Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = wind–solar–hydro hybrid generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 5625 KB  
Article
Multi-Source Concurrent Renewable Energy Estimation: A Physics-Informed Spatio-Temporal CNN-LSTM Framework
by Razan Mohammed Aljohani and Amal Almansour
Sustainability 2026, 18(1), 533; https://doi.org/10.3390/su18010533 - 5 Jan 2026
Viewed by 256
Abstract
Accurate and reliable estimation of renewable energy generation is critical for modern power grid management, yet the inherent volatility and distinct physical drivers of multi-source renewables present significant modeling challenges. This paper proposes a unified deep learning framework for the concurrent estimation of [...] Read more.
Accurate and reliable estimation of renewable energy generation is critical for modern power grid management, yet the inherent volatility and distinct physical drivers of multi-source renewables present significant modeling challenges. This paper proposes a unified deep learning framework for the concurrent estimation of power generation from solar, wind, and hydro sources. This methodology, termed nowcasting, utilizes real-time weather inputs to estimate immediate power generation. We introduce a hybrid spatio-temporal CNN-LSTM architecture that leverages a two-branch design to process both sequential weather data and static, plant-specific attributes in parallel. A key innovation of our approach is the use of a physics-informed Capacity Factor as the normalized target variable, which is customized for each energy source and notably employs a non-linear, S-shaped tanh-based power curve to model wind generation. To ensure high-fidelity spatial feature integration, a cKDTree algorithm was implemented to accurately match each power plant with its nearest corresponding weather data. To guarantee methodological rigor and prevent look-ahead bias, the model was trained and validated using a strict chronological data splitting strategy and was rigorously benchmarked against Linear Regression and XGBoost models. The framework demonstrated exceptional robustness on a large-scale dataset of over 1.5 million records spanning five European countries, achieving R-squared (R2) values of 0.9967 for solar, 0.9993 for wind, and 0.9922 for hydro. While traditional ensemble models performed competitively on linear solar data, the proposed CNN-LSTM architecture demonstrated superior performance in capturing the complex, non-linear dynamics of wind energy, confirming its superiority in capturing intricate meteorological dependencies. This study validates the significant contribution of a spatio-temporal and physics-informed framework, establishing a foundational model for real-time energy assessment and enhanced grid sustainability. Full article
Show Figures

Figure 1

45 pages, 19583 KB  
Article
A Climate-Informed Scenario Generation Method for Stochastic Planning of Hybrid Hydro–Wind–Solar Power Systems in Data-Scarce Regions
by Pu Guo, Xiong Cheng, Wei Min, Xiaotao Zeng and Jingwen Sun
Energies 2026, 19(1), 74; https://doi.org/10.3390/en19010074 - 23 Dec 2025
Viewed by 306
Abstract
The high penetration rate of renewable energy poses significant challenges to the planning and operation of power systems in regions with scarce data. In these regions, it is impossible to accurately simulate the complex nonlinear dependencies among hydro–wind–solar energy resources, which leads to [...] Read more.
The high penetration rate of renewable energy poses significant challenges to the planning and operation of power systems in regions with scarce data. In these regions, it is impossible to accurately simulate the complex nonlinear dependencies among hydro–wind–solar energy resources, which leads to huge operational risks and investment uncertainties. To bridge this gap, this study proposes a new data-driven framework that embeds the natural climate cycle (24 solar terms) into a physically consistent scenario generation process, surpassing the traditional linear approach. This framework introduces the Comprehensive Similarity Distance (CSD) indicator to quantify the curve similarity of power amplitude, pattern trend, and fluctuation position, thereby improving the K-means clustering. Compared with the K-means algorithm based on the standard Euclidean distance, the accuracy of the improved clustering pattern extraction is increased by 3.8%. By embedding the natural climate cycle and employing a two-stage dimensionality reduction architecture: time compression via improved clustering and feature fusion via Kernel PCA, the framework effectively captures cross-source dependencies and preserves climatic periodicity. Finally, combined with the simplified Vine Copula model, high-fidelity joint scenarios with a normalized root mean square error (NRMSE) of less than 3% can be generated. This study provides a reliable and computationally feasible tool for stochastic optimization and reliability analysis in the planning and operation of future power systems with high renewable energy grid integration. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

