Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,491)

Search Parameters:
Keywords = wind turbine generator system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 (registering DOI) - 1 Aug 2025
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

28 pages, 13030 KiB  
Article
Meta-Heuristic Optimization for Hybrid Renewable Energy System in Durgapur: Performance Comparison of GWO, TLBO, and MOPSO
by Sudip Chowdhury, Aashish Kumar Bohre and Akshay Kumar Saha
Sustainability 2025, 17(15), 6954; https://doi.org/10.3390/su17156954 (registering DOI) - 31 Jul 2025
Viewed by 41
Abstract
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three [...] Read more.
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three optimization techniques: Grey Wolf Optimization (GWO), Teaching–Learning-Based Optimization (TLBO), and Multi-Objective Particle Swarm Optimization (MOPSO). The study compared their outcomes to identify which method yielded the most effective performance. The research included a statistical analysis to evaluate how consistently and stably each optimization method performed. The analysis revealed optimal values for the output power of photovoltaic systems (PVs), wind turbines (WTs), diesel generator capacity (DGs), and battery storage (BS). A one-year period was used to confirm the optimized configuration through the analysis of capital investment and fuel consumption. Among the three methods, GWO achieved the best fitness value of 0.24593 with an LPSP of 0.12528, indicating high system reliability. MOPSO exhibited the fastest convergence behaviour. TLBO yielded the lowest Net Present Cost (NPC) of 213,440 and a Cost of Energy (COE) of 1.91446/kW, though with a comparatively higher fitness value of 0.26628. The analysis suggests that GWO is suitable for applications requiring high reliability, TLBO is preferable for cost-sensitive solutions, and MOPSO is advantageous for obtaining quick, approximate results. Full article
(This article belongs to the Special Issue Energy Technology, Power Systems and Sustainability)
Show Figures

Figure 1

17 pages, 2136 KiB  
Article
Mitigating Intermittency in Offshore Wind Power Using Adaptive Nonlinear MPPT Control Techniques
by Muhammad Waqas Ayub, Inam Ullah Khan, George Aggidis and Xiandong Ma
Energies 2025, 18(15), 4041; https://doi.org/10.3390/en18154041 - 29 Jul 2025
Viewed by 190
Abstract
This paper addresses the challenge of maximizing power extraction in offshore wind energy systems through the development of an enhanced maximum power point tracking (MPPT) control strategy. Offshore wind energy is inherently intermittent, leading to discrepancies between power generation and electricity demand. To [...] Read more.
This paper addresses the challenge of maximizing power extraction in offshore wind energy systems through the development of an enhanced maximum power point tracking (MPPT) control strategy. Offshore wind energy is inherently intermittent, leading to discrepancies between power generation and electricity demand. To address this issue, we propose three advanced control algorithms to perform a comparative analysis: sliding mode control (SMC), the Integral Backstepping-Based Real-Twisting Algorithm (IBRTA), and Feed-Back Linearization (FBL). These algorithms are designed to handle the nonlinear dynamics and aerodynamic uncertainties associated with offshore wind turbines. Given the practical limitations in acquiring accurate nonlinear terms and aerodynamic forces, our approach focuses on ensuring the adaptability and robustness of the control algorithms under varying operational conditions. The proposed strategies are rigorously evaluated through MATLAB/Simulink 2024 A simulations across multiple wind speed scenarios. Our comparative analysis demonstrates the superior performance of the proposed methods in optimizing power extraction under diverse conditions, contributing to the advancement of MPPT techniques for offshore wind energy systems. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

