Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = wheat bread-making gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2067 KiB  
Article
Transcriptome Analysis Reveals Key Genes Involved in the Response of Triticum urartu to Boron Toxicity Stress
by Gul Sema Uyar, Anamika Pandey, Mehmet Hamurcu, Tomas Vyhnanek, Mustafa Harmankaya, Ali Topal, Sait Gezgin and Mohd. Kamran Khan
Agronomy 2025, 15(1), 191; https://doi.org/10.3390/agronomy15010191 - 15 Jan 2025
Viewed by 933
Abstract
The domestication and breeding of wheat genotypes through the years has led to the loss in their genetic variation, making them more prone to different abiotic stresses. Boron (B) toxicity is one of the stresses decreasing the wheat cultivars’ yield in arid and [...] Read more.
The domestication and breeding of wheat genotypes through the years has led to the loss in their genetic variation, making them more prone to different abiotic stresses. Boron (B) toxicity is one of the stresses decreasing the wheat cultivars’ yield in arid and semi-arid regions around the world. Wild wheat progenitors, such as Triticum urartu Thumanian ex Gandilyan, possess a broader gene pool that harbors several genes conferring tolerance to various biotic and abiotic stresses. Unfortunately, T. urartu is not well-explored at the molecular level for its tolerance towards B toxicity in soil. In this study, for the first time, we compared the transcriptomic changes in the leaves of a high B-tolerant T. urartu genotype, PI662222, grown in highly toxic B (10 mM B in the form of boric acid) with the ones grown in the control (3.1 μM B) treatment in hydroponic conditions. The obtained results suggest that several mechanisms are involved in regulating the response of the studied T. urartu genotype toward B toxicity. All the growth parameters of T. urartu genotype, including root–shoot length, root fresh weight, and root–shoot dry weight, were less affected by high boron (10 mM) as compared to the boron-tolerant bread wheat cultivar. With a significant differential expression of 654 genes, 441 and 213 genes of T. urartu genotype were down- and upregulated, respectively, in the PI662222 leaves in high B in comparison to the control treatment. While key upregulated genes included those encoding RNA polymerase beta subunit (chloroplast), ATP synthase subunit gamma, chloroplastic, 60S ribosomal protein, and RNA-binding protein 12-like, the main downregulated genes included those encoding photosystem II protein D, ribulose bisphosphate carboxylase small subunit, and peroxidase 2-like. Interestingly, both Gene Ontology enrichment and KEGG pathways emphasized the possible involvement of the genes related to the photosynthetic process and apparatus in the high B tolerance of the T. urartu genotype. The further functional characterization of the identified potential T. urartu genes will facilitate their utilization in crop improvement programs for B toxicity stress. Full article
Show Figures

Figure 1

12 pages, 2644 KiB  
Article
Understanding the Physiological and Molecular Basis for Differences in Nitrogen Use Efficiency in the Parents of a Winter Wheat MAGIC Population
by Aleksander Ligeza and Matthew J. Milner
Plants 2024, 13(23), 3331; https://doi.org/10.3390/plants13233331 - 28 Nov 2024
Cited by 1 | Viewed by 1100
Abstract
The need to improve both the cost of food production and lower the environmental impact of food production is key to being able to sustainably feed the projected growth of the human population. To attempt to understand how to improve yields under lower [...] Read more.
The need to improve both the cost of food production and lower the environmental impact of food production is key to being able to sustainably feed the projected growth of the human population. To attempt to understand how to improve yields under lower nitrogen (N) inputs, a diverse set of UK winter wheats encompassing ~80% of the genetic diversity in current winter wheats in the UK were grown under a range of N levels and their performance measured under various levels of N. This population has parents which encompass all four end-use categories to understand how breeding for differences in NUE may change across different end-use types of wheat. The growth of the eight parents of a MAGIC population showed significant differences in biomass per plant, ear number, yield and protein content of the grain when grown with differing levels of N. No consistent response to N was seen for the lines tested for all of the traits measured. However, the underlying difference in response to N was not due to N uptake or N translocation, as short-term 15N uptake and translocation showed no significant differences in the lines tested. RNASeq was then performed on two different bread-making varieties grown under low-N conditions to identify putative genes controlling the underlying differences seen in biomass production when grown on low N. This led to the identification of the genes involved in growth and C/N signaling and metabolism, which may explain the differences in growth and biomass production seen between the parents of this population. Full article
Show Figures