57 pages, 11150 KB  
Review
Pathways to Carbon Neutrality: Innovations in Climate Action and Sustainable Energy
by Adrian Stancu, Catalin Popescu, Mirela Panait, Irina Gabriela Rădulescu, Alina Gabriela Brezoi and Marian Catalin Voica
Sustainability 2025, 17(24), 11240; https://doi.org/10.3390/su172411240 - 15 Dec 2025
Viewed by 796
Abstract
The global transition to renewable energy sources is essential to carbon neutrality and ensuring energy security. First, the paper presents a comprehensive literature review of the main technological breakthroughs in bioenergy, hydro energy, solar energy, onshore and offshore wind energy, ocean energy, and [...] Read more.
The global transition to renewable energy sources is essential to carbon neutrality and ensuring energy security. First, the paper presents a comprehensive literature review of the main technological breakthroughs in bioenergy, hydro energy, solar energy, onshore and offshore wind energy, ocean energy, and geothermal energy, selecting the latest papers published. Next, key scientific challenges, environmental and economic constraints, and future research priorities for each of the six renewable energies were outlined. Then, to emphasize the important contribution of renewable energies to total energy production and the proportions of each type of renewable energy, the evolution of global electricity generation from all six renewable sources between 2000 and 2023 was analyzed. Thus, in 2023, the global electricity generation weight of each renewable energy in total renewable energy ranks hydro energy (47.83%) first, followed by onshore and offshore wind energy (25.8%), solar energy (18.19%), bioenergy (7.07%), geothermal energy (1.1%), and ocean energy (0.01%). After that, the bibliometric analysis, conducted between 1 January 2021 and 1 October 2025 on the Web of Science (WoS) database and using the PRISMA approach and VOSviewer version 1.6.20 software, enabled the identification of the most cited papers, publications and citation number by WoS categories, topics, correlation with Sustainable Development Goals, authors’ affiliation, publication title, and publisher. Furthermore, the paper presents a network visualization of the link between co-occurrences and all keywords, imposing minimum thresholds of 10, 20, and 30 occurrences per keyword, and computes the network density based on the number of edges and nodes. Finally, additional analysis included the most used keywords in different co-occurrences, a word cloud of occurrences by total link strength, regression of occurrences versus total link strength, and correlations between citations and documents and between citations and authors. Carbon neutrality and a resilient energy future can only be achieved by integrating renewable sources into hybrid systems and optimized smart grids. Each technological progress stage will bring new challenges that must be addressed cost-effectively. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

32 pages, 1917 KB  
Article
Hybrid Wind–Solar–Fuel Cell–Battery Power System with PI Control for Low-Emission Marine Vessels in Saudi Arabia
by Hussam A. Banawi, Mohammed O. Bahabri, Fahd A. Hariri and Mohammed N. Ajour
Automation 2025, 6(4), 69; https://doi.org/10.3390/automation6040069 - 8 Nov 2025
Viewed by 978
Abstract
The maritime industry is under increasing pressure to reduce greenhouse gas emissions, especially in countries such as Saudi Arabia that are actively working to transition to cleaner energy. In this paper, a new hybrid shipboard power system, which incorporates wind turbines, solar photovoltaic [...] Read more.
The maritime industry is under increasing pressure to reduce greenhouse gas emissions, especially in countries such as Saudi Arabia that are actively working to transition to cleaner energy. In this paper, a new hybrid shipboard power system, which incorporates wind turbines, solar photovoltaic (PV) panels, proton-exchange membrane fuel cells (PEMFCs), and a battery energy storage system (BESS) together for propulsion and hotel load services, is proposed. A multi-loop Energy Management System (EMS) based on proportional–integral control (PI) is developed to coordinate the interconnections of the power sources in real time. In contrast to the widely reported model predictive or artificial intelligence optimization schemes, the PI-derived EMS achieves similar power stability and hydrogen utilization efficiency with significantly reduced computational overhead and full marine suitability. By taking advantage of the high solar irradiance and coastal wind resources in Saudi Arabia, the proposed configuration provides continuous near-zero-emission operation. Simulation results show that the PEMFC accounts for about 90% of the total energy demand, the BESS (±0.4 MW, 2 MWh) accounts for about 3%, and the stationary renewables account for about 7%, which reduces the demand for hydro-gas to about 160 kg. The DC-bus voltage is kept within ±5% of its nominal value of 750 V, and the battery state of charge (SOC) is kept within 20% to 80%. Sensitivity analyses show that by varying renewable input by ±20%, diesel consumption is ±5%. These results demonstrate the system’s ability to meet International Maritime Organization (IMO) emission targets by delivering stable near-zero-emission operation, while achieving high hydrogen efficiency and grid stability with minimal computational cost. Consequently, the proposed system presents a realistic, certifiable, and regionally optimized roadmap for next-generation hybrid PEMFC–battery–renewable marine power systems in Saudi Arabian coastal operations. Full article
(This article belongs to the Section Automation in Energy Systems)
Show Figures