20 pages, 6870 KiB  
Article
Stability Limit Analysis of DFIG Connected to Weak Grid in DC-Link Voltage Control Timescale
by Kezheng Jiang, Lie Li, Zhenyu He and Dan Liu
Electronics 2025, 14(15), 3022; https://doi.org/10.3390/electronics14153022 - 29 Jul 2025
Viewed by 133
Abstract
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines [...] Read more.
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines being integrated into a weak grid, which decreases the stability limits of wind turbines. To solve this problem, this study investigates the stability limits of a Doubly Fed Induction Generator (DFIG) connected to a weak grid in a DC-link voltage control timescale. To start with, a model of the DFIG in a DC-link voltage control timescale is presented for stability limit analysis, which facilitates profound physical understanding. Through steady-state stability analysis based on sensitivity evaluation, it is found that the critical factor restricting the stability limit of the DFIG connected to a weak grid is ∂Pe/∂ (−ird), changing from positive to negative. As ∂Pe/∂ (−ird) reaches zero, the system reaches its stability limit. Furthermore, by considering control loop dynamics and grid strength, the stability limit of the DFIG is investigated based on eigenvalue analysis with multiple physical scenarios. The results of root locus analysis show that, when the DFIG is connected to an extremely weak grid, reducing the bandwidth of the PLL or increasing the bandwidth of the AVC with equal damping can increase the stability limit. The aforesaid theoretical analysis is verified through both time domain simulation and physical experiments. Full article
Show Figures

Figure 1

37 pages, 10198 KiB  
Article
Mooring Evaluation of a Floating Offshore Wind Turbine Platform Under Rogue Wave Conditions Using a Coupled CFD-FEM Model
by Bo Li, Hao Qin, Haoran Zhang, Qibin Long, Donghao Ma and Chen Xu
J. Mar. Sci. Eng. 2025, 13(8), 1443; https://doi.org/10.3390/jmse13081443 - 28 Jul 2025
Viewed by 233
Abstract
As the development of offshore wind energy transforms from coastal to deep-sea regions, designing a cost effective mooring system while ensuring the safety of floating offshore wind turbine (FOWT) remains a critical challenge, especially considering extreme wave environments. This study employs a model [...] Read more.
As the development of offshore wind energy transforms from coastal to deep-sea regions, designing a cost effective mooring system while ensuring the safety of floating offshore wind turbine (FOWT) remains a critical challenge, especially considering extreme wave environments. This study employs a model coupling computational fluid dynamics (CFD) and finite element method (FEM) to investigate the responses of a parked FOWT platform with its mooring system under rogue wave conditions. Specifically, the mooring dynamics are solved using a local discontinuous Galerkin (LDG) method, which is believed to provide high accuracy. Firstly, rogue wave generation and the coupled CFD-FEM are validated through comparisons with existing experimental and numerical data. Secondly, FOWT platform motions and mooring tensions caused by a rogue wave are obtained through simulations, which are compared with the ones caused by a similar peak-clipped rogue wave. Lastly, analysis of four different mooring design schemes is conducted to evaluate their performance on reducing the mooring tensions. The results indicate that the rogue wave leads to significantly enlarged FOWT platform motions and mooring tensions, while doubling the number of mooring lines with specific line angles provides the most balanced performance considering cost-effectiveness and structural safety under identical rogue wave conditions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

27 pages, 3529 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 170
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

38 pages, 5939 KiB  
Article
Decentralized Energy Management for Microgrids Using Multilayer Perceptron Neural Networks and Modified Cheetah Optimizer
by Zulfiqar Ali Memon, Ahmed Bilal Awan, Hasan Abdel Rahim A. Zidan and Mohana Alanazi
Processes 2025, 13(8), 2385; https://doi.org/10.3390/pr13082385 - 27 Jul 2025
Viewed by 404
Abstract
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training [...] Read more.
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training for high-precision forecasts of photovoltaic/wind generation, ambient temperature, and load demand, greatly outperforming traditional statistical methods (e.g., time-series analysis) and resilient backpropagation (RP) in precision. The new MCO algorithm eliminates local trapping and premature convergence issues in classical optimization methods like Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs). Simulations on a test microgrid verily demonstrate the advantages of the framework, achieving a 26.8% cost-of-operation reduction against rule-based EMSs and classical PSO/GA, and a 15% improvement in forecast accuracy using an LM-trained MLP-ANN. Moreover, demand response programs embodied in the system reduce peak loads by 7.5% further enhancing grid stability. The MLP-ANN forecasting–MCO optimization duet is an effective and cost-competitive decentralized microgrid management solution under uncertainty. Full article
Show Figures

