Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = wheel locomotion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14367 KiB  
Article
Design and Experimental Validation of a Multimodal Snake Robot with Elliptical Wheels
by Xuan Xiao, Zizhu Zhao, Lianzhi Qi, Michael Albert Sumantri, Hengwei Liu, Jianqin Li, Keyang Zheng and Jianming Wang
Biomimetics 2025, 10(8), 532; https://doi.org/10.3390/biomimetics10080532 - 13 Aug 2025
Viewed by 329
Abstract
Snake robots are characterized by their flexibility and environmental adaptability, achieved through various optimized gaits. However, their forward propulsion still requires improvement. This challenge can be addressed by integrating wheels or legs, but these mechanisms often limit the ability of snake robots to [...] Read more.
Snake robots are characterized by their flexibility and environmental adaptability, achieved through various optimized gaits. However, their forward propulsion still requires improvement. This challenge can be addressed by integrating wheels or legs, but these mechanisms often limit the ability of snake robots to perform most optimized gaits. In this article, we develop a novel multimodal snake robot, JiAo-II, with both body-based locomotion and wheeled locomotion to handle complex terrains. The mechanical design and implementation of JiAo-II are presented in detail, with particular emphasis on its innovative elliptical wheels and gear transmission mechanism. Experimental results validate the effectiveness and multifunctionality of JiAo-II across various scenarios, including traversing grasslands, crossing gaps, ascending slopes, navigating pipelines, and climbing cylindrical surfaces. Furthermore, a series of experiments are conducted to evaluate the performance of the wheel–body coordinated locomotion on uneven ground, demonstrating the robustness even without requiring external sensing or sophisticated control strategies. In summary, the proposed multimodal mechanism significantly enhances the locomotion speed, terrain adaptability and robustness of snake robots. Full article
(This article belongs to the Special Issue Biomimetic Robot Motion Control)
Show Figures

Figure 1

25 pages, 11531 KiB  
Article
Premature Fatigue Failure Analysis of Axle in Permanent Magnet Direct-Drive Electric Locomotive
by An-Xia Pan, Chao Wen, Haoyu Wang, Peng Shi, Quanchang Bi, Xicheng Jia, Ping Tao, Xuedong Liu, Yi Gong and Zhen-Guo Yang
Materials 2025, 18(16), 3747; https://doi.org/10.3390/ma18163747 - 11 Aug 2025
Viewed by 282
Abstract
This study investigates premature fatigue failures in three EA1N steel axles from permanent magnet direct-drive locomotives during wheel-seat bending tests. Complete fracture occurred in one axle at 3 million cycles, and in the other two axles, cracks appeared and were observed through magnetic [...] Read more.
This study investigates premature fatigue failures in three EA1N steel axles from permanent magnet direct-drive locomotives during wheel-seat bending tests. Complete fracture occurred in one axle at 3 million cycles, and in the other two axles, cracks appeared and were observed through magnetic particle detection at 3.5 million and 1.6 million cycles, respectively. A comprehensive failure analysis was conducted through metallurgical examination, fractography, mechanical testing, residual stress measurement, and finite element analysis. The fractographic results revealed fractures consistently initiated at the wheel-seat to axle-body transition arc, exhibiting characteristic ratchet marks and beach patterns. The premature fracture mechanism was identified as a high-stress fatigue fracture. The residual stress measurements showed detrimental tensile stresses at the surface. Coupled with the operating stress, the stress on the axle exceeds fatigue strength, which accelerates the initiation and propagation of fatigue cracks. Based on these observations, the failure mechanism was identified, and preventive methods were proposed to reduce the risk of recurrence of the in-service axles. Full article
Show Figures