Figure 1

30 pages, 7290 KB  
Article
Modeling and Optimization of a Hybrid Solar–Wind Energy System Using HOMER: A Case Study of L’Anse Au Loup
by Sujith Eswaran and Ashraf Ali Khan
Energies 2025, 18(21), 5794; https://doi.org/10.3390/en18215794 - 3 Nov 2025
Viewed by 1377
Abstract
The rural community of L’Anse au Loup in southern Labrador depends on a long-distance transmission link to Hydro-Québec for its electricity supply, with diesel generation as backup during outages. This dependence raises electricity costs, exposes the community to supply disruptions, and limits control [...] Read more.
The rural community of L’Anse au Loup in southern Labrador depends on a long-distance transmission link to Hydro-Québec for its electricity supply, with diesel generation as backup during outages. This dependence raises electricity costs, exposes the community to supply disruptions, and limits control over local energy security. This study evaluates the feasibility of a solar–wind hybrid energy system to reduce imported electricity and improve supply reliability. A detailed site assessment identified a 50-hectare area north of the community as suitable for system installation, offering adequate space and minimal land-use conflict. Using Hybrid Optimization of Multiple Energy Resources (HOMER Pro 3.18.3) software, the analysis modeled local load data, renewable resource profiles, and financial parameters to determine the optimal grid-connected configuration. The optimized design installs 19.25 MW of photovoltaic (PV) and 4.62 MW of wind capacity, supported by inverters and maximum power point tracking (MPPT) to ensure stable operation. Simulations show that the hybrid system supplies about 70% of annual demand, cuts greenhouse gas emissions by more than 95% compared with conventional generation, and lowers long-term energy costs. The results confirm that the proposed configuration can strengthen local energy security and provide a replicable framework for other remote and coastal communities in Newfoundland and Labrador pursuing decarbonization. Full article
Show Figures

