RF Energy-Harvesting Techniques: Applications, Recent Developments, Challenges, and Future Opportunities
Abstract
1. Introduction
- A detailed analysis of recent RF energy-harvesting techniques including rectenna designs, impedance matching networks, and power management circuits.
- A comprehensive review of applications in IoT, smart cities, biomedical devices, industry, and satellite communications.
- The identification of current challenges and research gaps in RF energy harvesting.
- The exploration of future research directions emphasizing AI-driven energy optimization and emerging 6G networks.
- An integrative perspective that uniquely combines AI/ML-based approaches and simultaneous wireless information and power transfer (SWIPT) techniques with practical implementation considerations.
2. Literature Collection Methodology
3. Fundamentals of RF Energy Harvesting
3.1. Principles of RF Energy Harvesting
3.2. Components of an RF Energy-Harvesting System
3.2.1. Antenna
3.2.2. Matching Network
3.2.3. Rectifier
3.2.4. Energy Storage Unit
3.3. RF Energy Sources and Availability
3.4. Performance Metrics
4. RF Energy-Harvesting Techniques
4.1. Single-Band vs. Multi-Band RF Energy Harvesting
4.2. Narrowband vs. Broadband RF Energy Harvesting
4.3. Passive vs. Active RF Energy Harvesting
4.4. Hybrid Energy Harvesting
5. Recent Developments in RF Energy Harvesting
5.1. Advances in Rectenna Design and Optimization
5.2. Impedance Matching and Power Management Circuits
5.3. Metamaterial-Based RF Energy Harvesting
5.4. AI and Machine Learning in RF Energy-Harvesting Optimization
5.5. Simultaneous Wireless Information and Power Transfer
6. Applications of RF Energy Harvesting
6.1. Smart Cities
6.2. Biomedical and Wearable Devices
6.3. Industrial IoT
6.4. Wireless Sensor Networks (WSN) and Smart Agriculture
6.5. Space and Satellite Communications
7. Challenges and Limitations
7.1. Low RF-to-DC Conversion Efficiency
7.2. Unpredictable RF Energy Availability
7.3. Antenna Size and Design Constraints
7.4. Signal Interference and Electromagnetic Compatibility
7.5. Regulatory and Standardization Issues
7.6. Real-World Performance and Implementation Challenges
8. Future Opportunities and Research Directions
8.1. Advanced Materials for High-Efficiency Rectennas
8.2. Reconfigurable and Adaptive RF Harvesting Systems
8.3. Integration with 5G, 6G, and Beyond
8.4. AI-Based Energy-Harvesting Management Systems
8.5. Large-Scale Deployment and Commercialization Prospects
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moloudian, G.; Hosseinifard, M.; Kumar, S.; Simorangkir, R.B.V.B.; Buckley, J.L.; Song, C.; Fantoni, G.; O’Flynn, B. RF Energy Harvesting Techniques for Battery-less Wireless Sensing, Industry 4.0 and Internet of Things: A Review. IEEE Sens. J. 2024, 24, 5732–5745. [Google Scholar] [CrossRef]
- López, O.L.A.; Alves, H.; Souza, R.D.; Montejo-Sánchez, S.; Fernández, E.M.G.; Latva-aho, M. Massive Wireless Energy Transfer: Enabling Sustainable IoT Toward 6G Era. IEEE Internet Things J. 2021, 8, 8816–8835. [Google Scholar] [CrossRef]
- Niotaki, K.; Carvalho, N.B.; Georgiadis, A.; Gu, X.; Hemour, S.; Wu, K.; Matos, D.; Belo, D.; Pereira, R.; Figueiredo, R.; et al. energy harvesting and wireless power transfer for energy autonomous wireless devices and RFIDs. IEEE J. Microw. 2023, 3, 763–782. [Google Scholar] [CrossRef]
- Muhammad, S.; Tiang, J.J.; Wong, S.K.; Smida, A.; Ghayoula, R.; Iqbal, A. A Dual-Band Ambient Energy Harvesting Rectenna Design for Wireless Power Communications. IEEE Access 2021, 9, 99944–99953. [Google Scholar] [CrossRef]
- Chen, D.; Li, R.; Xu, J.; Li, D.; Fei, C.; Yang, Y. Recent progress and development of radio frequency energy harvesting devices and circuits. Nano Energy 2023, 117, 108845. [Google Scholar] [CrossRef]
- Basnayaka, C.M.W.; Jayakody, D.N.K.; Perera, T.D.P.; Beko, M. DataAge: Age of Information in SWIPT-Driven Short Packet IoT Wireless Communications. IEEE Internet Things J. 2024, 11, 26984–26999. [Google Scholar] [CrossRef]
- Lima, L.S.C.; Trevisoli, R.; Suyama, R.; Casella, I.R.S.; Doria, R.T.; Capovilla, C.E. Optimizing RF Energy Harvesting Systems for IoT Applications using Reinforcement Learning. In Proceedings of the 2023 Symposium on Internet of Things (SIoT), São Paulo, Brazil, 25–27 October 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Sherazi, H.H.R.; Zorbas, D.; O’Flynn, B. A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants. Sensors 2022, 22, 2990. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Shaukat, H.; Bibi, S.; Altabey, W.A.; Noori, M.; Kouritem, S.A. Recent progress in energy harvesting systems for wearable technology. Energy Strateg. Rev. 2023, 49, 101124. [Google Scholar] [CrossRef]