Figure 1

14 pages, 2451 KiB  
Article
Nanopore Amplicon Sequencing Allows Rapid Identification of Glutenin Allelic Variants in a Wheat Collection
by Ekaterina Polkhovskaya, Ivan Gruzdev, Evgeniy Moskalev, Pavel Merkulov, Anna Bolotina, Alexander Soloviev and Ilya Kirov
Agronomy 2024, 14(1), 13; https://doi.org/10.3390/agronomy14010013 - 20 Dec 2023
Cited by 2 | Viewed by 2732
Abstract
Genetic variation in high molecular weight glutenin (HMW-GS) genes is tightly linked with the breadmaking quality of wheat. Hundreds of different alleles have been identified in HMW-GS genes worldwide. Such huge variability makes it difficult to distinguish them using conventional genotyping methods (for [...] Read more.
Genetic variation in high molecular weight glutenin (HMW-GS) genes is tightly linked with the breadmaking quality of wheat. Hundreds of different alleles have been identified in HMW-GS genes worldwide. Such huge variability makes it difficult to distinguish them using conventional genotyping methods (for example, SDS-PAGE, SNP detection, etc.). Here, we exploited the nanopore amplicon sequencing technique (Amplicon-Seq) to uncover genetic variants distributed along the full-length sequence of six HMW-GSs, including the promoter and protein-coding regions. We analyzed 23 wheat accessions for allelic variants of HMW-GSs using the Amplicon-Seq and SDS-PAGE methods. We obtained sufficient (>50×) target gene coverage by ONT reads in just one hour. Using the obtained data, we identified numerous single nucleotide polymorphisms and InDels in the protein coding and promoter regions. Moreover, Amplicon-Seq allowed for the identification of new alleles (Glu-A1x1-T) of the Glu-1Ax gene that could not be recognized by SDS-PAGE. Collectively, our results showed that Amplicon-Seq is a rapid, multiplexed, and efficient method for high-throughput genotyping of full-length genes in large and complex genomes. This opens new avenues for the assessment of target gene variation to select novel alleles and create unique combinations of desirable traits in plant breeding programs. Full article
(This article belongs to the Special Issue Advances in Wheat Molecular Genetics and Genomics)
Show Figures

Figure 1

30 pages, 3748 KiB  
Article
Enhancement of Textural and Sensory Characteristics of Wheat Bread Using a Chickpea Sourdough Fermented with a Selected Autochthonous Microorganism
by Chrysanthi Nouska, Magdalini Hatzikamari, Anthia Matsakidou, Costas G. Biliaderis and Athina Lazaridou
Foods 2023, 12(16), 3112; https://doi.org/10.3390/foods12163112 - 18 Aug 2023
Cited by 11 | Viewed by 3309
Abstract
A traditional Greek sourdough, based on the fermentation of chickpea flour by an autochthonous culture, was evaluated as a wheat bread improver. The dominant indigenous microflora (Clostridium perfringens isolates) was identified by 16S rDNA analysis, and a selected strain (C. perfringens [...] Read more.
A traditional Greek sourdough, based on the fermentation of chickpea flour by an autochthonous culture, was evaluated as a wheat bread improver. The dominant indigenous microflora (Clostridium perfringens isolates) was identified by 16S rDNA analysis, and a selected strain (C. perfringens CP8) was employed to ferment chickpea flour to obtain a standardized starter culture (sourdough) for breadmaking. In accordance with toxin-typed strain identification, all isolates lacked the cpe gene; thus, there is no concern for a health hazard. Loaf-specific volumes increased with the addition of liquid, freeze-dried, and freeze-dried/maltodextrin sourdoughs compared to control bread leavened by baker’s yeast only. Following storage (4 days/25 °C), the amylopectin retrogradation and crumb hardness changes (texture profile analysis) revealed a lower degree of staling for the sourdough-fortified breads. Modifications in the protein secondary structure of fortified doughs and breads were revealed by FTIR analysis. High amounts of organic acids were also found in the sourdough-supplemented breads; butyric and isobutyric acids seemed to be responsible for the characteristic ‘butter-like’ flavor of these products (sensory analysis). Overall, the addition of liquid or freeze-dried chickpea sourdough in wheat bread formulations can improve the specific volume, textural characteristics, and sensorial properties of loaves, along with extending bread shelf life. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