Figure 1

34 pages, 1593 KiB  
Article
Enhancing Radial Distribution System Performance Through Optimal Allocation and Sizing of Photovoltaic and Wind Turbine Distribution Generation Units with Rüppell’s Fox Optimizer
by Yacine Bouali and Basem Alamri
Mathematics 2025, 13(15), 2399; https://doi.org/10.3390/math13152399 - 25 Jul 2025
Viewed by 186
Abstract
Renewable energy sources are being progressively incorporated into modern power grids to increase sustainability, stability, and resilience. To ensure that residential, commercial, and industrial customers have a dependable and efficient power supply, the transmission system must deliver electricity to end-users via the distribution [...] Read more.
Renewable energy sources are being progressively incorporated into modern power grids to increase sustainability, stability, and resilience. To ensure that residential, commercial, and industrial customers have a dependable and efficient power supply, the transmission system must deliver electricity to end-users via the distribution network. To improve the performance of the distribution system, this study employs distributed generator (DG) units and focuses on determining their optimal placement, sizing, and power factor. A novel metaheuristic algorithm, referred to as Rüppell’s fox optimizer (RFO), is proposed to address this optimization problem under various scenarios. In the first scenario, where the DG operates at unity power factor, it is modeled as a photovoltaic system. In the second and third scenarios, the DG is modeled as a wind turbine system with fixed and optimal power factors, respectively. The performance of the proposed RFO algorithm is benchmarked against five well-known metaheuristic techniques to validate its effectiveness and competitiveness. Simulations are conducted on the IEEE 33-bus and IEEE 69-bus radial distribution test systems to demonstrate the applicability and robustness of the proposed approach. Full article
(This article belongs to the Special Issue Mathematical Methods Applied in Power Systems, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 1145 KiB  
Article
Optimization Scheduling of Multi-Regional Systems Considering Secondary Frequency Drop
by Xiaodong Yang, Xiaotong Hua, Lun Cheng, Tao Wang and Yujing Su
Energies 2025, 18(15), 3926; https://doi.org/10.3390/en18153926 - 23 Jul 2025
Viewed by 142
Abstract
After primary frequency regulation in large-scale wind farms is completed, the power dip phenomenon occurs during the rotor speed recovery phase. This phenomenon may induce a secondary frequency drop in power systems, which poses challenges to system frequency security. To address this issue, [...] Read more.
After primary frequency regulation in large-scale wind farms is completed, the power dip phenomenon occurs during the rotor speed recovery phase. This phenomenon may induce a secondary frequency drop in power systems, which poses challenges to system frequency security. To address this issue, this paper proposes a frequency security-oriented optimal dispatch model for multi-regional power systems, taking into account the risks of secondary frequency drop. In the first stage, risk-averse day-ahead scheduling is conducted. It co-optimizes operational costs and risks under wind power uncertainty through stochastic programming. In the second stage, frequency security verification is carried out. The proposed dispatch scheme is validated against multi-regional frequency dynamic constraints under extreme wind scenarios. These two stages work in tandem to comprehensively address the frequency security issues related to wind power integration. The model innovatively decomposes system reserve power into three distinct components: wind fluctuation reserve, power dip reserve, and contingency reserve. This decomposition enables coordinated optimization between absorbing power oscillations during wind turbine speed recovery and satisfies multi-regional grid frequency security constraints. The column and constraint generation algorithm is employed to solve this two-stage optimization problem. Case studies demonstrate that the proposed model effectively mitigates frequency security risks caused by wind turbines’ operational state transitions after primary frequency regulation, while maintaining economic efficiency. The methodology provides theoretical support for the secure integration of high-penetration renewable energy in modern multi-regional power systems. Full article
Show Figures

