Improving Ultrasonic Power Transfer in Air Through Hybrid S-Parameter Modeling and High-Efficiency Compensation
Abstract
:1. Introduction
2. S-Parameter Modeling
2.1. Transmission Characteristics of the System
2.2. Series Compensation
2.3. Parallel Compensation
2.4. Capacitor–Inductor (CL) Compensation
2.5. Proposed Hybrid S-Parameter Model
3. Proposed Electrical Compensation Design Method
3.1. S-Parameter Measurement
3.2. Primary-Side CL Compensation Circuit Design
3.3. Double-Side CL Compensation Circuit Design
3.4. Relationship Between Power, Efficiency, Z0, and RL
4. Results
4.1. Primary-Side CL Compensation Circuit
4.2. Double-Side CL Compensation Circuit
4.3. Time-Domain Waveform Comparison
4.4. Transmission Characteristics Comparison
4.5. Comparison with Existing Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valtchev, S.S.; Baikova, E.N.; Jorge, L.R. Electromagnetic field as the wireless transporter of energy. Facta Univ.-Ser. Electron. Energetics 2012, 25, 171–181. [Google Scholar] [CrossRef]
- Khine, L.; Wong, L.Y.; Soon, J.B.; Tsai, M.L.J. Evaluation of piezoelectric properties of AlN using MEMS resonators. Adv. Mater. Res. 2011, 254, 74–77. [Google Scholar] [CrossRef]
- Sasaki, S.; Tanaka, K. Wireless Power Transmission Technologies for Solar Power Satellite. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, Japan, 12–13 May 2011; pp. 3–6. [Google Scholar]
- Kaushal, H.; Kaddoum, G. Applications of lasers for tactical military operations. IEEE Access 2017, 5, 20736–20753. [Google Scholar] [CrossRef]
- Basaeri, H.; Christensen, D.B.; Roundy, S. A review of acoustic power transfer for biomedical implants. Smart Mater. Struct. 2016, 25, 123001. [Google Scholar] [CrossRef]
- Suzuki, S.-N.; Katane, T.; Saito, O. Fundamental Study of an Electric Power Transmission System for Implanted Medical Devices Using Magnetic and Ultrasonic Energy. J. Artif. Organs 2003, 6, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Kawanabe, H.; Katane, T.; Saotome, H.; Saito, O.; Kobayashi, K. Power and Information Transmission to Implanted Medical Device Using Ultrasonic. Jpn. J. Appl. Phys. 2001, 40, 3865–3866. [Google Scholar] [CrossRef]
- Suzuki, S.N.; Kimura, S.; Katane, T.; Saotome, H.; Saito, O.; Kobayashi, K. Power and Interactive Information Transmission to Implanted Medical Device Using Ultrasonic. Jpn. J. Appl. Phys. 2002, 41, 3600. [Google Scholar] [CrossRef]
- Butterworth, S. On Electrically-Maintained Vibrations. In Proceedings of the Physical Society of London; Physical Society of London: London, UK, 1914; Volume 27, p. 1. [Google Scholar]
- Van Dyke, K.S. The Piezo-Electric Resonator and Its Equivalent Network. In Proceedings of the Institute of Radio Engineers; IEEE: New York, NY, USA, 1928; Volume 16, pp. 742–764. [Google Scholar]
- Dye, D.W. The Piezoelectric Quartz Resonator and Its Equivalent Electrical Circuit. In Proceedings of the Physical Society of London; Physical Society of London: London, UK, 1925; Volume 38, p. 1. [Google Scholar]
- Leung, H.F.; Hu, A. Modeling and analysis of ultrasonic power transfer system with tightly coupled solid medium. Wirel. Power Transf. 2017, 4, 1–12. [Google Scholar] [CrossRef]
- Radmanesh, M.M. Fundamentals of RF and Microwave Electronics. In Radio Frequency and Microwave Electronics Illustrated; Prentice Hall: Upper Saddle River, NJ, USA, 2000; pp. 1–864. [Google Scholar]
- Miao, Z.; Liu, D.; Gong, C. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer. Sensors 2017, 17, 1759. [Google Scholar] [CrossRef] [PubMed]
- Waters, B.H.; Sample, A.P.; Smith, J.R. Adaptive Impedance Matching for Magnetically Coupled Resonators. In Proceedings of the Progress in Electromagnetics Research Symposium Proceedings, Moscow, Russia, 19–23 August 2012; pp. 694–701. [Google Scholar]
- Yang, C.L.; Chang, C.K.; Lee, S.Y.; Chang, S.J.; Chiou, L.Y. Efficient Four-Coil Wireless Power Transfer for Deep Brain Stimulation. IEEE Trans. Microw. Theory Tech. 2017, 65, 2496–2507. [Google Scholar] [CrossRef]