27 pages, 4234 KiB  
Article
Additive Effect of the Composition of Endophytic Bacteria Bacillus subtilis on Systemic Resistance of Wheat against Greenbug Aphid Schizaphis graminum Due to Lipopeptides
by Sergey D. Rumyantsev, Valentin Y. Alekseev, Antonina V. Sorokan, Guzel F. Burkhanova, Ekaterina A. Cherepanova, Ravil R. Garafutdinov, Igor V. Maksimov and Svetlana V. Veselova
Life 2023, 13(1), 214; https://doi.org/10.3390/life13010214 - 11 Jan 2023
Cited by 18 | Viewed by 2876
Abstract
The use of biocontrol agents based on endophytic bacteria against phloem-feeding insects is limited by a lack of knowledge and understanding of the mechanism of action of the endophyte community that makes up the plant microbiome. In this work, the mechanisms of the [...] Read more.
The use of biocontrol agents based on endophytic bacteria against phloem-feeding insects is limited by a lack of knowledge and understanding of the mechanism of action of the endophyte community that makes up the plant microbiome. In this work, the mechanisms of the additive action of endophytic strains B. subtilis 26D and B. subtilis 11VM on the resistance of bread spring wheat against greenbug aphid Schizaphis graminum, was studied. It was shown that B. subtilis 26D secreted lipopeptide surfactin and phytohormones cytokinins, and B. subtilis 11VM produced iturin and auxins into the cultivation medium. Both strains and their lipopeptide-rich fractions showed direct aphicidal activity against greenbug aphid. For the first time, it was shown that B. subtilis 26D and B. subtilis 11VM in the same manner, as well as their lipopeptide-rich fractions, activated the expression of salicylate- and ethylene-dependent PR genes, and influenced plant redox metabolism, which led to an increase in plant endurance against aphids. The composition of endophytic strains B. subtilis 26D + B. subtilis 11VM had an additive effect on plant resistance to aphids due to an increase in the number of endophytic bacterial cells, and, as well as due to the synergistic effect of their mixture of lipopeptides − surfactin + iturin, both on the aphid mortality and on the expression of PR1 and PR3 genes. All these factors can be the reason for the observed increase in the growth of plants affected by aphids under the influence of B. subtilis 26D and B. subtilis 11VM, individually and in composition. The study demonstrates the possibility of creating in the future an artificial composition to enhance plant microbiome with endophytic bacteria, which combines growth-promoting and plant immunity stimulating properties against phloem-feeding insects. This direction is one of the most promising approaches to green pesticide discovery in the future. Full article
(This article belongs to the Special Issue Advances in Plant Defensive Biochemical Activity)
Show Figures

Figure 1

14 pages, 2947 KiB  
Article
Mining the A.E. Watkins Wheat Landrace Collection for Variation in Starch Digestibility Using a New High-Throughput Assay
by Petros Zafeiriou, George M. Savva, Jennifer H. Ahn-Jarvis, Frederick J. Warren, Marianna Pasquariello, Simon Griffiths, David Seung and Brittany A. Hazard
Foods 2023, 12(2), 266; https://doi.org/10.3390/foods12020266 - 6 Jan 2023
Viewed by 3154
Abstract
Breeding for less digestible starch in wheat can improve the health impact of bread and other wheat foods. The application of forward genetic approaches has lately opened opportunities for the discovery of new genes that influence the digestibility of starch, without the burden [...] Read more.
Breeding for less digestible starch in wheat can improve the health impact of bread and other wheat foods. The application of forward genetic approaches has lately opened opportunities for the discovery of new genes that influence the digestibility of starch, without the burden of detrimental effects on yield or on pasta and bread-making quality. In this study we developed a high-throughput in vitro starch digestibility assay (HTA) for use in forward genetic approaches to screen wheat germplasm. The HTA was validated using standard maize and wheat starches. Using the HTA we measured starch digestibility in hydrothermally processed flour samples and found wide variation among 118 wheat landraces from the A. E. Watkins collection and among eight elite UK varieties (23.5 to 39.9% and 31.2 to 43.5% starch digested after 90 min, respectively). We further investigated starch digestibility in fractions of sieved wholemeal flour and purified starch in a subset of the Watkins lines and elite varieties and found that the matrix properties of flour rather than the intrinsic properties of starch granules conferred lower starch digestibility. Full article
Show Figures