Figure 1

22 pages, 19937 KiB  
Article
Development and Evaluation of a Two-Dimensional Extension/Contraction-Driven Rover for Sideslip Suppression During Slope Traversal
by Kenta Sagara, Daisuke Fujiwara and Kojiro Iizuka
Aerospace 2025, 12(8), 699; https://doi.org/10.3390/aerospace12080699 - 6 Aug 2025
Viewed by 251
Abstract
Wheeled rovers are widely used in lunar and planetary exploration missions owing to their mechanical simplicity and energy efficiency. However, they face serious mobility challenges on sloped soft terrain, especially in terms of sideslip and loss of attitude angle when traversing across slopes. [...] Read more.
Wheeled rovers are widely used in lunar and planetary exploration missions owing to their mechanical simplicity and energy efficiency. However, they face serious mobility challenges on sloped soft terrain, especially in terms of sideslip and loss of attitude angle when traversing across slopes. Previous research proposed using wheelbase extension/contraction and intentionally sinking wheels into the ground, thereby increasing shear resistance and reducing sideslip. Building upon this concept, this study proposes a novel recovery method that integrates beam extension/contraction and Archimedean screw-shaped wheels to enable lateral movement without rotating the rover body. The beam mechanism allows for independent wheel movement, maintaining stability by anchoring stationary wheels during recovery. Meanwhile, the helical structure of the screw wheels helps reduce lateral earth pressure by scraping soil away from the sides, improving lateral drivability. Driving experiments on a sloped sandbox test bed confirmed that the proposed 2DPPL (two-dimensional push-pull locomotion) method significantly reduces sideslip and prevents a drop in attitude angle during slope traversal. Full article
Show Figures

Figure 1

25 pages, 6969 KiB  
Article
An Analysis of the Design and Kinematic Characteristics of an Octopedic Land–Air Bionic Robot
by Jianwei Zhao, Jiaping Gao, Mingsong Bao, Hao Zhai, Xu Pei and Zheng Jiang
Sensors 2025, 25(14), 4502; https://doi.org/10.3390/s25144502 - 19 Jul 2025
Viewed by 530
Abstract
The urgent need for complex terrain adaptability in industrial automation and disaster relief has highlighted the great potential of octopedal wheel-legged robots. However, their design complexity and motion control challenges must be addressed. In this study, an innovative design approach is employed to [...] Read more.
The urgent need for complex terrain adaptability in industrial automation and disaster relief has highlighted the great potential of octopedal wheel-legged robots. However, their design complexity and motion control challenges must be addressed. In this study, an innovative design approach is employed to construct a highly adaptive robot architecture capable of intelligently adjusting the wheel-leg configuration to cope with changing environments. An advanced kinematic analysis and simulation techniques are combined with inverse kinematic algorithms and dynamic planning to achieve a typical ‘Step-Wise Octopedal Dynamic Coordination Gait’ and different gait planning and optimization. The effectiveness of the design and control strategy is verified through the construction of an experimental platform and field tests, significantly improving the robot’s adaptability and mobility in complex terrain. Additionally, an optional integrated quadrotor module with a compact folding mechanism is incorporated, enabling the robot to overcome otherwise impassable obstacles via short-distance flight when ground locomotion is impaired. This achievement not only enriches the theory and methodology of the multi-legged robot design but also establishes a solid foundation for its widespread application in disaster rescue, exploration, and industrial automation. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

19 pages, 3641 KiB  
Article
Data-Driven Selection of Decontamination Robot Locomotion Based on Terrain Compatibility Scoring Models
by Prithvi Krishna Chittoor, A. Jayasurya, Sriniketh Konduri, Eduardo Sanchez Cruz, S. M. Bhagya P. Samarakoon, M. A. Viraj J. Muthugala and Mohan Rajesh Elara
Appl. Sci. 2025, 15(14), 7781; https://doi.org/10.3390/app15147781 - 11 Jul 2025
Viewed by 388
Abstract
Decontamination robots are becoming more common in environments where reducing human exposure to hazardous substances is essential, including healthcare settings, laboratories, and industrial cleanrooms. Designing terrain-capable decontamination robots quickly is challenging due to varying operational surfaces and mobility limitations. To tackle this issue, [...] Read more.
Decontamination robots are becoming more common in environments where reducing human exposure to hazardous substances is essential, including healthcare settings, laboratories, and industrial cleanrooms. Designing terrain-capable decontamination robots quickly is challenging due to varying operational surfaces and mobility limitations. To tackle this issue, a structured recommendation framework is proposed to automate selecting optimal locomotion types and track configurations, significantly cutting down design time. The proposed system features a two-stage evaluation process: first, it creates an annotated compatibility score matrix by validating locomotion types against a robust dataset based on factors like friction coefficient, roughness, payload capacity, and slope gradient; second, it employs a weighted scoring model to rank wheel/track types based on their appropriateness for the identified environmental conditions. User needs are processed dynamically using a large language model, enabling flexible and scalable management of various deployment scenarios. A prototype decontamination robot was developed following the proposed algorithm’s guidance. This framework speeds up the configuration process and establishes a foundation for more intelligent, terrain-aware robot design workflows that can be applied to industrial, healthcare, and service robotics sectors. Full article
Show Figures