- Wang, R.; Qi, Y.; Lavasani, H.M. A Highly Efficient CMOS Rectifier for Ultra-Low-Power Ambient RF Energy Harvesting. In Proceedings of the IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, 9–11 August 2021; pp. 212–215. [Google Scholar] [CrossRef]
- Ahmed, Q.W.; Garg, S.; Rai, A.; Ramachandran, M.; Jhanjhi, N.Z.; Masud, M.; Baz, M. AI-Based Resource Allocation Techniques in Wireless Sensor Internet of Things Networks in Energy Efficiency with Data Optimization. Electronics 2022, 11, 2071. [Google Scholar] [CrossRef]
- Eunice, A.; Carvalho, N.B. Energy Harvesting Mechanisms in a Smart City—A Review. Smart Cities 2021, 4, 476–498. [Google Scholar] [CrossRef]
- Ibrahim, H.H.; Singh, M.J.; Al-Bawri, S.S.; Ibrahim, S.K.; Islam, M.T.; Alzamil, A.; Islam, M.S. Radio Frequency Energy Harvesting Technologies: A Comprehensive Review on Designing, Methodologies, and Potential Applications. Sensors 2022, 22, 4144. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Tiang, J.J.; Wong, S.K.; Rambe, A.H.; Adam, I.; Smida, A.; Waly, M.I.; Iqbal, A.; Abubakar, A.S.; Mohd Yasin, M.N. Harvesting Systems for RF Energy: Trends, Challenges, Techniques, and Tradeoffs. Electronics 2022, 11, 959. [Google Scholar] [CrossRef]
- Rao, A.S.; Aziz, A.; Aljaloud, K.; Qureshi, M.A.; Muhammad, A.; Rafique, A.; Hussain, R. Concomitance of radio frequency energy harvesting and wearable devices: A review of rectenna designs. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e23536. [Google Scholar] [CrossRef]
- Odiamenhi, M.; Jahanbakhsh Basherlou, H.; Hwang See, C.; Ojaroudi Parchin, N.; Goh, K.; Yu, H. Advancements and Challenges in Antenna Design and Rectifying Circuits for Radio Frequency Energy Harvesting. Sensors 2024, 24, 6804. [Google Scholar] [CrossRef] [PubMed]
- Rashwan, Y.R.; El-Hameed, A.S.A.; Dousoky, G.M.; Tammam, E. Design of an Efficient 2.45 GHz Antenna Array for RF Energy Harvesting. SVU-Int. J. Eng. Sci. Appl. 2024, 5, 175–183. [Google Scholar] [CrossRef]
- Behera, B.; Mishra, S.; Alsharif, M.H.; Uthansakul, P.; Uthansakul, M. A metasurface-inspired printed monopole antenna for 5G and RF energy harvesting application. Eng. Sci. Technol. Int. J. 2024, 51, 101638. [Google Scholar] [CrossRef]
- Ojha, S.S.; Sharma, J.K.; Dhakad, B.; Kumar, S.; Sharma, N.; Pandey, A.K.; Hasnain, S.M.; Kumar, S.; Kumar, R. A dual ultra-wideband rectenna with a compact conical antenna for RF energy harvesting from S and C bands. Results Eng. 2024, 22, 102279. [Google Scholar] [CrossRef]
- Behera, B.R.; Mishra, S.K.; Alsharif, M.H.; Jahid, A. Reconfigurable Antennas for RF Energy Harvesting Application: Current Trends, Challenges, and Solutions from Design Perspective. Electronics 2023, 12, 2723. [Google Scholar] [CrossRef]
- Caltech. In a First, Caltech’s Space Solar Power Demonstrator Wirelessly Transmits Power in Space. 2023. Available online: https://www.caltech.edu/about/news/in-a-first-caltechs-space-solar-power-demonstrator-wirelessly-transmits-power-in-space (accessed on 11 June 2025).
- Liu, X.; Li, M.; Zhang, Y.; Zhu, X.; Guan, Y. Self-Powered wireless sensor node based on RF energy harvesting and management combined design. Energy Convers. Manag. 2023, 292, 117393. [Google Scholar] [CrossRef]
- Nwalike, E.D.; Ibrahim, K.A.; Crawley, F.; Qin, Q.; Luk, P.; Luo, Z. Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies. Energies 2023, 16, 5711. [Google Scholar] [CrossRef]
- Patel, R.; Upadhyaya, T.; Desai, A.; Palandoken, M. Low Profile Multiband Meander Antenna for LTE/WiMAX/WLAN and INSAT-C Application. AEU-Int. J. Electron. Commun. 2019, 102, 90–98. [Google Scholar] [CrossRef]
- Patanvariya, D.; Chatterjee, A. Planar nested square fractal patch antenna for multi-band wireless applications. Microsyst. Technol. 2023, 29, 347–357. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Sheta, A.F.; Elshafiey, I.; Alkanhal, M.A. Design of Low-Profile Single- and Dual-Band Antennas for IoT Applications. Electronics 2021, 10, 2766. [Google Scholar] [CrossRef]
- Cumbajin, M.; Sánchez, P.; Pillajo, D.; Gordón, C. RF Energy Harvesting System Based on Spiral Logarithmic Dipole Rectenna Array. In CSEI: International Conference on Computer Science, Electronics and Industrial Engineering (CSEI); Garcia, M.V., Gordón-Gallegos, C., Eds.; Springer: Cham, Switzerland, 2023; Volume 678. [Google Scholar] [CrossRef]
- Chattha, H.; Huang, Y.; Ishfaq, M.; Boyes, S. A Comprehensive Parametric Study of Planar Inverted-F Antenna. Wirel. Eng. Technol. 2019, 3, 1–11. [Google Scholar] [CrossRef]
- Kwiatkowski, E.; Estrada, J.A.; López-Yela, A.; Popović, Z. Broadband RF Energy-Harvesting Arrays. Proc. IEEE 2022, 110, 74–88. [Google Scholar] [CrossRef]
- Magno, M.; Wang, X.; Eggimann, M.; Cavigelli, L.; Benini, L. InfiniWolf: Energy Efficient Smart Bracelet for Edge Computing with Dual Source Energy Harvesting. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020. [Google Scholar] [CrossRef]