Graphical abstract

19 pages, 6002 KiB  
Article
The Qc5 Allele Increases Wheat Bread-Making Quality by Regulating SPA and SPR
by Zhenru Guo, Qing Chen, Jing Zhu, Yan Wang, Yang Li, Qingcheng Li, Kan Zhao, Yue Li, Rui Tang, Xiaoli Shi, Kenan Tan, Li Kong, Yunfeng Jiang, Qiantao Jiang, Jirui Wang, Guoyue Chen, Yuming Wei, Youliang Zheng and Pengfei Qi
Int. J. Mol. Sci. 2022, 23(14), 7581; https://doi.org/10.3390/ijms23147581 - 8 Jul 2022
Cited by 4 | Viewed by 3725
Abstract
Common wheat (Triticum aestivum L.) is an important food crop with a unique processing quality. The Q gene positively regulates the processing quality of wheat, but the underlying mechanism remains unclear. Here, a new Q allele (Qc5) responsible for [...] Read more.
Common wheat (Triticum aestivum L.) is an important food crop with a unique processing quality. The Q gene positively regulates the processing quality of wheat, but the underlying mechanism remains unclear. Here, a new Q allele (Qc5) responsible for compact spikes and good bread performance was identified. Compared with the Q allele widely distributed in modern common wheat cultivars, Qc5 had a missense mutation outside the miRNA172-binding site. This missense mutation led to a more compact messenger RNA (mRNA) secondary structure around the miRNA172-binding region, resulting in increased Qc5 expression during the spike development stage and a consequent increase in spike density. Furthermore, this missense mutation weakened the physical interaction between Qc5 and storage protein activator (SPA) in seeds and suppressed the expression of storage protein repressor (SPR). These changes increased the grain protein content and improved the bread-making quality of wheat. In conclusion, a missense mutation increases Q expression because of the resulting highly folded mRNA secondary structure around the miRNA172-binding site. Furthermore, this mutation improves the bread-making quality of wheat by repressing the expression of SPR and influencing the physical interaction between Q and SPA. These findings provide new insights into the miRNA172-directed regulation of gene expression, with implications for wheat breeding. Full article
(This article belongs to the Special Issue Molecular Genetics and Plant Breeding 2.0)
Show Figures

Graphical abstract

16 pages, 754 KiB  
Review
Increasing the Versatility of Durum Wheat through Modifications of Protein and Starch Composition and Grain Hardness
by Domenico Lafiandra, Francesco Sestili, Mike Sissons, Alecia Kiszonas and Craig F. Morris
Foods 2022, 11(11), 1532; https://doi.org/10.3390/foods11111532 - 24 May 2022
Cited by 23 | Viewed by 4391
Abstract
Although durum wheat (Triticum durum L. ssp. durum Desf.) has traditionally been used to make a range of food products, its use has been restricted due to the absence of the D-genome glutenin proteins, the relatively low variability in starch composition, and [...] Read more.
Although durum wheat (Triticum durum L. ssp. durum Desf.) has traditionally been used to make a range of food products, its use has been restricted due to the absence of the D-genome glutenin proteins, the relatively low variability in starch composition, and its very hard grain texture. This review focuses on the manipulation of the starch and protein composition and modification of the hardness of durum wheat in order to improve its technological and nutritional value and expand its utilization for application to a wider number of end products. Starch is composed of amylopectin and amylose in a 3:1 ratio, and their manipulation has been explored for achieving starch with modified composition. In particular, silencing of the genes involved in amylose and amylopectin synthesis has made it possible to isolate durum wheat lines with amylose content varying from 2–3% up to 75%. This has created opportunities for new products with different properties and enhanced nutritional value. Durum-made bread has generally inferior quality to bread made from common wheat. Attempts to introduce the Glu-D1 subunits 1Dx5 + 1Dy10 and 1Dx2 + 1Dy12 produced stronger dough, but the former produced excessively strong, inelastic doughs, and loaf volume was either inferior or not affected. In contrast, the 1Dx2 + 1Dy12 sometimes improved bread loaf volume (LV) depending on the glutenin subunit background of the genotype receiving these genes. Further breeding and selection are needed to improve the dough extensibility to allow higher LV and better texture. The versatility of durum wheat has been greatly expanded with the creation of soft-textured durum via non-GMO introgression means. This soft durum mills like soft hexaploid wheat and has similar baking properties. The pasta quality is also not diminished by the soft-textured kernels. The Glu-D1 locus containing the subunits 1Dx2 + 1Dy12 has also been introgressed to create higher quality soft durum bread. Full article
(This article belongs to the Special Issue Durum Wheat Products - Recent Advances)
Show Figures

