Rolling vs. Swing: A Strategy for Enhancing Locomotion Speed and Stability in Legged Robots
Abstract
1. Introduction
2. Mechanical Design
2.1. Overall Robot Architecture
2.2. Transformable Leg Mechanism
2.2.1. Mechanical Implementation
2.2.2. Conductive Slip Ring Integration for Wire Management
2.3. Experimental Platform
2.3.1. Physical Configuration
2.3.2. Control System
3. Kinematic Analysis
Forward Kinematics and Inverse Kinematics Analysis
4. Gait Mode Generation
4.1. Wheel Mode
4.2. RHex Mode
4.3. Swing-Leg Trot Gait
4.4. Swing-Leg Walk Gait
4.5. Rolling-Leg Trot Gait
4.6. Rolling-Leg Walk Gait
5. Experimental Tests
5.1. Energy Efficiency of Different Gaits
5.2. Stability
5.3. Terrain Adaptability and Performance
5.3.1. Insights on Robot Traversal Through Challenging Terrains
5.3.2. Obstacle Climbing by the Robot
5.3.3. The Robot Traverses Cragged Gravel
5.4. Robot Jumping
Robot Jumping
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellicoso, C.D.; Bjelonic, M.; Wellhausen, L.; Holtmann, K.; Günther, F.; Tranzatto, M.; Fankhauser, P.; Hutter, M. Advances in Real-World Applications for Legged Robots. J. Field Robot. 2018, 35, 1311–1326. [Google Scholar] [CrossRef]
- Kolvenbach, H.; Wisth, D.; Buchanan, R.; Valsecchi, G.; Grandia, R.; Fallon, M.; Hutter, M. Towards Autonomous Inspection of Concrete Deterioration in Sewers with Legged Robots. J. Field Robot. 2020, 37, 1314–1327. [Google Scholar] [CrossRef]
- Buchanan, R.; Wellhausen, L.; Bjelonic, M.; Bandyopadhyay, T.; Kottege, N.; Hutter, M. Perceptive Whole-Body Planning for Multilegged Robots in Confined Spaces. J. Field Robot. 2021, 38, 68–84. [Google Scholar] [CrossRef]
- Katz, B.; Di Carlo, J.; Kim, S. Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA 2019), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 6295–6301. [Google Scholar]
- McGeer, T. Passive Dynamic Walking. Int. J. Robot. Res. 1990, 9, 62–82. [Google Scholar] [CrossRef]
- Saranli, U.; Buehler, M.; Koditschek, D.E. RHex: A Simple and Highly Mobile Hexapod Robot. Int. J. Robot. Res. 2001, 20, 616–631. [Google Scholar] [CrossRef]
- Sun, C.; Yang, G.; Yao, S.; Liu, Q.; Wang, J.; Xiao, X. RHex-T3: A Transformable Hexapod Robot with Ladder Climbing Function. IEEE/ASME Trans. Mechatron. 2023, 28, 1939–1947. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, S.; Liu, J.; Zeng, X.; Kong, L.; Li, Y. Q-Whex: A Simple and Highly Mobile Quasi-Wheeled Hexapod Robot. J. Field Robot. 2023, 40, 1444–1459. [Google Scholar] [CrossRef]
- Allen, T.J.; Quinn, R.D.; Bachmann, R.J. Abstracted Biological Principles Applied with Reduced Actuation Improve Mobility of Legged Vehicles. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27–31 October 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 2, pp. 1370–1375. [Google Scholar] [CrossRef]
- Schroer, R.T.; Boggess, M.J.; Bachmann, R.J.; Quinn, R.D.; Ritzmann, R.E. Comparing Cockroach and Whegs Robot Body Motions. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA 2004), New Orleans, LA, USA, 26 April–1 May 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 4, pp. 3288–3293. [Google Scholar] [CrossRef]
- Lewinger, W.A.; Harley, C.M.; Ritzmann, R.E. Insect-like Antennal Sensing for Climbing and Tunneling Behavior in a Biologically-Inspired Mobile Robot. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005), Barcelona, Spain, 18–22 April 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 4176–4181. [Google Scholar] [CrossRef]
- Daltorio, K.A.; Wei, T.E.; Gorb, S.N. Passive Foot Design and Contact Area Analysis for Climbing Mini-Whegs. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA 2007), Roma, Italy, 10–14 April 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1274–1279. [Google Scholar] [CrossRef]