Figure 1

38 pages, 8669 KB  
Article
Robust THRO-Optimized PIDD2-TD Controller for Hybrid Power System Frequency Regulation
by Mohammed Hamdan Alshehri, Ashraf Ibrahim Megahed, Ahmed Hossam-Eldin, Moustafa Ahmed Ibrahim and Kareem M. AboRas
Processes 2025, 13(11), 3529; https://doi.org/10.3390/pr13113529 - 3 Nov 2025
Viewed by 511
Abstract
The large-scale adoption of renewable energy sources, while environmentally beneficial, introduces significant frequency fluctuations due to the inherent variability of wind and solar output. Electric vehicle (EV) integration with substantial battery storage and bidirectional charging capabilities offers potential mitigation for these fluctuations. This [...] Read more.
The large-scale adoption of renewable energy sources, while environmentally beneficial, introduces significant frequency fluctuations due to the inherent variability of wind and solar output. Electric vehicle (EV) integration with substantial battery storage and bidirectional charging capabilities offers potential mitigation for these fluctuations. This study addresses load frequency regulation in multi-area interconnected power systems incorporating diverse generation resources: renewables (solar/wind), conventional plants (thermal/gas/hydro), and EV units. A hybrid controller combining the proportional–integral–derivative with second derivative (PIDD2) and tilted derivative (TD) structures is proposed, with parameters tuned using an innovative optimization method called the Tianji’s Horse Racing Optimization (THRO) technique. The THRO-optimized PIDD2-TD controller is evaluated under realistic conditions including system nonlinearities (generation rate constraints and governor deadband). Performance is benchmarked against various combination structures discussed in earlier research, such as PID-TID and PIDD2-PD. THRO’s superiority in optimization has also been proven against several recently published optimization approaches, such as the Dhole Optimization Algorithm (DOA) and Water Uptake and Transport in Plants (WUTPs). The simulation results show that the proposed controller delivers markedly better dynamic performance across load disturbances, system uncertainties, operational constraints, and high-renewable-penetration scenarios. The THRO-based PIDD2-TD controller achieves optimal overshoot, undershoot, and settling time metrics, reducing overshoot by 76%, undershoot by 34%, and settling time by 26% relative to other controllers, highlighting its robustness and effectiveness for modern hybrid grids. Full article
(This article belongs to the Special Issue AI-Based Modelling and Control of Power Systems)
Show Figures

Figure 1

31 pages, 8105 KB  
Article
Multi-Criteria Decision-Making for Hybrid Renewable Energy in Small Communities: Key Performance Indicators and Sensitivity Analysis
by Helena M. Ramos, Praful Borkar, Oscar E. Coronado-Hernández, Francisco Javier Sánchez-Romero and Modesto Pérez-Sánchez
Energies 2025, 18(21), 5665; https://doi.org/10.3390/en18215665 - 28 Oct 2025
Cited by 1 | Viewed by 744
Abstract
The increasing decentralization of energy systems calls for robust frameworks to evaluate the technical and economic feasibility of hybrid renewable configurations at the community scale. This study presents an integrated methodology that combines Key Performance Indicators (KPIs), sensitivity analysis, and Multi-Criteria Decision-Making to [...] Read more.
The increasing decentralization of energy systems calls for robust frameworks to evaluate the technical and economic feasibility of hybrid renewable configurations at the community scale. This study presents an integrated methodology that combines Key Performance Indicators (KPIs), sensitivity analysis, and Multi-Criteria Decision-Making to assess hybrid systems in Castanheira de Pera, a small community in central Portugal. Fourteen configurations (C1–C14) integrating hydropower, solar PV, wind, and battery storage were simulated using HOMER Pro 3.16.2, PVsyst 8.0.16, Python 3.14.0, and Excel under both wet and dry hydrological conditions. A gate-controlled hydro-buffering model was applied to optimize short-term storage operation, increasing summer energy generation by 52–88% without additional infrastructure. Among all configurations, C8 achieved the highest Net Present Value (≈EUR 153,700) and a strong Internal Rate of Return (IRR), while maintaining a stable Levelized Cost of Electricity (LCOE) of around 0.042 EUR/kWh. Comparative decision scenarios highlight distinct stakeholder priorities: storage-intensive systems (C14, C11) maximize energy security, whereas medium-scale hybrids (C8, C7) offer superior economic performance. Overall, the results confirm that hybridization significantly improves community energy autonomy and resilience. Future work should extend this framework to include environmental and social indicators, enabling a more comprehensive techno-socio-economic assessment of hybrid renewable systems. Full article
Show Figures