Figure 1

21 pages, 9720 KiB  
Article
Rolling vs. Swing: A Strategy for Enhancing Locomotion Speed and Stability in Legged Robots
by Yongjiang Xue, Wei Wang, Mingyu Duan, Nanqing Jiang, Shaoshi Zhang and Xuan Xiao
Biomimetics 2025, 10(7), 435; https://doi.org/10.3390/biomimetics10070435 - 2 Jul 2025
Viewed by 583
Abstract
Legged robots face inherent challenges in energy efficiency and stability at high speeds due to the repetitive acceleration–deceleration cycles of swing-based locomotion. To address these limitations, this paper presents a motion strategy that uses rolling gait instead of swing gait to improve the [...] Read more.
Legged robots face inherent challenges in energy efficiency and stability at high speeds due to the repetitive acceleration–deceleration cycles of swing-based locomotion. To address these limitations, this paper presents a motion strategy that uses rolling gait instead of swing gait to improve the energy efficiency and stability. First, a wheel-legged quadruped robot, R-Taichi, is developed, which is capable of switching to legged, wheeled, and RHex mobile modes. Second, the mechanical structure of the transformable two-degree-of-freedom leg is introduced, and the kinematics is analyzed. Finally, experiments are conducted to generate wheeled, legged, and RHex motion in both swing and rolling gaits, and the energy efficiency is further compared. The experimental results show that the rolling motion can ensure stable ground contact and mitigate cyclic collisions, reducing specific resistance by up to 30% compared with conventional swing gaits, achieving a top speed of 0.7 m/s with enhanced stability (root mean square error (RMSE) reduction of 22% over RHex mode). Furthermore, R-Taichi exhibits robust multi-terrain adaptability, successfully traversing gravel, grass, and obstacles up to 150 mm in height. Full article
(This article belongs to the Special Issue Biomimetic Robot Motion Control)
Show Figures

Figure 1

31 pages, 4195 KiB  
Article
Designing Hybrid Mobility for Agricultural Robots: Performance Analysis of Wheeled and Tracked Systems in Variable Terrain
by Tong Wu, Dongyue Liu and Xiyun Li
Machines 2025, 13(7), 572; https://doi.org/10.3390/machines13070572 - 1 Jul 2025
Viewed by 580
Abstract
This study investigates the operational performance of fruit-picking robots under varying terrain slopes and soil moisture conditions, with a focus on comparing wheeled and tracked locomotion systems. A modular robot platform was designed and tested in both controlled environments and actual mountainous orchards [...] Read more.
This study investigates the operational performance of fruit-picking robots under varying terrain slopes and soil moisture conditions, with a focus on comparing wheeled and tracked locomotion systems. A modular robot platform was designed and tested in both controlled environments and actual mountainous orchards in Shandong, China. The experiments assessed key performance metrics—average speed, slip rate, and path deviation—under combinations of four slope levels (0°, 8°, 18°, 28°) and three soil moisture levels (dry 10%, moderate 20%, wet 35%). Results reveal that wheeled robots perform optimally on dry and flat terrain but experience significant slippage and path deviation under steep and wet conditions. In contrast, tracked robots maintain better stability and terrain adaptability, demonstrating lower slip rates and more consistent trajectories across a wide range of conditions. A synergistic deterioration effect was observed when high slope and high soil moisture co-occur, significantly degrading the performance of wheeled systems, while tracked systems mitigated these effects. Complementary semi-structured interviews with 20 orchard stakeholders—including farmers, growers, and hired pickers—highlighted key user expectations: robust traction, terrain adaptability, reduced physical labor, and operational safety. The findings suggest that future agricultural robots should adopt adaptive hybrid mobility systems and integrate environmental perception capabilities to enhance performance in complex agricultural scenarios. These insights contribute practical and theoretical guidance for the design and deployment of intelligent fruit-picking robots in diverse field environments. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

