Transcriptome Analysis Reveals Key Genes Involved in the Response of Triticum urartu to Boron Toxicity Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, B Toxicity Treatment, and Measurement of Growth Parameters
2.2. RNA Extraction, Construction of cDNA Library, and RNA-Sequencing of the Collected Leaf Samples of T. urartu Genotype
2.3. Determining Differentially Expressed Genes
2.4. Functional Annotation, Pathway Enrichment Analysis of DEGs, and DEG-Encoding Transcription Factors
2.5. Reverse Transcription and RT-qPCR of RNA Samples Isolated from the Leaves of T. urartu Genotype Grown Under Control and B Toxic Conditions
3. Results
3.1. Effect of B Toxicity Stress on Physiological Growth of T. urartu PI662222 and T. aestivum Bolal 2973
3.2. RNA Sequencing and Genome Mapping of Sequenced Reads
3.3. Differentially Expressed Genes of T. urartu Leaves Under B-Toxic Growing Conditions
3.4. Functional Classification of Differentially Regulated Genes via Gene Ontology (GO) Enrichment
3.5. KEGG Pathway Enrichment Analysis of Differentially Expressed Genes (DEGs)
3.6. Transcription Factors Regulating the DEGs
3.7. Validation of RNA-seq Data by RT-qPCR Analysis
4. Discussion
4.1. Greater B Toxicity Tolerance in T. urartu Genotype PI662222 than T. aestivum Genotype Bolal-2973
4.2. T. urartu Genes Enriched Under B Toxicity Stress via Gene Ontology Enrichment
4.3. KEGG Pathways Enriched in T. urartu Under B Toxicity
4.4. Enriched Transcription Factors in T. urartu Leaves Under B Toxicity Stress
4.5. Relative Expression of Genes Focused in RT-qPCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Farhad, M.; Kumar, U.; Tomar, V.; Bhati, P.K.; Krishnan, J.N.; Barek, V.; Brestic, M.; Hossain, A. Heat stress in wheat: A global challenge to feed billions in the current era of the changing climate. Front. Sustain. Food Syst. 2023, 7, 1203721. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant Sci. 2018, 9, 1705. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Margaritopoulou, T.; Papadakis, I.E.; Araniti, F. Boron toxicity in higher plants: An update. Planta 2019, 250, 1011–1032. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Arifuzzaman, M.; Pandey, A.; Turin, M.T.S.; Hamurcu, M.; Athar, T.; Masuda, M.S.; Gokmen Yilmaz, F.; Topal, A.; Gezgin, S. Advancement in mitigating the effects of boron stress in wheat. In Abiotic Stresses in Wheat; Academic Press: Cambridge, MA, USA, 2023; pp. 329–338. [Google Scholar]
- Pandey, A.; Khan, M.K.; Hamurcu, M.; Yilmaz, F.G.; Gezgin, S. Boron Toxicity: An Insight on Its Influence on Wheat Growth. In Metal Toxicology Handbook; CRC Press: Boca Raton, FL, USA, 2020; pp. 417–432. [Google Scholar]
- Zhao, S.; Huq, M.E.; Fahad, S.; Kamran, M.; Riaz, M. Boron toxicity in plants: Understanding mechanisms and developing coping strategies; a review. Plant Cell Rep. 2024, 43, 238. [Google Scholar] [CrossRef]
- Schnurbusch, T.; Hayes, J.; Hrmova, M.; Baumann, U.; Ramesh, S.A.; Tyerman, S.D.; Langridge, P.; Sutton, T. Boron Toxicity Tolerance in Barley through Reduced Expression of the Multifunctional Aquaporin HvNIP2;1. Plant Physiol. 2010, 153, 1706–1715. [Google Scholar] [CrossRef]
- Yoshinari, A.; Takano, J. Insights into the Mechanisms Underlying Boron Homeostasis in Plants. Front. Plant Sci. 2017, 8, 1951. [Google Scholar] [CrossRef]
- Wu, M.; Ding, W.; Luo, J.; Wu, C.; Mei, L. Transcriptome and protein-protein interaction analysis reveals the tolerance of poplar to high boron toxicity regulated by transport and cell wall synthesis pathways. Environ. Exp. Bot. 2024, 226, 105922. [Google Scholar] [CrossRef]
- Bienert, M.D.; Bienert, G.P. Plant aquaporins and metalloids. In Signaling and Communication in Plants; Springer: Cham, Switzerland, 2017; pp. 297–332. [Google Scholar]
- Martinez-Ballesta, M.d.C.; Bastías, E.; Zhu, C.; Schäffner, A.R.; González-Moro, B.; González-Murua, C.; Carvajal, M. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake. Physiol. Plant. 2008, 132, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Tombuloglu, H.; Ozcan, I.; Tombuloglu, G.; Sakcali, S.; Unver, T. Aquaporins in boron-tolerant barley: Identification, characterization, and expression analysis. Plant Mol. Biol. Rep. 2016, 34, 374–386. [Google Scholar] [CrossRef]
