (WPT), there is a need for a scalable high-efficiency adaptive dynamic beam focusing method. Several methods have been proposed, including methods requiring position information of the receiver, use [...] Read more.
Due to the rise of gigascale antenna arrays considered to implement long-range wireless power transfer (WPT), there is a need for a scalable high-efficiency adaptive dynamic beam focusing method. Several methods have been proposed, including methods requiring position information of the receiver, use of pilot signals or channel sounding, and feedback-based approaches. The latter has the potential to achieve maximum WPT efficiency due to use of feedback between the rectenna target and the transmitter array. In this paper, we present an overview of the different feedback-based long-range WPT methods that have been proposed. We also compare their performance in terms of convergence time, complexity of implementation, and steady-state efficiency through an electromagnetic simulation, whose results are incorporated into a time-domain simulation model. The results show that methods that measure channel state information (CSI) and the both-sides retrodirective system can achieve high efficiency with less convergence time but with added implementation complexity. Full article
(This article belongs to the Special Issue New Insights of Wireless Power Transfer)
Show Figures

Figure 1

21 pages, 1338 KiB  
Article
Parameter Estimation-Based Output Voltage or Current Regulation for Double-LCC Hybrid Topology in Wireless Power Transfer Systems
by Thaís M. Tolfo, Rafael de S. Silva, Ruben B. Godoy, Moacyr A. G. de Brito and Witória S. de Souza
Energies 2025, 18(10), 2664; https://doi.org/10.3390/en18102664 - 21 May 2025
Viewed by 316
Abstract
In Wireless Power Transfer Systems (WPTS), variations in a load connected to a receiver can cause instability in the waveforms of output voltage and current due to their sensitivity to changes in load impedance. To overcome such drawbacks, this paper presents a control [...] Read more.
In Wireless Power Transfer Systems (WPTS), variations in a load connected to a receiver can cause instability in the waveforms of output voltage and current due to their sensitivity to changes in load impedance. To overcome such drawbacks, this paper presents a control scheme for regulating voltage and current at the output of a WPTS system with the Double-LCC topology. The proposed method is based on estimating secondary-side parameters while assuming a constant coupling coefficient that remains close to its intended value during operation. The methodology begins with the mathematical modeling of the primary and secondary resonant circuits. By measuring the input voltage and current, the system estimates the load impedance, which is then used to derive the expected output voltage and a reference for the input voltage. To maintain a stable output, the system dynamically adjusts the input voltage, ensuring that it aligns with the theoretical reference value. Analytical calculations and simulations were performed using the MATLAB/Simulink platform to validate the proposed approach. Simulations confirmed the theoretical predictions for a wireless system operating at 120 kHz with a power transfer of 100 W. The results demonstrated that the load voltage remains stable at 32 V, even under varying load conditions, while the output current remains at 3 A despite fluctuations in battery voltage. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

19 pages, 3448 KiB  
Article
Method for Multi-Target Wireless Charging for Oil Field Inspection Drones
by Yilong Wang, Li Ji and Ming Zhang
Drones 2025, 9(5), 381; https://doi.org/10.3390/drones9050381 - 20 May 2025
Viewed by 470
Abstract
Wireless power transfer (WPT) systems are critical for enabling safe and efficient charging of inspection drones in flammable oilfield environments, yet existing solutions struggle with multi-target compatibility and reactive power losses. This study proposes a novel frequency-regulated LCC-S topology that achieves both constant [...] Read more.
Wireless power transfer (WPT) systems are critical for enabling safe and efficient charging of inspection drones in flammable oilfield environments, yet existing solutions struggle with multi-target compatibility and reactive power losses. This study proposes a novel frequency-regulated LCC-S topology that achieves both constant current (CC) and constant voltage (CV) charging modes for heterogeneous drones using a single hardware configuration. By dynamically adjusting the operating frequency, the system minimizes the input impedance angle (θ < 10°) while maintaining load-independent CC and CV outputs, thereby reducing reactive power by 92% and ensuring spark-free operation in explosive atmospheres. Experimental validation with two distinct oilfield inspection drones demonstrates seamless mode transitions, zero-phase-angle (ZPA) resonance, and peak efficiencies of 92.57% and 91.12%, respectively. The universal design eliminates the need for complex alignment mechanisms, offering a scalable solution for multi-drone fleets in energy, agriculture, and disaster response applications. Full article
Show Figures

Figure 1

Back to TopTop