Figure 1

19 pages, 1563 KiB  
Article
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis
by László Ivanizs, Ilaria Marcotuli, Marianna Rakszegi, Balázs Kalapos, Kitti Szőke-Pázsi, András Farkas, Edina Türkösi, Eszter Gaál, Klaudia Kruppa, Péter Kovács, Éva Darkó, Éva Szakács, Mahmoud Said, Petr Cápal, Jaroslav Doležel, Agata Gadaleta and István Molnár
Int. J. Mol. Sci. 2022, 23(7), 3821; https://doi.org/10.3390/ijms23073821 - 30 Mar 2022
Cited by 9 | Viewed by 3020
Abstract
Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high β-glucan content, which makes it an attractive gene source to develop [...] Read more.
Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high β-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain β-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with β-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain β-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods. Full article
(This article belongs to the Special Issue New Breeding Technologies in Grasses)
Show Figures

Figure 1

18 pages, 385 KiB  
Review
Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain
by Igor G. Loskutov and Elena K. Khlestkina
Plants 2021, 10(1), 86; https://doi.org/10.3390/plants10010086 - 3 Jan 2021
Cited by 96 | Viewed by 9717
Abstract
Cereal grains provide half of the calories consumed by humans. In addition, they contain important compounds beneficial for health. During the last years, a broad spectrum of new cereal grain-derived products for dietary purposes emerged on the global food market. Special breeding programs [...] Read more.
Cereal grains provide half of the calories consumed by humans. In addition, they contain important compounds beneficial for health. During the last years, a broad spectrum of new cereal grain-derived products for dietary purposes emerged on the global food market. Special breeding programs aimed at cultivars utilizable for these new products have been launched for both the main sources of staple foods (such as rice, wheat, and maize) and other cereal crops (oat, barley, sorghum, millet, etc.). The breeding paradigm has been switched from traditional grain quality indicators (for example, high breadmaking quality and protein content for common wheat or content of protein, lysine, and starch for barley and oat) to more specialized ones (high content of bioactive compounds, vitamins, dietary fibers, and oils, etc.). To enrich cereal grain with functional components while growing plants in contrast to the post-harvesting improvement of staple foods with natural and synthetic additives, the new breeding programs need a source of genes for the improvement of the content of health benefit components in grain. The current review aims to consider current trends and achievements in wheat, barley, and oat breeding for health-benefiting components. The sources of these valuable genes are plant genetic resources deposited in genebanks: landraces, rare crop species, or even wild relatives of cultivated plants. Traditional plant breeding approaches supplemented with marker-assisted selection and genetic editing, as well as high-throughput chemotyping techniques, are exploited to speed up the breeding for the desired genotуpes. Biochemical and genetic bases for the enrichment of the grain of modern cereal crop cultivars with micronutrients, oils, phenolics, and other compounds are discussed, and certain cases of contributions to special health-improving diets are summarized. Correlations between the content of certain bioactive compounds and the resistance to diseases or tolerance to certain abiotic stressors suggest that breeding programs aimed at raising the levels of health-benefiting components in cereal grain might at the same time match the task of developing cultivars adapted to unfavorable environmental conditions. Full article
(This article belongs to the Special Issue Advances in Cereal Crops Breeding)
15 pages, 1175 KiB  
Article
The Allelic Diversity of the Gibberellin Signaling Pathway Genes in Aegilops tauschii Coss
by Mikhail S. Bazhenov, Anastasiya G. Chernook, Nikolay P. Goncharov, Nadezhda N. Chikida, Mariya Kh. Belousova, Gennady I. Karlov and Mikhail G. Divashuk
Plants 2020, 9(12), 1696; https://doi.org/10.3390/plants9121696 - 2 Dec 2020
Cited by 5 | Viewed by 2524
Abstract
Gibberellin-insensitive reduced height genes are widely spread in modern wheat varieties, making them resistant to lodging under conditions of intensive farming. However, the limited diversity of these genes present in wheat germplasm can limit the adaptability of newly created cultivars to the changing [...] Read more.
Gibberellin-insensitive reduced height genes are widely spread in modern wheat varieties, making them resistant to lodging under conditions of intensive farming. However, the limited diversity of these genes present in wheat germplasm can limit the adaptability of newly created cultivars to the changing climate. The diversity of the gibberellin signaling pathway genes involved in plant height control—Reduced height 1 (Rht-D1), Gibberellin-insensitive dwarf 1 (Gid1-D) and Gibberellin-insensitive dwarf 2 (Gid2-D)—was studied in the diploid wild goatgrass Aegilops tauschii Coss., one of the ancestral species of the bread wheat (Triticum aestivum L.) and the donor of its D subgenome, using high-throughput sequencing. The examination of 24 Ae. tauschii accessions of different geographical origins revealed a large number of new alleles (haplotypes) not found in bread wheat varieties. Some of the detected polymorphisms lead to changes in the amino acid sequence of proteins. Four isoforms (amino acid sequence variants) were found for the RHT-D1 protein, and two isoforms—for the GID1 and GID2 proteins, each. An analysis of the co-occurrence frequencies of various isoforms of the three proteins showed that their combinations were not random in Ae. tauschii, which may indicate the functional significance of their differences. New alleles of the Rht-D1, Gid1-D, and Gid2-D genes are promising for introgression into bread wheat and studying their effect on plant height and adaptability. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