Figure 1

40 pages, 3030 KB  
Article
Optimizing Sustainable Energy Transitions in Small Isolated Grids Using Multi-Criteria Approaches
by César Berna-Escriche, Lucas Álvarez-Piñeiro, David Blanco and Yago Rivera
Appl. Sci. 2025, 15(14), 7644; https://doi.org/10.3390/app15147644 - 8 Jul 2025
Cited by 3 | Viewed by 1100
Abstract
The ambitious goals of decarbonization of the European economy by mid-century pose significant challenges, especially when relying heavily on resources whose nature is inherently intermittent, specifically wind and solar energy. The situation is even more serious in isolated regions with limited connections to [...] Read more.
The ambitious goals of decarbonization of the European economy by mid-century pose significant challenges, especially when relying heavily on resources whose nature is inherently intermittent, specifically wind and solar energy. The situation is even more serious in isolated regions with limited connections to larger power grids. Using EnergyPLAN software, three scenarios for 2023 were modeled: a diesel-only system, the current hybrid renewable system, and an optimized scenario. This paper evaluates the performance of the usual generation system existing in isolated systems, based on fossil fuels, and proposes an optimized system considering both the cost of the system and the penalties for emissions. All this is applied to the case study of the island of El Hierro, but the findings are applicable to any location with similar characteristics. This system is projected to reduce emissions by over 75% and cut costs by one-third compared to the current configuration. A system has been proposed that preserves the economic viability and reliability of diesel-based systems while achieving low emission levels. This is accomplished primarily through the use of renewable energy generation, supported by pumped hydro storage. The approach is specifically designed for remote regions with small isolated grids, where reliability is critical. Importantly, the system relies on appropriately sized renewable installations, avoiding oversizing, which—although it could further reduce emissions—would lead to significant energy surpluses and require even more efficient storage solutions. This emphasizes the importance of implementing high emission penalties as a key policy measure to phase out fossil fuel generation. Full article
Show Figures

Figure 1

18 pages, 3359 KB  
Article
Integrating Hybrid Energy Solutions into Expressway Infrastructure
by Muqing Yao, Zunbiao Wang, Song Zhang, Zhufa Chu, Yufei Zhang, Shuo Zhang and Wenkai Han
Energies 2025, 18(12), 3186; https://doi.org/10.3390/en18123186 - 18 Jun 2025
Viewed by 766
Abstract
To explore the feasibility of renewable hybrid energy systems for expressway infrastructure, this study proposes a scenario-based design methodology integrating solar, wind, and hydropower resources within the expressway corridor. A case study was conducted on a highway service area located in southern China, [...] Read more.
To explore the feasibility of renewable hybrid energy systems for expressway infrastructure, this study proposes a scenario-based design methodology integrating solar, wind, and hydropower resources within the expressway corridor. A case study was conducted on a highway service area located in southern China, where a solar/wind/hydro hybrid energy system was developed based on the proposed approach. Using the HOMER Pro 3.14 software platform, the system was simulated and optimized under off-grid conditions, and a sensitivity analysis was conducted to evaluate performance variability. The results demonstrate that the strategic integration of corridor-based natural resources—solar irradiance, wind energy, and hydrodynamic potential—enables the construction of a technically and economically viable hybrid energy system. The system includes 382 kW of PV, 210 kW of wind, 80 kW of hydrokinetic power, a 500 kW diesel generator, and 180 kWh of battery storage, forming a hybrid configuration for a stable and reliable energy supply. The optimized configuration can supply up to 1,095,920 kWh of electricity annually at a minimum levelized cost of energy of USD 0.22/kWh. This system reduces CO2 emissions by 23.2 tons/year and NOx emissions by 23 kg/year. demonstrating strong environmental performance and long-term sustainability potential. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