15 pages, 3484 KiB  
Article
Construction of a Mathematical Model of the Irregular Plantar and Complex Morphology of Mallard Foot and the Bionic Design of a High-Traction Wheel Grouser
by Jinrui Hu, Dianlei Han, Changwei Li, Hairui Liu, Lizhi Ren and Hao Pang
Biomimetics 2025, 10(6), 390; https://doi.org/10.3390/biomimetics10060390 - 11 Jun 2025
Viewed by 481
Abstract
To improve the traction performance of mobile mechanisms on soft ground, such as paddy fields, tidal flats, and swamps, a mallard (Anas platyrhynchos) foot was adopted as a bionic prototype to explore the influence and contribution of the plantar morphology of the toes [...] Read more.
To improve the traction performance of mobile mechanisms on soft ground, such as paddy fields, tidal flats, and swamps, a mallard (Anas platyrhynchos) foot was adopted as a bionic prototype to explore the influence and contribution of the plantar morphology of the toes and webbing on the anti-subsidence function during its locomotion on wet and soft substrates and to apply this to the bionic design of high-traction wheel grousers. A handheld three-dimensional laser scanner was used to scan the main locomotion postures of a mallard foot during ground contact, and the Geomagic Studio software was utilized to repair the scanned model. As a result, the main three-dimensional geometric models of a mallard foot during the process of touching the ground were obtained. The plantar morphology of a mallard foot was divided into three typical parts: the plantar irregular edge curve, the lateral webbing surface, and the medial webbing surface. The main morphological feature curves/surfaces were extracted through computer-aided design software for the fitting and construction of a mathematical model to obtain the fitting equations of the three typical parts, and the mathematical model construction of the plantar irregular morphology of the mallard foot was completed. In order to verify the sand-fixing and flow-limiting characteristics of this morphological feature, based on the discrete element method (DEM), the numerical simulation of the interaction between the plantar surface of the mallard foot and sand particles was carried out. The simulation results show that during the process of the mallard foot penetration into the loose medium, the lateral and medial webbing surfaces cause the particles under the foot to mainly move downward, effectively preventing the particles from spreading around and significantly enhancing the solidification effect of the particles under the sole. Based on the principle and technology of engineering bionics, the plantar morphology and movement attitude characteristics of the mallard were extracted, and the characteristics of concave middle and edge bulge were applied to the wheel grouser design of paddy field wheels. Two types of bionic wheel grousers with different curved surfaces were designed and compared with the traditional wheel grousers of the paddy field wheel. Through pressure-bearing simulation and experiments, the resistance of different wheel grousers during the process of penetrating into sand particles was compared, and the macro–micro behaviors of particle disturbance during the pressure-bearing process were analyzed. The results show that a bionic wheel grouser with unique curved surfaces can well encapsulate sand particles at the bottom of the wheel grouser, and it also has a greater penetration resistance, which plays a crucial role in improving the traction performance of the paddy field wheel and reducing the disturbance to the surrounding sand particles. This paper realizes the transformation from the biological model to the mathematical model of the plantar morphology of the mallard foot and applies it to the bionic design of the wheel grousers of the paddy field wheels, providing a new solution for improving the traction performance of mobile mechanisms on soft ground. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Figure 1