- Yunus, M.; Mahdi, A.R.; Tan, Y.; Maulana, M.F.; Nurmantris, D.A.; Munir, A. Utilization of LC Circuit as Impedance Matching for Spiral Resonator-based Planar Antenna. In Proceedings of the 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Van Ieperen, A.; Derammelaere, S.; Minnaert, B. Coupling-independent capacitive wireless power transfer with one transmitter and multiple receivers using frequency bifurcation. IEEE Open J. Power Electron. 2024, 5, 891–901. [Google Scholar] [CrossRef]
- Eidaks, J.; Kusnins, R.; Babajans, R.; Cirjulina, D.; Semenjako, J.; Litvinenko, A. Fast and Accurate Approach to RF-DC Conversion Efficiency Estimation for Multi-Tone Signals. Sensors 2022, 22, 787. [Google Scholar] [CrossRef] [PubMed]
- Chew, Z.J.; Kuang, Y.; Ruan, T.; Zhu, M. Energy Harvesting in Smart Cities. In Handbook of Smart Cities; Augusto, J., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Abdul, Q.; Antoniades Marco, A.; Photos, V.; Sym, N. Voltage-Doubler RF-to-DC Rectifiers for Ambient RF Energy Harvesting and Wireless Power Transfer Systems. In Recent Wireless Power Transfer Technologies; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Jocqué, J.; Sennesael, J.; Verhaevert, J.; Van Torre, P.; Schreurs, D.; Rogier, H. Rectifier Optimization for Low-Power RF Energy Harvesting Tags. In Proceedings of the 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INC-USNC-URSI), Firenze, Italy, 14–19 July 2024; pp. 17–18. [Google Scholar] [CrossRef]
- Zhang, X.; Grajal, J.; López-Vallejo, M.; McVay, E.; Palacios, T. Opportunities and Challenges of Ambient Radio-Frequency Energy Harvesting. Joule 2020, 4, 1148–1152. [Google Scholar] [CrossRef]
- Dey, A.B.; Semwal, N.; Arif, W. Design of a compact and efficient 2.4 GHz rectenna system for energy harvesting. J. Electromagn. Waves Appl. 2022, 36, 1850–1868. [Google Scholar] [CrossRef]
- Ahmed, A.E.; Abdullah, K.; Habaebi, M.H.; Ramli, H.A.; Asnawi, A.L. RF Energy Harvesting Wireless Networks: Challenges, and Opportunities. Indones. J. Electr. Eng. Inform. (IJEEI) 2021, 9, 101–113. [Google Scholar] [CrossRef]
- Alhashimi, H.F.; Hindia, M.N.; Dimyati, K.; Hanafi, E.B.; Alden, F.Z.; Qamar, F.; Nguyen, Q.N. Survey on AI-Enabled Resource Management for 6G Heterogeneous Networks: Recent Research, Challenges, and Future Trends. Comput. Mater. Contin. 2025, 83, 3585–3622. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, M.; Chen, X. Supercapacitors for renewable energy applications: A review. Micro Nano Eng. 2023, 21, 100229. [Google Scholar] [CrossRef]
- Gopi, C.V.M.; Ramesh, R. Review of battery-supercapacitor hybrid energy storage systems for electric vehicles. Results Eng. 2024, 24, 103598. [Google Scholar] [CrossRef]
- Şahin, M.E.; Blaabjerg, F.; Sangwongwanich, A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674. [Google Scholar] [CrossRef]
- A*STAR Cooperative and Unified Smart Traffic System (CRUISE). 2025. Available online: https://www.a-star.edu.sg/enterprise/our-stories/connectivity-trade-logistics/cooperative-and-unified-smart-traffic-system-%28cruise%29 (accessed on 11 June 2025).
- Muntather, A.; Aasheesh, S.; Hemalatha, S.; Kavitha, P.; Gambhire, G.M.; Pankaj, R.; Pardeshi, B.P. Comparative Analysis of Supercapacitors vs. Batteries. E3S Web Conf. 2024, 591, 01010. [Google Scholar] [CrossRef]
- Szut, J.; Piątek, P.; Pauluk, M. RF Energy Harvesting. Energies 2024, 17, 1204. [Google Scholar] [CrossRef]
- Alcaraz López, O.L.; Suto, K. RF Energy Harvesting and Wireless Power Transfer for IoT. Sensors 2024, 24, 7567. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, M.U.; Venter, H.; Singh, A.; Owais, M. Advances in Energy Harvesting for Sustainable Wireless Sensor Networks: Challenges and Opportunities. Hardware 2025, 3, 1. [Google Scholar] [CrossRef]
- Sarma, M.P.; Sarma, K.K.; Barman, P. An Optimized and Highly Efficient Low Power RF Energy Harvesting System with Current Boost Technique Designed using 45 nm Technology. Appl. Energy 2023, 350, 121756. [Google Scholar] [CrossRef]
- Gu, X.; Grauwin, L.; Dousset, D.; Hemour, S.; Wu, K. Dynamic Ambient RF Energy Density Measurements of Montreal for Battery-Free IoT Sensor Network Planning. IEEE Internet Things J. 2021, 81, 13209–13221. [Google Scholar] [CrossRef]
- Xu, Z.; Khalifa, A.; Mittal, A.; Nasrollahpourmotlaghzanjani, M.; Etienne-Cummings, R.; Sun, N.X.; Cash, S.S.; Shrivastava, A. Analysis and Design Methodology of RF Energy Harvesting Rectifier Circuit for Ultra-Low Power Applications. IEEE Open J. Circuits Syst. 2022, 3, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Geidam, H.A.; Kassim, S.O. Evaluation of Radiofrequency Radiation Emissions from Mobile Telephony Base Stations In Geidam Town, Yobe State. IOSR J. Electr. Electron. Eng. (IOSR-JEEE) 2021, 16, 12–17. [Google Scholar]