13 pages, 853 KiB  
Article
Variability for Glutenins, Gluten Quality, Iron, Zinc and Phytic Acid in a Set of One Hundred and Fifty-Eight Common Wheat Landraces from Iran
by Zahra Maryami, Ana Belén Huertas-García, Mohammad Reza Azimi, Nayelli Hernández-Espinosa, Thomas Payne, Fausto Cervantes, Velu Govindan, Maria Itria Ibba and Carlos Guzman
Agronomy 2020, 10(11), 1797; https://doi.org/10.3390/agronomy10111797 - 16 Nov 2020
Cited by 20 | Viewed by 3544
Abstract
Bread wheat can be used to make different products thanks to the presence of gluten, a protein network that confers unique visco-elastic properties to wheat doughs. Gluten is composed by gliadins and glutenins. The glutenins can be further divided into high and low-molecular-weight [...] Read more.
Bread wheat can be used to make different products thanks to the presence of gluten, a protein network that confers unique visco-elastic properties to wheat doughs. Gluten is composed by gliadins and glutenins. The glutenins can be further divided into high and low-molecular-weight glutenins (HMWGs and LMWGs, respectively) and are encoded by Glu-1 and Glu-3 loci. The variability of these genes is associated with differences in quality. Because of this, the identification of novel glutenin alleles is still an important target. In this study, 57 haplotypes or glutenin combinations were registered among a set of 158 Iranian landraces and five novel HMWGs alleles were identified. The landraces were also characterized for several quality traits, including gluten quality, which allowed to associate the different glutenin alleles with low or high quality. Other quality traits examined were iron, zinc, and phytate contents, which are intimately related with the nutritional quality. Important variation for these components was found as well as for the phytate:iron/zinc molar ratios (related to the potential bioavailability of these important micronutrients). The landraces identified in the present study (some of them combining high gluten quality with low phytate:zinc values) could be a useful resource for breeders who aim to improve the wheat end-use quality and especially the content of zinc and its relative bioavailability. Full article
Show Figures

Graphical abstract

9 pages, 1319 KiB  
Article
Analysis of Wheat Bread-Making Gene (wbm) Evolution and Occurrence in Triticale Collection Reveal Origin via Interspecific Introgression into Chromosome 7AL
by Ilya Kirov, Andrey Pirsikov, Natalia Milyukova, Maxim Dudnikov, Maxim Kolenkov, Ivan Gruzdev, Stanislav Siksin, Ludmila Khrustaleva, Gennady Karlov and Alexander Soloviev
Agronomy 2019, 9(12), 854; https://doi.org/10.3390/agronomy9120854 - 5 Dec 2019
Cited by 9 | Viewed by 3854
Abstract
Bread-making quality is a crucial trait for wheat and triticale breeding. Several genes significantly influence these characteristics, including glutenin genes and the wheat bread-making (wbm) gene. World wheat collection screening showed that only a few percent of cultivars carry the valuable [...] Read more.
Bread-making quality is a crucial trait for wheat and triticale breeding. Several genes significantly influence these characteristics, including glutenin genes and the wheat bread-making (wbm) gene. World wheat collection screening showed that only a few percent of cultivars carry the valuable wbm variant, providing a useful source for wheat breeding. In contrast, no such analysis has been performed for triticale (wheat (AABB genome) × rye (RR) amphidiploid) collections. Despite the importance of the wbm gene, information about its origin and genomic organization is lacking. Here, using modern genomic resources available for wheat and its relatives, as well as PCR screening, we aimed to examine the evolution of the wbm gene and its appearance in the triticale genotype collection. Bioinformatics analysis revealed that the wheat Chinese Spring genome does not have the wbm gene but instead possesses the orthologous gene, called wbm-like located on chromosome 7A. The analysis of upstream and downstream regions revealed the insertion of LINE1 (Long Interspersed Nuclear Elements) retrotransposons and Mutator DNA transposon in close vicinity to wbm-like. Comparative analysis of the wbm-like region in wheat genotypes and closely related species showed low similarity between the wbm locus and other sequences, suggesting that wbm originated via introgression from unknown species. PCR markers were developed to distinguish wbm and wbm-like sequences, and triticale collection was screened resulting in the detection of three genotypes carrying wbm-specific introgression, providing a useful source for triticale breeding programs. Full article
(This article belongs to the Special Issue Chromosome Manipulation for Plant Breeding Purposes)
Show Figures