24 pages, 4517 KiB  
Article
Bio-Inspired Compliant Joints and Economic MPC Co-Design for Energy-Efficient, High-Speed Locomotion in Snake-like Robots
by Shuai Zhou, Gengbiao Chen, Mingyu Gong, Jing Liu, Peng Xu, Binshuo Liu and Nian Yin
Biomimetics 2025, 10(6), 389; https://doi.org/10.3390/biomimetics10060389 - 11 Jun 2025
Viewed by 526
Abstract
Snake-like robots face critical challenges in energy-efficient locomotion and smooth gait transitions, limiting their real-world deployment. This study introduces a bio-inspired compliant joint design integrated with a hierarchical neural oscillator network and an energy-optimized control framework. The joint mimics biological skeletal flexibility using [...] Read more.
Snake-like robots face critical challenges in energy-efficient locomotion and smooth gait transitions, limiting their real-world deployment. This study introduces a bio-inspired compliant joint design integrated with a hierarchical neural oscillator network and an energy-optimized control framework. The joint mimics biological skeletal flexibility using specialized wheeled mechanisms and adaptive parallel linkages, while the control network enables adaptive gait generation and seamless transitions through a phase-smoothing algorithm. Critically, this work adopts a synergistic design philosophy where mechanical components and control parameters are co-optimized through shared dynamic modeling. The proposed predictive control strategy optimizes locomotion speed while minimizing energy consumption. Experimental simulations demonstrate that the method achieves an 18% higher average forward speed (0.0563 m/s vs. 0.0478 m/s) with 7% lower energy use (0.1952 J vs. 0.2107 J) compared to conventional approaches. Physical prototype testing confirms these improvements under real-world conditions, showing a 12.9% speed increase (0.0531 m/s vs. 0.0470 m/s) and 7.3% energy reduction (0.2147 J vs. 0.2317 J). By unifying mechanical flexibility and adaptive control parameter tuning, this work bridges dynamic performance and energy efficiency, offering a robust solution for unstructured environments. Full article
(This article belongs to the Special Issue Biorobotics: Challenges and Opportunities)
Show Figures

Figure 1

21 pages, 5263 KiB  
Article
Design and Analysis of an Adaptable Wheeled-Legged Robot for Vertical Locomotion
by Ernesto Christian Orozco-Magdaleno, Eduardo Castillo-Castañeda, Omar Rodríguez-Abreo and Giuseppe Carbone
Robotics 2025, 14(6), 79; https://doi.org/10.3390/robotics14060079 - 10 Jun 2025
Viewed by 897
Abstract
Most of the developed and studied service robots for vertical locomotion, as visual inspection, are made up by a rigid body with legs, wheels, or both. Thus, the robot can only displace over regular and/or flat surfaces since it is not able to [...] Read more.
Most of the developed and studied service robots for vertical locomotion, as visual inspection, are made up by a rigid body with legs, wheels, or both. Thus, the robot can only displace over regular and/or flat surfaces since it is not able to adapt to the irregularities and projections of the wall. Therefore, this paper presents the design and analysis of an adaptable robot for vertical locomotion service tasks, which has a body made up of four wheeled legs that can easily adapt to the different irregularities and projections of building facades. The robot uses an Electric Ducted Fan (EDF) as the vortex adhesion system. Each leg has a rubber cover, which allows a higher mechanical adaptability of the robot over different irregularities of the wall. Theoretical backgrounds and open issues are addressed by considering some challenging problems such as mechanical adaptability modeling as well as kinematic and static analysis. Laser sensors are mounted over the robot to measure the adaptability of the robot, between the legs and body, at each time of the experimental tests for vertical locomotion. Full article
(This article belongs to the Special Issue Legged Robots into the Real World, 2nd Edition)
Show Figures

Figure 1

33 pages, 12896 KiB  
Article
A Bipedal Robotic Platform Leveraging Reconfigurable Locomotion Policies for Terrestrial, Aquatic, and Aerial Mobility
by Zijie Sun, Yangmin Li and Long Teng
Biomimetics 2025, 10(6), 374; https://doi.org/10.3390/biomimetics10060374 - 5 Jun 2025
Viewed by 913
Abstract
Biological systems can adaptively navigate multi-terrain environments via morphological and behavioral flexibility. While robotic systems increasingly achieve locomotion versatility in one or two domains, integrating terrestrial, aquatic, and aerial mobility into a single platform remains an engineering challenge. This work tackles this by [...] Read more.
Biological systems can adaptively navigate multi-terrain environments via morphological and behavioral flexibility. While robotic systems increasingly achieve locomotion versatility in one or two domains, integrating terrestrial, aquatic, and aerial mobility into a single platform remains an engineering challenge. This work tackles this by introducing a bipedal robot equipped with a reconfigurable locomotion framework, enabling seven adaptive policies: (1) thrust-assisted jumping, (2) legged crawling, (3) balanced wheeling, (4) tricycle wheeling, (5) paddling-based swimming, (6) air-propelled drifting, and (7) quadcopter flight. Field experiments and indoor statistical tests validated these capabilities. The robot achieved a 3.7-m vertical jump via thrust forces counteracting gravitational forces. A unified paddling mechanism enabled seamless transitions between crawling and swimming modes, allowing amphibious mobility in transitional environments such as riverbanks. The crawling mode demonstrated the traversal on uneven substrates (e.g., medium-density grassland, soft sand, and cobblestones) while generating sufficient push forces for object transport. In contrast, wheeling modes prioritize speed and efficiency on flat terrain. The aquatic locomotion was validated through trials in static water, an open river, and a narrow stream. The flight mode was investigated with the assistance of the jumping mechanism. By bridging terrestrial, aquatic, and aerial locomotion, this platform may have the potential for search-and-rescue and environmental monitoring applications. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