- Jin, P.; Fu, J.; Wang, F.; Zhang, Y.; Wang, P.; Liu, X.; Jiao, Y.; Li, H.; Chen, Y.; Ma, Y.; et al. A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Sci. Adv. 2021, 7, eabg2507. [Google Scholar] [CrossRef]
- Deng, X.; Yang, P.; Chen, S.; Ren, W. Design of a 2.4 & 5.8 GHz Efficient Circularly Polarized Rectenna for Wireless Power Transfer Applications. Electronics 2023, 12, 2645. [Google Scholar] [CrossRef]
- Maher, R.; Allam, A.; Kanaya, H.; Abdelrahman, A.B. Dualband rectenna for RF energy harvesting using metamaterial reflect array and novel matching technique. AEU-Int. J. Electron. Commun. 2024, 173, 155020. [Google Scholar] [CrossRef]
- Yan, J.R.; Huang, Y.W.; Lai, W.J.; Liao, J.H.; Lin, C.C.; Liao, Y.T. A 2.4 GHz, −19 dBm Sensitivity RF Energy Harvesting CMOS Chip with 51% Peak Efficiency and 24 dB Power Dynamic Range. In Proceedings of the 2024 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Washington, DC, USA, 16–18 June 2024; pp. 43–46. [Google Scholar] [CrossRef]
- Khan, N.U.; Khan, F.U.; Farina, M.; Merla, A. RF energy harvesters for wireless sensors, state of the art, future prospects and challenges: A review. Phys. Eng. Sci. Med. 2024, 47, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, R.; Zheng, P. A 2.4 GHz High-Efficiency Rectifier Circuit for Ambient Low Electromagnetic Power Harvesting. Sensors 2024, 24, 6854. [Google Scholar] [CrossRef]
- Abd Razak, I.S.; Hamid, Z. Optimization of Rectifying Circuit for RF Energy Scavenging. ANP J. Soc. Sci. Humanit. 2021, 2, 60–67. [Google Scholar] [CrossRef]
- Roy, S.; Tiang, J.-J.; Roslee, M.B.; Ahmed, M.T.; Kouzani, A.Z.; Mahmud, M.A.P. Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester. Sensors 2022, 22, 424. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Koulouridis, S.; Rocca, P.; Georgiadis, A.; Tentzeris, M.M.; Goudos, S.K. Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications. Sensors 2021, 21, 3460. [Google Scholar] [CrossRef]
- Antonio Estrada, J.; Kwiatkowski, E.; Lopez-Yela, A.; Borgonos-Garcia, M.; Segovia-Vargas, D.; Barton, T.; Popovic, Z. RF-Harvesting Tightly Coupled Rectenna Array Tee-Shirt with Greater Than Octave Bandwidth. IEEE Trans. Microw. Theory Tech. 2020, 68, 3908–3919. [Google Scholar] [CrossRef]
- Liu, H.; Fu, H.; Sun, L.; Lee, C.; Yeatman, E.M. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew. Sustain. Energy Rev. 2021, 137, 110473. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, A.K. A survey on RF energy harvesting techniques for lifetime enhancement of wireless sensor networks. Sustain. Comput. Inform. Syst. 2023, 37, 100836. [Google Scholar] [CrossRef]
- Nosrati, M.; Rezaei, P.; Danaie, M.; Khalilpour, J. A broadband integrated rectenna for microwave radio energy harvesting using an integrated hybrid sandwich power divider. E-Prime-Adv. Electr. Eng. Electron. Energy 2025, 11, 100891. [Google Scholar] [CrossRef]
- Alex-Amor, A.; Palomares-Caballero, A.; Fernández-González, M.J.; Padilla, P.; Marcos, D.; Sierra-Castañer, M.; Esteban, J. RF Energy Harvesting System Based on an Archimedean Spiral Antenna for Low-Power Sensor Applications. Sensors 2019, 19, 1318. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Chakravarty, U. Design and Analysis of a Hybrid Solar and Vibration Energy Harvester. Energy Harvest. Syst. 2019, 6, 39–55. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Yang, T.; Gao, J.; Li, J. Design of Radio Frequency Energy Harvesting System. In Advances in Intelligent Information Hiding and Multimedia Signal Processing; Smart Innovation, Systems and Technologies, Pan, J.S., Li, J., Namsrai, O.E., Meng, Z., Savić, M., Eds.; Springer: Singapore, 2021; Volume 211. [Google Scholar] [CrossRef]
- Basim, M.; Khan, D.; Ain, Q.U.; Shehzad, K.; Shah, S.A.; Jang, B.; Pu, Y.; Yoo, J.; Kim, J.; Lee, K. A Highly Efficient RF-DC Converter for Energy Harvesting Applications Using a Threshold Voltage Cancellation Scheme. Sensors 2022, 22, 2659. [Google Scholar] [CrossRef]
- Kim, S.; Shin, J.; Kim, H.; Lee, D.; Park, J.; Baik, J.M.; Kim, S.Y.; Kang, C.; Choi, W.; Song, H.; et al. A synergetic effect of piezoelectric energy harvester to enhance thermoelectric Power: An effective hybrid energy harvesting method. Energy Convers. Manag. 2023, 298, 117774. [Google Scholar] [CrossRef]
- Ren, R.; Sun, H.; Zhang, H. A hybrid solar and RF energy harvester for applications of self-Powered wireless sensor nodes. J. Electromagn. Waves Appl. 2024, 38, 2049–2066. [Google Scholar] [CrossRef]
- Bairappaka, S.K.; Ghosh, A.; Halimi, M.A.; Roy, B. A Dual-Band Dual-Polarized Rectenna for Efficient RF Energy Harvesting in Battery-Less IoT Devices With Broad Power Range. Int. J. Commun. Syst. 2025, 38, e6103. [Google Scholar] [CrossRef]