Figure 1

16 pages, 3266 KiB  
Article
Stimulatory Response of Celiac Disease Peripheral Blood Mononuclear Cells Induced by RNAi Wheat Lines Differing in Grain Protein Composition
by Susana Sánchez-León, María José Giménez, Isabel Comino, Carolina Sousa, Miguel Ángel López Casado, María Isabel Torres and Francisco Barro
Nutrients 2019, 11(12), 2933; https://doi.org/10.3390/nu11122933 - 3 Dec 2019
Cited by 8 | Viewed by 3433
Abstract
Wheat gluten proteins are responsible for the bread-making properties of the dough but also for triggering important gastrointestinal disorders. Celiac disease (CD) affects approximately 1% of the population in Western countries. The only treatment available is the strict avoidance of gluten in the [...] Read more.
Wheat gluten proteins are responsible for the bread-making properties of the dough but also for triggering important gastrointestinal disorders. Celiac disease (CD) affects approximately 1% of the population in Western countries. The only treatment available is the strict avoidance of gluten in the diet. Interference RNA (RNAi) is an excellent approach for the down-regulation of genes coding for immunogenic proteins related to celiac disease, providing an alternative for the development of cereals suitable for CD patients. In the present work, we report a comparative study of the stimulatory capacity of seven low-gluten RNAi lines differing in grain gluten and non-gluten protein composition, relevant for CD and other gluten pathologies. Peripheral blood mononuclear cells (PBMCs) of 35 patients with active CD were included in this study to assess the stimulatory response induced by protein extracts from the RNAi lines. Analysis of the proliferative response and interferon-gamma (INF-γ) release of PBMCs demonstrated impaired stimulation in response to all RNAi lines. The lower response was provided by lines with a very low content of α- and γ-gliadins, and low or almost devoid of DQ2.5 and p31–43 α-gliadin epitopes. The non-gluten protein seems not to play a key role in PBMC stimulation. Full article
Show Figures

Figure 1

13 pages, 1804 KiB  
Review
Gluten Free Wheat: Are We There?
by María Dolores García-Molina, María José Giménez, Susana Sánchez-León and Francisco Barro
Nutrients 2019, 11(3), 487; https://doi.org/10.3390/nu11030487 - 26 Feb 2019
Cited by 55 | Viewed by 12404
Abstract
Gluten proteins, major determinants of the bread-making quality of wheat, are related to several digestive disorders. Advances in plant genetic breeding have allowed the production of wheat lines with very low gliadin content through the use of RNAi and gene editing technologies. In [...] Read more.
Gluten proteins, major determinants of the bread-making quality of wheat, are related to several digestive disorders. Advances in plant genetic breeding have allowed the production of wheat lines with very low gliadin content through the use of RNAi and gene editing technologies. In this review, we carried out a comprehensive study of the application of these cutting-edge technologies towards the development of wheat lines devoid of immunogenic gluten, and their genetic, nutritional and clinical characterization. One line, named E82, showed outstanding nutritional properties, with very low immunogenic gluten and a low stimulation capacity of T-cells from celiac patients. Moreover, a clinical trial with non-celiac wheat sensitivity (NCWS) patients showed that the consumption of bread made with this E82 low gliadin line induced positive changes in the gut microbiota composition. Full article
(This article belongs to the Special Issue Nutrition, Diet and Celiac Disease)
Show Figures

Figure 1

Back to TopTop