Figure 1

41 pages, 9748 KiB  
Article
Wind Turbine Fault Detection Through Autoencoder-Based Neural Network and FMSA
by Welker Facchini Nogueira, Arthur Henrique de Andrade Melani and Gilberto Francisco Martha de Souza
Sensors 2025, 25(14), 4499; https://doi.org/10.3390/s25144499 - 19 Jul 2025
Viewed by 419
Abstract
Amid the global shift toward clean energy, wind power has emerged as a critical pillar of the modern energy matrix. To improve the reliability and maintainability of wind farms, this work proposes a novel hybrid fault detection approach that combines expert-driven diagnostic knowledge [...] Read more.
Amid the global shift toward clean energy, wind power has emerged as a critical pillar of the modern energy matrix. To improve the reliability and maintainability of wind farms, this work proposes a novel hybrid fault detection approach that combines expert-driven diagnostic knowledge with data-driven modeling. The framework integrates autoencoder-based neural networks with Failure Mode and Symptoms Analysis, leveraging the strengths of both methodologies to enhance anomaly detection, feature selection, and fault localization. The methodology comprises five main stages: (i) the identification of failure modes and their observable symptoms using FMSA, (ii) the acquisition and preprocessing of SCADA monitoring data, (iii) the development of dedicated autoencoder models trained exclusively on healthy operational data, (iv) the implementation of an anomaly detection strategy based on the reconstruction error and a persistence-based rule to reduce false positives, and (v) evaluation using performance metrics. The approach adopts a fault-specific modeling strategy, in which each turbine and failure mode is associated with a customized autoencoder. The methodology was first validated using OpenFAST 3.5 simulated data with induced faults comprising normal conditions and a 1% mass imbalance fault on a blade, enabling the verification of its effectiveness under controlled conditions. Subsequently, the methodology was applied to a real-world SCADA data case study from wind turbines operated by EDP, employing historical operational data from turbines, including thermal measurements and operational variables such as wind speed and generated power. The proposed system achieved 99% classification accuracy on simulated data detect anomalies up to 60 days before reported failures in real operational conditions, successfully identifying degradations in components such as the transformer, gearbox, generator, and hydraulic group. The integration of FMSA improves feature selection and fault localization, enhancing both the interpretability and precision of the detection system. This hybrid approach demonstrates the potential to support predictive maintenance in complex industrial environments. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

18 pages, 6767 KiB  
Article
Study on Air-Cooled Structure of Direct-Drive Outer-Rotor Permanent Magnet Synchronous Generator for Wind Power Generation
by Xudong Yang, Ke Li, Yiguang Chen, Haiying Lv and Jingjuan Du
Appl. Sci. 2025, 15(14), 8008; https://doi.org/10.3390/app15148008 - 18 Jul 2025
Viewed by 229
Abstract
Direct-drive permanent magnet synchronous generators (DD-PMSGs) have been widely adopted in wind power generation systems owing to their distinctive advantages, including direct-drive operation, high power density, and superior energy conversion efficiency. However, the high power density of the generator inevitably leads to heat [...] Read more.
Direct-drive permanent magnet synchronous generators (DD-PMSGs) have been widely adopted in wind power generation systems owing to their distinctive advantages, including direct-drive operation, high power density, and superior energy conversion efficiency. However, the high power density of the generator inevitably leads to heat generation issues, which affect the reliability of the generator. To address the thermal issues in the 4.5 MW direct-drive permanent magnet synchronous generator (DD-PMSG), this paper proposes a novel forced air-cooling ventilation system. Through comprehensive computational fluid dynamics (CFD) simulations and fundamental thermodynamic analysis, the cooling performance is systematically evaluated to determine the optimal width of the stator ventilation ducts. Furthermore, based on the temperature distribution of the stator and rotor, three optimization schemes for non-uniform core segments are proposed. By comparing the ventilation cooling performance under three structural schemes, the optimal structural scheme is provided for the generator. Finally, the feasibility of the heat dissipation scheme and the accuracy of the simulation calculations are verified by fabricating a prototype and setting up an experimental platform. The above conclusions and research results can provide some reference for the design of the core ventilation ducts structure of subsequent wind turbines. Full article
Show Figures

Figure 1

18 pages, 1709 KiB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Viewed by 290
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