- Quinn, R.D.; Offi, J.T.; Kingsley, D.A. Improved Mobility Through Abstracted Biological Principles. In Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2002), Lausanne, Switzerland, 30 September–4 October 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 3, pp. 2652–2657. [Google Scholar] [CrossRef]
- Eich, M.; Grimminger, F.; Kirchner, F. A Versatile Stair-Climbing Robot for Search and Rescue Applications. In Proceedings of the 2008 IEEE International Workshop on Safety, Security and Rescue Robotics (SSRR 2008), Sendai, Japan, 21–24 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 35–40. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wang, T.H.; Ho, K.C.; Ko, C.Y.; Lin, P.C. Development of a Novel Leg-Wheel Module with Fast Transformation and Leaping Capability. Mech. Mach. Theory 2021, 163, 104348. [Google Scholar] [CrossRef]
- Ju, Z.; Wu, R.; Guo, D.; Xu, Y. Development of a Load-Bearing, Terrain-Adaptive Hexapod Robot With Chebyshev-Linkage Legs. J. Field Robot. 2024, 41, 1439–1462. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.; Wang, Y.; Wu, K. Research on Motion Control of Wheel-Legged Robot Based on ASMC and LQR. In Proceedings of the 2024 IEEE International Conference on Control Science and Systems Engineering (ICCSSE), Beijing, China, 18–20 October 2024; pp. 95–99. [Google Scholar]
- Liang, Y.; Yin, F.; Peng, Z.; Zhao, Y.; Yan, W. Hierarchical Optimization-Based Hybrid Whole-Body Control for Wheel-Legged Robots. Lect. Notes Comput. Sci. 2025, 15204, 68–82. [Google Scholar]
- Feng, X.; Liu, S.; Yuan, Q.; Xiao, J.; Zhao, D. Research on Wheel-Legged Robot Based on LQR and ADRC. Sci. Rep. 2023, 13, 15122. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, X.; Tao, Z.; Feng, H.; Zhang, S.; Fu, Y. Hierarchical Jumping Optimization for Hydraulic Biped Wheel-Legged Robots. Control Eng. Pract. 2023, 141, 105721. [Google Scholar] [CrossRef]
- Chen, S.; Huang, K.; Chen, W.; Shen, S.; Li, C.; Lin, P. Quattroped: A Leg-Wheel Transformable Robot. IEEE/ASME Trans. Mechatron. 2013, 19, 730–742. [Google Scholar] [CrossRef]
- Chen, W.; Lin, H.; Lin, Y.; Lin, P. Turboquad: A Novel Leg-Wheel Transformable Robot with Smooth and Fast Behavioral Transitions. IEEE Trans. Robot. 2017, 33, 1025–1040. [Google Scholar] [CrossRef]
Subject | Type | Parameter |
---|---|---|
R-Taichi | Body size | 580 × 490 × 180 mm |
Material | nylon, resin-based | |
Total weight | 10.6 kg | |
Instruction frequency | 20 Hz | |
Leg | 6.2 cm | |
14 cm | ||
13.8 cm | ||
8.1 cm | ||
Motor | Model | RMD-X6 1:8 |
Nominal current | 3.6 A | |
Nominal torque | 4.5 N·m | |
Nominal output speed | 310 rpm |
Mode | in Different Speeds (m/s) | ||
---|---|---|---|
0.4 | 0.55 | 0.6 | |
RHex | 5.2 | 4.8 | 6.9 |
Roll-Trot | 4.3 | 4.4 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Wang, W.; Duan, M.; Jiang, N.; Zhang, S.; Xiao, X. Rolling vs. Swing: A Strategy for Enhancing Locomotion Speed and Stability in Legged Robots. Biomimetics 2025, 10, 435. https://doi.org/10.3390/biomimetics10070435
Xue Y, Wang W, Duan M, Jiang N, Zhang S, Xiao X. Rolling vs. Swing: A Strategy for Enhancing Locomotion Speed and Stability in Legged Robots. Biomimetics. 2025; 10(7):435. https://doi.org/10.3390/biomimetics10070435
Chicago/Turabian StyleXue, Yongjiang, Wei Wang, Mingyu Duan, Nanqing Jiang, Shaoshi Zhang, and Xuan Xiao. 2025. "Rolling vs. Swing: A Strategy for Enhancing Locomotion Speed and Stability in Legged Robots" Biomimetics 10, no. 7: 435. https://doi.org/10.3390/biomimetics10070435
APA StyleXue, Y., Wang, W., Duan, M., Jiang, N., Zhang, S., & Xiao, X. (2025). Rolling vs. Swing: A Strategy for Enhancing Locomotion Speed and Stability in Legged Robots. Biomimetics, 10(7), 435. https://doi.org/10.3390/biomimetics10070435