21 pages, 4100 KB  
Article
Enhancing Pumped Hydro Storage Regulation Through Adaptive Initial Reservoir Capacity in Multistage Stochastic Coordinated Planning
by Chao Chen, Shan Huang, Yue Yin, Zifan Tang and Qiang Shuai
Energies 2025, 18(11), 2707; https://doi.org/10.3390/en18112707 - 23 May 2025
Cited by 3 | Viewed by 1158
Abstract
Hybrid pumped hydro storage plants, by integrating pump stations between cascade hydropower stations, have overcome the challenges associated with site selection and construction of pure pumped hydro storage systems, thereby becoming the optimal large-scale energy storage solution for enhancing the absorption of renewable [...] Read more.
Hybrid pumped hydro storage plants, by integrating pump stations between cascade hydropower stations, have overcome the challenges associated with site selection and construction of pure pumped hydro storage systems, thereby becoming the optimal large-scale energy storage solution for enhancing the absorption of renewable energy. However, the multi-energy conversion between pump stations, hydropower, wind power, and photovoltaic plants poses challenges to both their planning schemes and operational performance. This study proposes a multistage stochastic coordinated planning model for cascade hydropower-wind-solar-thermal-pumped hydro storage (CHWS-PHS) systems. First, a Hybrid Pumped Hydro Storage Adaptive Initial Reservoir Capacity (HPHS-AIRC) strategy is developed to enhance the system’s regulation capability by optimizing initial reservoir levels that are synchronized with renewable generation patterns. Then, Non-anticipativity Constraints (NACs) are incorporated into this model to ensure the dynamic adaptation of investment decisions under multi-timescale uncertainties, including inter-annual natural water inflow (NWI) variations and hourly fluctuations in wind and solar power. Simulation results on the IEEE 118-bus system show that the proposed MSSP model reduces total costs by 6% compared with the traditional two-stage approach (TSSP). Moreover, the HPHS-AIRC strategy improves pumped hydro utilization by 33.8%, particularly benefiting scenarios with drought conditions or operational constraints. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

42 pages, 2069 KB  
Review
Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review
by Arsalan Masood, Ubaid Ahmed, Syed Zulqadar Hassan, Ahsan Raza Khan and Anzar Mahmood
Sustainability 2025, 17(6), 2599; https://doi.org/10.3390/su17062599 - 15 Mar 2025
Cited by 3 | Viewed by 3870
Abstract
The integration of Variable Renewable Energy (VRE) sources in power systems is increased for a sustainable environment. However, due to the intermittent nature of VRE sources, formulating efficient economic dispatching strategies becomes challenging. This systematic review aims to elucidate the economic value creation [...] Read more.
The integration of Variable Renewable Energy (VRE) sources in power systems is increased for a sustainable environment. However, due to the intermittent nature of VRE sources, formulating efficient economic dispatching strategies becomes challenging. This systematic review aims to elucidate the economic value creation of Artificial Intelligence (AI) in supporting the integration of VRE sources into power systems by reviewing the role of AI in mitigating costs related to balancing, profile, and grid with a focus on its applications for generation and demand forecasting, market design, demand response, storage solutions, power quality enhancement, and predictive maintenance. The proposed study evaluates the AI potential in economic efficiency and operational reliability improvement by analyzing the use cases with various Renewable Energy Resources (RERs), including wind, solar, geothermal, hydro, ocean, bioenergy, hydrogen, and hybrid systems. Furthermore, the study also highlights the development and limitations of AI-driven approaches in renewable energy sector. The findings of this review aim to highlight AI’s critical role in optimizing VRE integration, ultimately informing policymakers, researchers, and industry stakeholders about the potential of AI for an economically sustainable and resilient energy infrastructure. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

24 pages, 10263 KB  
Article
Non-Renewable and Renewable Exergy Costs of Water Electrolysis in Hydrogen Production
by Alessandro Lima, Jorge Torrubia, Alicia Valero and Antonio Valero
Energies 2025, 18(6), 1398; https://doi.org/10.3390/en18061398 - 12 Mar 2025
Cited by 9 | Viewed by 2042
Abstract
Hydrogen production via water electrolysis and renewable electricity is expected to play a pivotal role as an energy carrier in the energy transition. This fuel emerges as the most environmentally sustainable energy vector for non-electric applications and is devoid of CO2 emissions. [...] Read more.
Hydrogen production via water electrolysis and renewable electricity is expected to play a pivotal role as an energy carrier in the energy transition. This fuel emerges as the most environmentally sustainable energy vector for non-electric applications and is devoid of CO2 emissions. However, an electrolyzer’s infrastructure relies on scarce and energy-intensive metals such as platinum, palladium, iridium (PGM), silicon, rare earth elements, and silver. Under this context, this paper explores the exergy cost, i.e., the exergy destroyed to obtain one kW of hydrogen. We disaggregated it into non-renewable and renewable contributions to assess its renewability. We analyzed four types of electrolyzers, alkaline water electrolysis (AWE), proton exchange membrane (PEM), solid oxide electrolysis cells (SOEC), and anion exchange membrane (AEM), in several exergy cost electricity scenarios based on different technologies, namely hydro (HYD), wind (WIND), and solar photovoltaic (PV), as well as the different International Energy Agency projections up to 2050. Electricity sources account for the largest share of the exergy cost. Between 2025 and 2050, for each kW of hydrogen generated, between 1.38 and 1.22 kW will be required for the SOEC-hydro combination, while between 2.9 and 1.4 kW will be required for the PV-PEM combination. A Grassmann diagram describes how non-renewable and renewable exergy costs are split up between all processes. Although the hybridization between renewables and the electricity grid allows for stable hydrogen production, there are higher non-renewable exergy costs from fossil fuel contributions to the grid. This paper highlights the importance of non-renewable exergy cost in infrastructure, which is required for hydrogen production via electrolysis and the necessity for cleaner production methods and material recycling to increase the renewability of this crucial fuel in the energy transition. Full article
Show Figures