- Dai, X.; Li, X.; Li, Y.; Hu, A. Maximum Efficiency Tracking for Wireless Power Transfer Systems with Dynamic Coupling Coefficient Estimation. IEEE Trans. Power Electron. 2017, 33, 5005–5015. [Google Scholar] [CrossRef]
- Kim, N.Y.; Kim, K.Y.; Choi, J.; Kim, C.W. Adaptive Frequency with Power-Level Tracking System for Efficient Magnetic Resonance Wireless Power Transfer. Electron. Lett. 2012, 48, 452–454. [Google Scholar] [CrossRef]
- Si, P.; Hu, A.P.; Malpas, S.; Budgett, D. A Frequency Control Method for Regulating Wireless Power to Implantable Devices. IEEE Trans. Biomed. Circuits Syst. 2008, 2, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Mai, R.; Liu, Y.; Li, Y.; Yue, P.; Cao, G.; He, Z. An Active-Rectifier-Based Maximum Efficiency Tracking Method Using an Additional Measurement Coil for Wireless Power Transfer. IEEE Trans. Power Electron. 2018, 33, 716–728. [Google Scholar] [CrossRef]
- Nguyen, B.X.; Vilathgamuwa, D.M.; Foo, G.H.B.; Wang, P.; Ong, A.; Madawala, U.K.; Nguyen, T.D. An Efficiency Optimization Scheme for Bidirectional Inductive Power Transfer Systems. IEEE Trans. Power Electron. 2015, 30, 6310–6319. [Google Scholar] [CrossRef]
- Ishiyama, T.; Kanai, Y.; Ohwaki, J.; Mino, M. Impact of a Wireless Power Transmission System Using an Ultrasonic Air Transducer for Low-Power Mobile Applications. In Proceedings of the IEEE Symposium on Ultrasonics, Honolulu, HI, USA, 5–8 October 2003; IEEE: Piscataway, NJ, USA, 2004; Volume 2, pp. 1368–1371. [Google Scholar]
- Zaid, T.; Saat, S.; Jamal, N.; Husin, S.H.; Yusof, Y.; Nguang, S. A Development of Acoustic Energy Transfer System Through Air Medium Using Push-Pull Power Converter. WSEAS Trans. Power Syst. 2016, 11, 35–42. [Google Scholar]
- Rekhi, A.S.; Khuri-Yakub, T.; Arbabian, A. Wireless Power Transfer to Millimeter-Sized Nodes Using Airborne Ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Tseng, V.F.-G.; Bedair, S.S.; Lazarus, N. Phased Array Focusing for Acoustic Wireless Power Transfer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018, 65, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Surappa, S.; Degertekin, F.L. Characterization of a Parametric Resonance Based Capacitive Ultrasonic Transducer in Air for Acoustic Power Transfer and Sensing. Sens. Actuators Phys. 2020, 303, 111863. [Google Scholar] [CrossRef]
- Lu, H.; Xu, J.; Yan, R. A High-Efficient Piezoelectric Wireless Energy Transmission System Based on Magnetic Force Coupling. Rev. Sci. Instrum. 2023, 94, 25007. [Google Scholar] [CrossRef] [PubMed]
Medium | Size of PZT | Optimization Method | Improve Power or Efficiency? | f (kHz) | Vin (V) | Pload (mW) | η | |
---|---|---|---|---|---|---|---|---|
This work | Air | D = 16 mm | Double-side electrical matching | Both | 39.2 | 10 | 13.5 | 2.14% @ 0.5 cm 0.6% @ 2 cm |
2003 [22] | Air | D = 36 mm Horn = 65 mm | Acoustic matching horn | Power | 28 | 10 | 0.05 | - |
2016 [23] | Air | - | Push–Pull Power Converter | Power | 40 | 7.85 | 1.071 | - 2 cm |
2017 [24] | Air | D = 56.4 mm | - | - | 50- | - | 5 × 10−3 | - 1.05 m |
2018 [25] | Air | 7-array D = 45 mm | Array | Efficiency | 40 | - | - | 1.6% @ 5 cm |
2020 [26] | Air | - | - | - | 50 | - | 40.5 × 10−3 | 0.32% @ 7 cm |
2023 [27] | Magnetic | - | - | - | 0.104 | 289 | 42.73 × 10−3 | 51.58% @ – cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Abdulla, W.H. Improving Ultrasonic Power Transfer in Air Through Hybrid S-Parameter Modeling and High-Efficiency Compensation. Sensors 2025, 25, 3340. https://doi.org/10.3390/s25113340
Liu L, Abdulla WH. Improving Ultrasonic Power Transfer in Air Through Hybrid S-Parameter Modeling and High-Efficiency Compensation. Sensors. 2025; 25(11):3340. https://doi.org/10.3390/s25113340
Chicago/Turabian StyleLiu, Liu, and Waleed H. Abdulla. 2025. "Improving Ultrasonic Power Transfer in Air Through Hybrid S-Parameter Modeling and High-Efficiency Compensation" Sensors 25, no. 11: 3340. https://doi.org/10.3390/s25113340
APA StyleLiu, L., & Abdulla, W. H. (2025). Improving Ultrasonic Power Transfer in Air Through Hybrid S-Parameter Modeling and High-Efficiency Compensation. Sensors, 25(11), 3340. https://doi.org/10.3390/s25113340