- Aboualalaa, M.; Mansour, I.; Pokharel, R.K. Energy Harvesting Rectenna Using High-Gain Triple-Band Antenna for Powering Internet-of-Things (IoT) Devices in a Smart Office. IEEE Trans. Instrum. Meas. 2023, 72, 2001312. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Song, R.; Kou, Z.; He, D. Highly Flexible Graphene-Film-Based Rectenna for Wireless Energy Harvesting. Energy Environ. Mater. 2024, 7, e12548. [Google Scholar] [CrossRef]
- Mohan, A.; Sahoo, A.K.; Mondal, S. A tunable impedance matching strategy for RF energy harvesting systems. Analog Integr. Circuits Signal Process 2022, 113, 287–294. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Park, H.K.; Sung, T.H. Design and investigation of small-scale long-distance RF energy harvesting system for wireless charging using CNN, LSTM, and reinforcement learning. Front. Phys. 2024, 12, 1337421. [Google Scholar] [CrossRef]
- Chen, M.-C.; Sun, T.-W.; Tsai, T.-H. Dual-Domain Maximum Power Tracking for Multi-Input RF Energy Harvesting with a Reconfigurable Rectifier Array. Energies 2022, 15, 2068. [Google Scholar] [CrossRef]
- Yao, M.; Li, J.; Niu, Y. Adaptive impedance matching for power management circuit for a piezoelectric energy harvester on the bridge. Sens. Actuators A Phys. 2021, 331, 112986. [Google Scholar] [CrossRef]
- Clayton, F.; Sinhara, S.; Grija, T.; Jiangfeng, Z. High efficiency ambient RF energy harvesting by a metamaterial perfect absorber. Opt. Mater. Express 2022, 12, 1242–1250. [Google Scholar]
- Lee, W.; Choi, S.-I.; Kim, H.-I.; Hwang, S.; Jeon, S.; Yoon, Y.-K. Metamaterial-Integrated High-Gain Rectenna for RF Sensing and Energy Harvesting Applications. Sensors 2021, 21, 6580. [Google Scholar] [CrossRef]
- Ullah, N.; Islam, M.S.; Hoque, A.; Alzamil, A.; Soliman, M.S.; Islam, M.T. Design and development of a compact, wide-angle metamaterial electromagnetic energy harvester with multiband functionality and polarization-insensitive features. Sci. Rep. 2024, 14, 19000. [Google Scholar] [CrossRef]
- Aygül, M.A.; Çırpan, H.A.; Arslan, H. Machine learning-based spectrum occupancy prediction: A comprehensive survey. Front. Commun. Netw. 2025, 6, 1482698. [Google Scholar] [CrossRef]
- Sawaguchi, S. Lightweight Highly-Adaptive Reinforcement Learning Method for Energy-Harvesting IoT Applications. Ph.D. Thesis, Université Grenoble Alpes, Saint-Martin-d’Hères, France, 2021. [Google Scholar]
- Lv, M.; Xu, E. Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges. IEEE Access 2022, 10, 124999–125014. [Google Scholar] [CrossRef]
- Nguyen, X.; Kha, H.H. Energy-Spectral Efficiency Trade-Offs in Full-Duplex MU-MIMO Cloud-RANs with SWIPT. Wirel. Commun. Mob. Comput. 2021, 2021, 6678792. [Google Scholar] [CrossRef]
- Rafiq, I.; Mahmood, A.; Razzaq, S.; Jafri, S.H.M.; Aziz, I. IoT applications and challenges in smart cities and services. J. Eng. 2023, 2023, e12262. [Google Scholar] [CrossRef]
- Wang, Z.; He, J.; Liang, X.; Ge, L. A novel SWIPT channel model and jointly age optimization in SWIPT-enabled access networks based on age of energy harvesting. Sci. Rep. 2025, 15, 10377. [Google Scholar] [CrossRef]
- Aslam, S.; Aung, P.P.; Rafsanjani, A.S.; Majeed, A.P. Machine learning applications in energy systems: Current trends, challenges, and research directions. Energy Inform. 2025, 8, 62. [Google Scholar] [CrossRef]
- National Center for Mobility Management. Seoul Is Replacing Street Lamps with Smart Poles that Offer Electricity and WiFi. 2021. Available online: https://nationalcenterformobilitymanagement.org/news/seoul-is-replacing-street-lamps-with-smart-poles-that-offer-electricity-and-wifi/ (accessed on 11 June 2025).
- Mouapi, A. Radiofrequency Energy Harvesting Systems for Internet of Things Applications: A Comprehensive Overview of Design Issues. Sensors 2022, 22, 8088. [Google Scholar] [CrossRef]
- EnOcean. Energy Harvesting. 2023. Available online: https://www.enocean.com/en/technology/energy-harvesting/ (accessed on 11 June 2025).
- Mishra, P.; Singh, G. Energy Management Systems in Sustainable Smart Cities Based on the Internet of Energy: A Technical Review. Energies 2023, 16, 6903. [Google Scholar] [CrossRef]
- Raghav, K.S.; Bansal, D. RF Energy Harvesting for Self-Sustained IoT Applications: Challenges and Opportunities. In Proceedings of the 2023 IEEE 9th World Forum on Internet of Things (WF-IoT), Aveiro, Portugal, 12–27 October 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Politecnico di Milano. Luca Mottola-Politecnico di Milano. 2022. Available online: https://onlineservices.polimi.it/manifesti/manifesti/controller/ricerche/RicercaPerDocentiPublic.do?evn_downloadcv=evento&id_cv=1222978 (accessed on 11 June 2025).