19 pages, 4650 KiB  
Article
Simulation Analysis of an Electric Locomotive with a Hydraulic Wheelset Guidance System for Improved Performance in Curved Tracks
by Jan Kalivoda
Machines 2025, 13(4), 321; https://doi.org/10.3390/machines13040321 - 14 Apr 2025
Viewed by 510
Abstract
A reduction of forces acting between the railway track and the vehicle is one of the key issues in the design of modern rolling stock. Because the capabilities of reducing wheel–rail contact forces in track curves by conventional methods are encountered at their [...] Read more.
A reduction of forces acting between the railway track and the vehicle is one of the key issues in the design of modern rolling stock. Because the capabilities of reducing wheel–rail contact forces in track curves by conventional methods are encountered at their limits, innovative approaches in the design of vehicle suspension and wheelset guidance occur. Among them, an active wheelset steering appears to be very promising. However, an active wheelset steering system is rather complicated and expensive and raises many safety issues. Therefore, a passive hydraulic system that links longitudinal motions of axle boxes is proposed. The system is relatively simple and, compared to the active wheelset steering, does not need any energy supply or sensor system for the detection of a track shape. Two arrangements of the hydraulic system had been proposed and implemented in a simulation model. The simulation model is based on a cosimulation of two separate models, a multibody model of an electric locomotive, and a model of the hydraulic system. The goal of this study is to evaluate the contribution of the hydraulic system to the natural radial alignment of wheelsets in curves and thus to reduce the wear of wheels and to determine the parameters of the hydraulic system to maximize the wear reduction benefits while minimizing a decrease in critical speed. Simulations of a vehicle running in various scenarios, including a run in a real track section of a length of 20 km, have been performed. As a criterion for the wear of wheels and rails, a T-gamma wear number was used, from which a sum of frictional work in wheel–rail contacts was calculated. The results of the simulations and the comparison of hydraulic axle box connection systems and a standard locomotive are presented and discussed in the paper. The results obtained confirmed a significant potential benefit of the proposed hydraulic system in reducing wheel wear on curved tracks. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

23 pages, 8606 KiB  
Article
Research on a Lightweight Rail Surface Condition Identification Method for Wheel–Rail Maximum Adhesion Coefficient Estimation
by Kun Han and Yushan Wang
Appl. Sci. 2025, 15(6), 3391; https://doi.org/10.3390/app15063391 - 20 Mar 2025
Viewed by 513
Abstract
The rail surface condition is a critical factor influencing wheel–rail adhesion performance. To address the engineering challenges associated with existing rail surface condition identification models, such as high-parameter complexity, significant computational delay, and the difficulty of onboard deployment, a lightweight rail surface condition [...] Read more.
The rail surface condition is a critical factor influencing wheel–rail adhesion performance. To address the engineering challenges associated with existing rail surface condition identification models, such as high-parameter complexity, significant computational delay, and the difficulty of onboard deployment, a lightweight rail surface condition identification method integrating knowledge distillation and transfer learning is proposed. A rail surface image dataset is constructed, covering typical working conditions, including dry, wet, and oily surfaces. A “teacher-student” collaborative optimization framework is developed, in which GoogLeNet, fine tuned via transfer learning, serves as the teacher network to guide the MobileNet student network, which is also fine tuned through transfer learning, thereby achieving model compression. Additionally, an FP16/FP32 mixed-precision computing strategy is employed to accelerate the training process. The experimental results demonstrate that the optimized student model has a compact size of only 4.21 MB, achieves an accuracy of 97.38% on the test set, and attains an inference time of 0.0371 s. Integrating this model into the estimation system of the maximum adhesion coefficient for heavy-haul locomotives enhances estimation confidence, reduces estimation errors under varying operating conditions, and provides real-time and reliable environmental perception for optimizing adhesion control strategies. This approach holds significant engineering value in improving adhesion utilization under complex wheel–rail contact conditions. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