Figure 1

24 pages, 4682 KB  
Article
Multi-Objective Short-Term Operation of Hydro–Wind–Photovoltaic–Thermal Hybrid System Considering Power Peak Shaving, the Economy and the Environment
by Yongqi Liu, Yuanyuan Li, Guibing Hou and Hui Qin
Energies 2024, 17(18), 4698; https://doi.org/10.3390/en17184698 - 20 Sep 2024
Cited by 4 | Viewed by 1667
Abstract
In recent years, renewable, clean energy options such as hydropower, wind energy and solar energy have been attracting more and more attention as high-quality alternatives to fossil fuels, due to the depletion of fossil fuels and environmental pollution. Multi-energy power systems have replaced [...] Read more.
In recent years, renewable, clean energy options such as hydropower, wind energy and solar energy have been attracting more and more attention as high-quality alternatives to fossil fuels, due to the depletion of fossil fuels and environmental pollution. Multi-energy power systems have replaced traditional thermal power systems. However, the output of solar and wind power is highly variable, random and intermittent, making it difficult to integrate it directly into the grid. In this context, a multi-objective model for the short-term operation of wind–solar–hydro–thermal hybrid systems is developed in this paper. The model considers the stability of the system operation, the operating costs and the impact in terms of environmental pollution. To solve the model, an evolutionary cost value region search algorithm is also proposed. The algorithm is applied to a hydro–thermal hybrid system, a multi-energy hybrid system and a realistic model of the wind–solar–hydro experimental base of the Yalong River Basin in China. The experimental results demonstrate that the proposed algorithm exhibits superior performance in terms of both convergence and diversity when compared to the reference algorithm. The integration of wind and solar energy into the power system can enhance the economic efficiency and mitigate the environment impact from thermal power generation. Furthermore, the inherent unpredictability of wind and solar energy sources introduces operational inconsistencies into the system loads. Conversely, the adaptable operational capacity of hydroelectric power plants enables them to effectively mitigate peak loads, thereby enhancing the stability of the power system. The findings of this research can inform decision-making regarding the economic, ecological and stable operation of hybrid energy systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