- Ali, A.; Eid, R.; Manaseer, D.E.; AbuJaber, H.K.; Ware, A. Dual-Band 802.11 RF Energy Harvesting Optimization for IoT Devices with Improved Patch Antenna Design and Impedance Matching. Sensors 2025, 25, 1055. [Google Scholar] [CrossRef]
- Shuvo, M.M.; Titirsha, T.; Amin, N.; Islam, S.K. Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare. Energies 2022, 15, 7495. [Google Scholar] [CrossRef]
- Biswas, S.; Lee, S.W.; Lee, Y.; Choi, J.; Chen, J.; Yang, X.; Du, Y.; Falcone, N.; Lee, M.; Kim, H.; et al. Emerging Energy Harvesters in Flexible Bioelectronics: From Wearable Devices to Biomedical Innovations. Small Sci. 2024, 4, 2300148. [Google Scholar] [CrossRef]
- Nagaveni, S.; Hunasigidad, P.; Pathak, D.; Dutta, A. On-Chip Configurable RF Energy Harvester for Biomedical Implantable Devices. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 5030–5039. [Google Scholar] [CrossRef]
- Shokoor, F.; Shafik, W. Harvesting energy overview for sustainable wireless sensor networks. J. Smart Cities Soc. 2023, 2, 165–180. [Google Scholar] [CrossRef]
- Yahya Alkhalaf, H.; Yazed Ahmad, M.; Ramiah, H. Self-Sustainable Biomedical Devices Powered by RF Energy: A Review. Sensors 2022, 22, 6371. [Google Scholar] [CrossRef]
- Oliveira, L.F.P.D.; Morais, F.J.D.O.; Manera, L.T. Development of an energy harvesting system based on a thermoelectric generator for use in online predictive maintenance systems of industrial electric motors. Sustain. Energy Technol. Assess. 2023, 60, 103572. [Google Scholar] [CrossRef]
- Paolini, G.; Guermandi, M.; Masotti, D.; Shanawani, M.; Benassi, F.; Benini, L.; Costanzo, A. RF-Powered Low-Energy Sensor Nodes for Predictive Maintenance in Electromagnetically Harsh Industrial Environments. Sensors 2021, 21, 386. [Google Scholar] [CrossRef] [PubMed]
- León Ávila, B.Y.; García Vázquez, C.A.; Pérez Baluja, O.; Cotfas, D.T.; Cotfas, P.A. Energy harvesting techniques for wireless sensor networks: A systematic literature review. Energy Strategy Rev. 2025, 57, 101617. [Google Scholar] [CrossRef]
- Srinivasan, D.; Kiran, A.; Parameswari, S.; Vellaichamy, J. Energy efficient hierarchical clustering based dynamic data fusion algorithm for wireless sensor networks in smart agriculture. Sci. Rep. 2025, 15, 7207. [Google Scholar] [CrossRef]
- Pratik, J.; Aqsa, S. RF System Advancements for Satellite and Space Communications: Integrating AI with High-Frequency and Hybrid Systems. Int. J. Sci. Res. Eng. Manag. 2025, 8, 1–7. [Google Scholar]
- Kudyba, P.S.; Sun, H. Autonomous Agricultural Monitoring with Aerial Drones and RF Energy-Harvesting Sensor Tags. arXiv 2025. Available online: https://arxiv.org/abs/2502.16028 (accessed on 11 June 2025).
- Kang, H.; Kim, H.; Hong, J.; Zhang, R.; Lee, M.; Hong, T. Harnessing sunlight beyond earth: Sustainable vision of space-based solar power systems in smart grid. Renew. Sustain. Energy Rev. 2024, 202, 114644. [Google Scholar] [CrossRef]
- Kamuda, K.; Klepacki, D.; Sabat, W.; Kuryło, K.; Skoczylas, M. Efficiency Measurements of Energy Harvesting from Electromagnetic Environment for Selected General Purpose Telecommunication Systems. Electronics 2024, 13, 3111. [Google Scholar] [CrossRef]
- Obaideen, K.; Albasha, L.; Iqbal, U.; Mir, H. Wireless power transfer: Applications, challenges, barriers, and the role of AI in achieving sustainable development goals—A bibliometric analysis. Energy Strateg. Rev. 2024, 53, 101376. [Google Scholar] [CrossRef]
- Koohestani, M.; Tissier, J.; Latrach, M. A miniaturized printed rectenna for wireless RF energy harvesting around 2.45 GHz. AEU-Int. J. Electron. Commun. 2020, 127, 153478. [Google Scholar] [CrossRef]
- Ullah, M.A.; Keshavarz, R.; Abolhasan, M.; Lipman, J.; Esselle, K.P.; Shariati, N. A Review on Antenna Technologies for Ambient RF Energy Harvesting and Wireless Power Transfer: Designs, Challenges and Applications. IEEE Access 2022, 10, 17231–17267. [Google Scholar] [CrossRef]
- Riaz, A.; Khan, S.; Arslan, T. Design and Modelling of Graphene-Based Flexible 5G Antenna for Next-Generation Wearable Head Imaging Systems. Micromachines 2023, 14, 610. [Google Scholar] [CrossRef]
- Parveen, N.; Abdullah, K.; Badron, K.; Javed, Y.; Khan, Z.I. Coexistence in Wireless Networks: Challenges and Opportunities. Telecom 2025, 6, 23. [Google Scholar] [CrossRef]
- Moloudian, G.; O’Flynn, B.; Buckley, J.L. A Rectenna Design With Harmonic Suppression for RF Energy Harvesting Applications. In Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 26–31 March 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, Z.; Li, T.; Li, S.; Mi, C.C. Advancements and challenges in wireless power transfer: A comprehensive review. Nexus 2024, 1, 100014. [Google Scholar] [CrossRef]
- Van Mulders, J.; Delabie, D.; Lecluyse, C.; Buyle, C.; Callebaut, G.; De Strycker, L. Wireless Power Transfer: Systems, Circuits, Standards, and Use Cases. Sensors 2022, 22, 5573. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Wang, W.; He, D. A Wearable Dual-Band Magnetoelectric Dipole Rectenna for Radio Frequency Energy Harvesting. Electronics 2025, 14, 1314. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Kim, S.; Kuruoğlu, N. Energy Harvesting Techniques for Wireless Sensor Networks/Radio-Frequency Identification: A Review. Symmetry 2019, 11, 865. [Google Scholar] [CrossRef]