13 pages, 4633 KiB  
Proceeding Paper
Omnidirectional Wheelchair with Suspension System for Mobility on Uneven Terrains
by Pedro A. Flores and Jorge L. Arias
Eng. Proc. 2025, 83(1), 25; https://doi.org/10.3390/engproc2025083025 - 14 Feb 2025
Cited by 1 | Viewed by 553
Abstract
Wheelchairs play a crucial role in society by providing mobility and autonomy to individuals with physical disabilities, essential for their social inclusion. However, conventional wheelchairs often face significant limitations in narrow spaces and uneven terrains. The development of omnidirectional wheelchairs with suspension systems, [...] Read more.
Wheelchairs play a crucial role in society by providing mobility and autonomy to individuals with physical disabilities, essential for their social inclusion. However, conventional wheelchairs often face significant limitations in narrow spaces and uneven terrains. The development of omnidirectional wheelchairs with suspension systems, as addressed in this work, is essential to tackle these challenges and offer greater independence to individuals with disabilities. These innovations can enhance quality of life by enabling access to previously inaccessible places and facilitating mobility in areas where, for example, sidewalks are deteriorated or nonexistent. The wheelchair was designed considering the challenges that conventional models face in terms of maneuverability and mobility in uneven terrains with small obstacles. The design process is briefly described, with a special focus on system requirements, conceptual design, hardware architecture, and the overall proposed design, along with the proposed control strategy. An analysis of the Mecanum-wheeled locomotion system when one of the wheels encounters an obstacle is also presented. It was concluded that the proposed design met the initial requirements, and that the suspension system allowed the wheelchair to navigate uneven terrains without experiencing significant changes in pitch or roll angles while keeping all four wheels in contact with the ground. Full article
Show Figures

Figure 1

20 pages, 2967 KiB  
Article
Calculation of the Main Parameters of the Two-Line Helical Traction Transmission of an Electric Locomotive Based on Diagnostic Parameters
by Galina Khromova, Davran Radjibaev, Aliya Zabiyeva, Anuar Kenesbek and Adham Mavlanov
Appl. Sci. 2025, 15(4), 1730; https://doi.org/10.3390/app15041730 - 8 Feb 2025
Cited by 1 | Viewed by 579
Abstract
Gearboxes used in electric locomotives are a critical unit, especially in freight rolling stock. The article presents the calculation of the main parameters of the two-way oblique traction transmission of the VL-80s electric locomotive (which is operated on the railways of Uzbekistan) based [...] Read more.
Gearboxes used in electric locomotives are a critical unit, especially in freight rolling stock. The article presents the calculation of the main parameters of the two-way oblique traction transmission of the VL-80s electric locomotive (which is operated on the railways of Uzbekistan) based on a comprehensive analysis of the diagnostic parameters obtained using the Poisson normal distribution method for the identified failures according to the Uzbekistan depot data. Also, a Pareto diagram was constructed for the chassis of 3VL-80s electric locomotives based on the data of the Locomotive Operation Department of JSC Uzbekistan Temir Yollari, and probabilistic and statistical analyses of the failures and breakdowns of the wheel pair and the large gear wheel of the traction gearbox of the VL-80s electric locomotives were carried out. An algorithm and methodology for assessing the reliability of the large gear wheel of the traction gearbox of an electric locomotive are presented. As a result of a numerical calculation of the coefficients of the empirical regression equations using approximation and spline interpolation methods, a regression equation was obtained for the dependence of the standard deviation of the wear of the tooth of the large gear wheel of the traction reducer of the VL80s electric locomotive on the mileage. Full article
Show Figures

Figure 1

Back to TopTop