42 pages, 24090 KB  
Article
Sustainable Growth in the Telecom Industry through Hybrid Renewable Energy Integration: A Technical, Energy, Economic and Environmental (3E) Analysis
by Muhammad Bilal Ali, Abdullah Altamimi, Syed Ali Abbas Kazmi, Zafar A. Khan and Saeed Alyami
Sustainability 2024, 16(14), 6180; https://doi.org/10.3390/su16146180 - 19 Jul 2024
Cited by 2 | Viewed by 4413
Abstract
In response to escalating concerns about climate change, there is a growing imperative to prioritize the decarbonization of the telecom sector and effectively reduce its carbon emissions. This study presents a thorough techno-economic optimization framework for implementing renewable-dominated hybrid standalone systems for the [...] Read more.
In response to escalating concerns about climate change, there is a growing imperative to prioritize the decarbonization of the telecom sector and effectively reduce its carbon emissions. This study presents a thorough techno-economic optimization framework for implementing renewable-dominated hybrid standalone systems for the base transceiver station (BTS) encapsulation telecom sector in Pakistan. It is noted that from the results obtained from 42 BTS sites overall, 21 BTS sites had a feasible combination of a photovoltaic battery system, having a diesel generator as a backup source with an average LCOE of 0.1246 USD/kWh to 0.2325 USD/kWh. Thus, seven BTS sites had an optimal combination of biomass, with photovoltaic and battery storage systems and with a varied LCOE of 0.1175 USD/kWh to 0.1318 USD/kWh. Moreover, due to the high flow of hydro water in the north region, five BTS sites presented an ideal configuration of a hydro system coupled with a photovoltaic, wind, and battery storage system, with a varied LCOE of 0.04547 USD/kWh to 0.07419 USD/kWh. Wind energy systems are dominant in the southern region; therefore, five BTS sites presented an ideal combination of a wind energy system coupled with a photovoltaic battery storage system, having DGs as backup sources for sustainability and with a varied LCOE of 0.1096 USD/kWh to 0.1294 USD/kWh. In addition, 02 BTSs had an optimal combination of photovoltaic systems coupled with hydro and wind systems, with diesel generators having a varied LCOE of 0.07618 USD/kWh to 0.04575 USD/kWh. The remaining 02 BTS sites had a feasible combination of wind–hydro-battery and diesel generator–photovoltaic–hydro-battery systems, with an LCOE of 0.7035 USD/kWh and 0.1073 USD/kWh, respectively. Finally, an environmental analysis based on carbon emissions, as well as sensitivity analyses based on different uncertainties, i.e., wind speed, solar irradiance, inflation rate, discount rate, and load demand, was performed to evaluate the behavior of the proposed systems. The optimization of these systems and comparative study findings indicate that the hybrid BTS system is the best option, better than conventional diesel-operated BTS systems in terms of cost-effectiveness, environmental friendliness, and sustainability. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

23 pages, 4319 KB  
Article
Optimal Scheduling of a Cascade Hydropower Energy Storage System for Solar and Wind Energy Accommodation
by Yuanyuan Liu, Hao Zhang, Pengcheng Guo, Chenxi Li and Shuai Wu
Energies 2024, 17(11), 2734; https://doi.org/10.3390/en17112734 - 4 Jun 2024
Cited by 17 | Viewed by 3238
Abstract
The massive grid integration of renewable energy necessitates frequent and rapid response of hydropower output, which has brought enormous challenges to the hydropower operation and new opportunities for hydropower development. To investigate feasible solutions for complementary systems to cope with the energy transition [...] Read more.
The massive grid integration of renewable energy necessitates frequent and rapid response of hydropower output, which has brought enormous challenges to the hydropower operation and new opportunities for hydropower development. To investigate feasible solutions for complementary systems to cope with the energy transition in the context of the constantly changing role of the hydropower plant and the rapid evolution of wind and solar power, the short-term coordinated scheduling model is developed for the wind–solar–hydro hybrid pumped storage (WSHPS) system with peak shaving operation. The effects of different reservoir inflow conditions, different wind and solar power forecast output, and installed capacity of pumping station on the performance of WSHPS system are analyzed. The results show that compared with the wind–solar–hydro hybrid (WSH) system, the total power generation of the WSHPS system in the dry, normal, and wet year increased by 10.69%, 11.40%, and 11.27% respectively. The solar curtailment decreased by 68.97%, 61.61%, and 48.43%, respectively, and the wind curtailment decreased by 76.14%, 58.48%, and 50.91%, respectively. The high proportion of wind and solar energy connected to the grid in summer leads to large net load fluctuations and serious energy curtailment. The increase in the installed capacity of the pumping station will promote the consumption of wind and solar energy in the WSHPS system. The model proposed in this paper can improve the operational flexibility of hydropower station and promote the consumption of wind and solar energy, which provides a reference for the research of cascade hydropower energy storage system. Full article
(This article belongs to the Special Issue Advances in Energy Storage Systems for Renewable Energy)
Show Figures

Figure 1

Back to TopTop