- Ghaneizadeh, A.; Gavriilidis, P.; Joodaki, M.; Alexandropoulos, G.C. Metasurface Energy Harvesters: State-of-the-Art Designs and Their Potential for Energy Sustainable Reconfigurable Intelligent Surfaces. IEEE Access 2024, 12, 160464–160494. [Google Scholar] [CrossRef]
- Alhamad, R.; Boujemâa, H. Simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) with energy harvesting and adaptive power. Signal Image Video Process 2024, 18, 1155–1160. [Google Scholar] [CrossRef]
- Kayed, S.I.; Elsheakh, D.N.; Mohamed, H.A.; Shawkey, H.A. Multiband Microstrip Rectenna Using ZnO-Based Planar Schottky Diode for RF Energy Harvesting Applications. Micromachines 2023, 14, 1006. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, H. RF energy harvesting schemes for intelligent reflecting surface-aided cognitive radio sensor net works. Sci. Rep. 2022, 12, 22462. [Google Scholar] [CrossRef]
- Worka, C.E.; Khan, F.A.; Ahmed, Q.Z.; Sureephong, P.; Alade, T. Reconfigurable Intelligent Surface (RIS)-Assisted Non-Terrestrial Network (NTN)-Based 6G Communications: A Contemporary Survey. Sensors 2024, 24, 6958. [Google Scholar] [CrossRef]
- Surender, D.; Halimi, M.A.; Khan, T.; Talukdar, F.A.; Rengarajan, S.R. 5G/Millimeter-Wave Rectenna Systems for Radio-Frequency Energy Harvesting/Wireless Power Transmission Applications: An overview. IEEE Antennas Propag. Mag. 2023, 65, 57–76. [Google Scholar] [CrossRef]
- Sharma, S.; Popli, R.; Singh, S.; Chhabra, G.; Saini, G.S.; Singh, M.; Sandhu, A.; Sharma, A.; Kumar, R. The Role of 6G Technologies in Advancing Smart City Applications: Opportunities and Challenges. Sustainability 2024, 16, 7039. [Google Scholar] [CrossRef]
- Chataut, R.; Nankya, M.; Akl, R. 6G Networks and the AI Revolution—Exploring Technologies, Applications, and Emerging Challenges. Sensors 2024, 24, 1888. [Google Scholar] [CrossRef]
- Ramalingam, L.; Mariappan, S.; Parameswaran, P.; Rajendran, J.; Nitesh, R.S.; Kumar, N.; Nathan, A.; Yarman, B.S. The Advancement of Radio Frequency Energy Harvesters (RFEHs) as a Revolutionary Approach for Solving Energy Crisis in Wireless Communication Devices: A Review. IEEE Access 2021, 9, 106107–106139. [Google Scholar] [CrossRef]
- Alhussien, N.; Aaron Gulliver, T. Toward AI-Enabled Green 6G Networks: A Resource Management Perspective. IEEE Access 2024, 12, 132972–132995. [Google Scholar] [CrossRef]
- Song, C.; Wang, L.; Lu, P.; Zhang, C.; Chen, Z.; Zheng, X.; He, Y.; Goussetis, G.; Vandenbosch, G.A.E.; Huang, Y. Highly Efficient Wideband mmWave Rectennas for Wireless Power Transfer System with Low-Cost Multi-Node Tracking Capability. IEEE Trans. Antennas Propag. 2023, 71, 8773–8787. [Google Scholar] [CrossRef]
- Ezzeddine, Z.; Khalil, A.; Zeddini, B.; Ouslimani, H.H. A Survey on Green Enablers: A Study on the Energy Efficiency of AI-Based 5G Networks. Sensors 2024, 24, 4609. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Shaukat, H.; Elahi, H.; Taimur, S.; Manan, M.Q.; Altabey, W.A.; Kouritem, S.A.; Noori, M. Advancements in energy harvesting techniques for sustainable IoT devices. Results Eng. 2025, 26, 104820. [Google Scholar] [CrossRef]
- Safaei, B.; Peiravian, M.; Siamaki, M. Eco-Friendly IoT: Leveraging Energy Harvesting for a Sustainable Future. IEEE Sens. Rev. 2025, 2, 32–75. [Google Scholar] [CrossRef]
Reference | Coverage of Applications | Review Period | Focus on AI/ML | Inclusion of SWIPT | Comparative Technique Analysis | Future Opportunities Discussed |
---|---|---|---|---|---|---|
[8] | IoT sensors | 2015–2020 | No | No | Partial | Yes |
[9] | Biomedical + IoT | 2016–2021 | Minimal | No | No | Yes |
[10] | Biomedical + IoT | 2017–2021 | Yes | No | No | Yes |
[11] | Smart cities + IoT | 2017–2021 | Yes | No | Partial | Yes |
[12] | Biomedical + IoT | 2018–2021 | Yes | No | No | Yes |
This work | Smart cities, biomedical, industrial, WSN, satellite | 2019–2025 | Yes | Yes | Yes | Yes |
Category | Number of Articles |
---|---|
Single-band rectenna designs | 22 |
Multi-band/multi-source energy harvesters | 20 |
SWIPT-enabled systems | 18 |
AI/ML-assisted energy optimization | 15 |
Hybrid energy harvesting (RF + solar/etc.) | 12 |
Biomedical applications | 10 |
Smart cities/urban infrastructure | 13 |
Industrial IoT/WSN | 22 |
Antenna Type and Frequency | Antenna Structure | Size (mm) | Antenna Gain (dBi) | Circuit Type and Frequency | Efficiency (%) | Input Power (dBm) | Minimum Sensitivity (dBm) |
---|---|---|---|---|---|---|---|
Logarithmic Spiral Antenna (2–18 GHz) | 60 × 60 | 3.2 | Half-Wave Rectifier (2.4 GHz) | 20 | +4 | −18 | |
Linear Tapered Slot Antenna (1.85/2.4 GHz) | 80 × 40 | 5.1 | Differential Rectifier (1.85 GHz) | 13 | −15 | −22 | |
Concentric Square Patch (2.4/5.5 GHz) | 45 × 45 | 4.0 @ 2.4 GHz | Full-Wave Rectifier | 36% @ 2.4 GHz, 5% @ 5.5 GHz | 0 | −16 | |