22 pages, 76473 KiB  
Article
Modeling Renewable Energy Feed-In Dynamics in a German Metropolitan Region
by Sebastian Bottler and Christian Weindl
Processes 2025, 13(7), 2270; https://doi.org/10.3390/pr13072270 - 16 Jul 2025
Viewed by 244
Abstract
This study presents community-specific modeling approaches for simulating power injection from photovoltaic and wind energy systems in a German metropolitan region. Developed within the EMN_SIM project and based on openly accessible datasets, the methods are broadly transferable across Germany. For PV, a cluster-based [...] Read more.
This study presents community-specific modeling approaches for simulating power injection from photovoltaic and wind energy systems in a German metropolitan region. Developed within the EMN_SIM project and based on openly accessible datasets, the methods are broadly transferable across Germany. For PV, a cluster-based model groups systems by geographic and technical characteristics, using real weather data to reduce computational effort. Validation against measured specific yields shows strong agreement, confirming energetic accuracy. The wind model operates on a per-turbine basis, integrating technical specifications, land use, and high-resolution wind data. Energetic validation indicates good consistency with Bavarian reference values, while power-based comparisons with selected turbines show reasonable correlation, subject to expected limitations in wind data resolution. The resulting high-resolution generation profiles reveal spatial and temporal patterns valuable for grid planning and targeted policy design. While further validation with additional measurement data could enhance model precision, the current results already offer a robust foundation for urban energy system analyses and future grid integration studies. Full article
(This article belongs to the Special Issue Recent Advances in Energy and Dynamical Systems)
Show Figures

Figure 1

18 pages, 1539 KiB  
Article
A Data-Driven Observer for Wind Farm Power Gain Potential: A Sparse Koopman Operator Approach
by Yue Chen, Bingchen Wang, Kaiyue Zeng, Lifu Ding, Yingming Lin, Ying Chen and Qiuyu Lu
Energies 2025, 18(14), 3751; https://doi.org/10.3390/en18143751 - 15 Jul 2025
Viewed by 199
Abstract
Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are [...] Read more.
Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are both accurate and computationally efficient for real-time implementation. This paper proposes a data-driven observer to rapidly estimate the potential power gain achievable through AWC as a function of the ambient wind direction. The approach is rooted in Koopman operator theory, which allows a linear representation of nonlinear dynamics. Specifically, a model is developed using an Input–Output Extended Dynamic Mode Decomposition framework combined with Sparse Identification (IOEDMDSINDy). This method lifts the low-dimensional wind direction input into a high-dimensional space of observable functions and then employs iterative sparse regression to identify a minimal, interpretable linear model in this lifted space. By training on offline simulation data, the resulting observer serves as an ultra-fast surrogate model, capable of providing instantaneous predictions to inform online control decisions. The methodology is demonstrated and its performance is validated using two case studies: a 9-turbine and a 20-turbine wind farm. The results show that the observer accurately captures the complex, nonlinear relationship between wind direction and power gain, significantly outperforming simpler models. This work provides a key enabling technology for advanced, real-time wind farm control systems. Full article
(This article belongs to the Special Issue Modeling, Control and Optimization of Wind Power Systems)
Show Figures

Figure 1

26 pages, 1033 KiB  
Review
Review of Artificial Intelligence-Based Design Optimization of Wind Power Systems
by Zhihong Jiang, Han Li, Hao Yang, Han Wu, Wenzhou Liu and Zhe Chen
Wind 2025, 5(3), 18; https://doi.org/10.3390/wind5030018 - 11 Jul 2025
Viewed by 326
Abstract
This paper reviews the applications of artificial intelligence (AI) in the design optimization of wind power systems, mainly including (1) wind farm layout optimization; (2) wind turbine design optimization; and (3) wind farm electrical system design optimization. Firstly, this paper introduces the general [...] Read more.
This paper reviews the applications of artificial intelligence (AI) in the design optimization of wind power systems, mainly including (1) wind farm layout optimization; (2) wind turbine design optimization; and (3) wind farm electrical system design optimization. Firstly, this paper introduces the general considerations in the optimal design of wind power systems and the AI methods commonly used for the optimal design of wind power systems. Then the applications of AI in the optimal design of wind farms are reviewed in detail. Finally, further research directions of using AI methods in the optimal design of wind power systems are recommended. Full article
Show Figures

Figure 1

Back to TopTop