Slotted Patch Antenna (2.45 GHz) | 35 × 30 | 5.3 | Half-Wave Cockcroft–Walton | 68 | +5 | −21 | |
Meander Antenna (434 MHz) | 45 × 25 | 1.2 | Voltage Doubler | 20 | −30 | −35 | |
Fractal Antenna (900 MHz/2.45 GHz) | 25 × 25 | 2.5 | Doubler/Full-wave | 30 @ −10 dBm | −10 | −20 | |
Printed Dipole (2.45 GHz) | 60 × 20 | 2.0 | Full-Wave Rectifier | 33 | −5 | −18 |
Supercapacitor | Battery | |
---|---|---|
Recharge cycle lifetime | cycles | cycles |
Fastest charging time | sec~min | Hours |
Fastest discharging time | <a few min | 0.3~3 h |
Self-discharge rate | 30% | 5% |
Voltage | 0–2.7 V | 3.7–4.2 V |
Energy density (Wh/kg) | low (0.8–10) | high (20–150) |
Power density (W/kg) | high (500–400) | low (50–300) |
Charging circuit | simple | Complex |
Aspect | Single-Band | Multi-Band | Narrowband | Broadband | Passive | Active | Hybrid |
---|---|---|---|---|---|---|---|
Operating Frequency | Single fixed frequency (e.g., 2.4 GHz, 5.8 GHz) | Multiple distinct frequencies (e.g., 900 MHz, 1.8 GHz, 2.4 GHz) | Very narrow frequency range around centre frequency | Wide range (hundreds of MHz to several GHz) | Ambient RF signals only | Ambient RF signals + assisted with amplifiers | Combination of RF, solar, vibration, and thermal energy sources |
Typical Antennas Used | Microstrip patch, dipole, monopole | Fractal antennas, multi-band patch antennas, PIFAs | High-Q microstrip patch, helical, loop antennas | Vivaldi, spiral, LPDA, bowtie, ultra-wideband (UWB) patch | Dipole, simple patch, omnidirectional antennas | Reconfigurable microstrip antennas, electronically steered antennas | Flexible, transparent, conformal, printable antennas |
Design Complexity | Simple and optimized | High (requires separate tuning or broadband matching) | Relatively simple | Complex (requires broadband matching and rectification) | Simple | Moderate to high (additional power circuitry needed) | High (multiple harvesting units and integration circuits) |
Conversion Efficiency | High at target frequency | Varies across bands, needs optimization | Very high at centre frequency | Moderate to high (depending on design) | Moderate (depends on ambient signal strength) | Higher than passive systems under weak RF conditions | Varies based on environmental energy source combination |
Adaptability to RF Environments | Low (only effective at specific frequency) | High (can capture different signals) | Low (best in controlled frequency environment) | Very high (suitable for dynamic environments) | Depends on environment | More adaptable due to power amplification | Very high (suitable for dynamic and harsh environments) |
Power Output | Depends on presence of single RF source | Generally better (due to harvesting from multiple sources) | Stable if RF source is constant | Fluctuates depending on wideband ambient RF availability | Moderate | Improved and stabilized by amplifiers | Typically higher due to multiple energy sources being combined |
Typical Applications | RFID tags, dedicated wireless sensors | Smart cities, industrial IoT, dynamic wireless systems | IoT devices in controlled environments (e.g., factories) | Urban RF harvesting, smart sensors, IoT devices in dense areas | Low-power IoT nodes, environmental sensors | Medical implants, wearable electronics | Remote sensing, smart agriculture, biomedical implants |
Challenges | Limited flexibility to changing environments | Complexity in circuit and impedance matching | Limited to known RF source environments | Difficult impedance matching and efficiency management | Limited by ambient RF power density | Complexity, size, and energy cost of amplification | Integration issues, size, cost, and weight |
Typical Antenna Gain (dB) | 2–4 dB | 4–8 dB | 5–10 dB | 8–15 dB | 2–3 dB | 5–10 dB | 3–8 dB |
Circuit Performance (Efficiency) | 85–90% | 75–85% | 90–95% | 60–80% | 30–50% | 60–80% | 70–85% |
Size (cm2) | 20–40 cm2 | 50–100 cm2 | 10–20 cm2 | 100–200 cm2 | 5–20 cm2 | 20–50 cm2 | 50–150 cm2 |
Energy Efficiency | 85–90% | 70–80% | 90–95% | 60–75% | 30–50% | 60–80% | 70–85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arinze, S.N.; Obi, E.R.; Ebenuwa, S.H.; Nwajana, A.O. RF Energy-Harvesting Techniques: Applications, Recent Developments, Challenges, and Future Opportunities. Telecom 2025, 6, 45. https://doi.org/10.3390/telecom6030045
Arinze SN, Obi ER, Ebenuwa SH, Nwajana AO. RF Energy-Harvesting Techniques: Applications, Recent Developments, Challenges, and Future Opportunities. Telecom. 2025; 6(3):45. https://doi.org/10.3390/telecom6030045
Chicago/Turabian StyleArinze, Stella N., Emenike Raymond Obi, Solomon H. Ebenuwa, and Augustine O. Nwajana. 2025. "RF Energy-Harvesting Techniques: Applications, Recent Developments, Challenges, and Future Opportunities" Telecom 6, no. 3: 45. https://doi.org/10.3390/telecom6030045
APA StyleArinze, S. N., Obi, E. R., Ebenuwa, S. H., & Nwajana, A. O. (2025). RF Energy-Harvesting Techniques: Applications, Recent Developments, Challenges, and Future Opportunities. Telecom, 6(3), 45. https://doi.org/10.3390/telecom6030045