- Hamurcu, M.; Khan, M.; Pandey, A.; Avsaroglu, Z.; Elbasan, F.; Gezgin, S. Boron stress exposes differential antioxidant responses in maize cultivars (Zea mays L.). J. Elem. 2020, 25, 1291–1304. [Google Scholar]
- Wang, B.-L.; Shi, L.; Li, Y.-X.; Zhang, W.-H. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. Planta 2010, 231, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Degl’Innocenti, E.; Pardossi, A.; Guidi, L. Antioxidant and photosynthetic responses in plants under boron toxicity: A review. Am. J. Agric. Biol. Sci. 2012, 7, 255–270. [Google Scholar] [CrossRef]
- Çatav, Ş.S.; Genç, T.O.; Kesik Oktay, M.; Küçükakyüz, K. Effect of boron toxicity on oxidative stress and genotoxicity in wheat (Triticum aestivum L.). Bull. Environ. Contam. Toxicol. 2018, 100, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Germ, M.; Yilmaz, F.G.; Ozbek, M.; Avsaroglu, Z.Z.; Topal, A.; Gezgin, S. Nutrient homeostasis of Aegilops accessions differing in B tolerance level under boron toxic growth conditions. Biology 2022, 11, 1094. [Google Scholar] [CrossRef]
- Reid, R.J.; Hayes, J.E.; Post, A.; Stangoulis, J.C.R.; Graham, R.D. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 2004, 27, 1405–1414. [Google Scholar] [CrossRef]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Avsaroglu, Z.Z.; Ozbek, M.; Omay, A.H.; Elbasan, F.; Omay, M.R.; Gokmen, F.; Topal, A. Variability in physiological traits reveals boron toxicity tolerance in Aegilops species. Front. Plant Sci. 2021, 12, 736614. [Google Scholar] [CrossRef]
- Brdar-Jokanović, M. Boron toxicity and deficiency in agricultural plants. Int. J. Mol. Sci. 2020, 21, 1424. [Google Scholar] [CrossRef]
- Pandey, A.; Khan, M.K.; Hamurcu, M.; Brestic, M.; Topal, A.; Gezgin, S. Insight into the Root Transcriptome of a Boron-Tolerant Triticum zhukovskyi Genotype Grown under Boron Toxicity. Agronomy 2022, 12, 2421. [Google Scholar] [CrossRef]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Rajpal, V.R.; Vyhnanek, T.; Topal, A.; Raina, S.N.; Gezgin, S. Insight into the Boron Toxicity Stress-Responsive Genes in Boron-Tolerant Triticum dicoccum Shoots Using RNA Sequencing. Agronomy 2023, 13, 631. [Google Scholar] [CrossRef]
- Emon, R.; Gustafson, K.; Bebeli, P.; Jahiruddin, M.; Haque, M.; Ross, K.; Gusafson, J. Screening Aegilops-Triticum species for Boron tolerance. Afr. J. Agric. Res. 2012, 7, 1931–1936. [Google Scholar]
- Rodríguez-Suárez, C.; Ramírez, M.C.; Martín, A.; Atienza, S.G. Applicability of chromosome-specific SSR wheat markers for the introgression of Triticum urartu in durum wheat breeding programmes. Plant Genet. Resour. 2011, 9, 439–444. [Google Scholar] [CrossRef]
- Pallotta, M.; Schnurbusch, T.; Hayes, J.; Hay, A.; Baumann, U.; Paull, J.; Langridge, P.; Sutton, T. Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature 2014, 514, 88–91. [Google Scholar] [CrossRef]
- Kayıhan, C.; Öz, M.T.; Eyidoğan, F.; Yücel, M.; Öktem, H.A. Physiological, biochemical, and transcriptomic responses to boron toxicity in leaf and root tissues of contrasting wheat cultivars. Plant Mol. Biol. Report. 2017, 35, 97–109. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Coskun, Y.; Olgunsoy, P.; Karatas, N.; Bulut, F.; Yarar, F. Mannitol application alleviates boron toxicity in wheat seedlings. Commun. Soil Sci. Plant Anal. 2014, 45, 944–952. [Google Scholar] [CrossRef]
- Safavi-Rizi, V.; Herde, M.; Stöhr, C. RNA-Seq reveals novel genes and pathways associated with hypoxia duration and tolerance in tomato root. Sci. Rep. 2020, 10, 1692. [Google Scholar] [CrossRef]
- Schnurbusch, T.; Collins, N.C.; Eastwood, R.F.; Sutton, T.; Jefferies, S.P.; Langridge, P. Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor. Appl. Genet. 2007, 115, 451–461. [Google Scholar] [CrossRef]
- Nejad, S.G.; Savaghebi, G.; Farahbakhsh, M.; Amiri, R.M.; Rezaei, H. Tolerance of some wheat varieties to boron toxicity. Cereal Res. Commun. 2015, 43, 384–393. [Google Scholar] [CrossRef]
- de Abreu Neto, J.B.; Hurtado-Perez, M.C.; Wimmer, M.A.; Frei, M. Genetic factors underlying boron toxicity tolerance in rice: Genome-wide association study and transcriptomic analysis. J. Exp. Bot. 2017, 68, 687–700. [Google Scholar] [CrossRef]
- Uluisik, I.; Kaya, A.; Fomenko, D.E.; Karakaya, H.C.; Carlson, B.A.; Gladyshev, V.N.; Koc, A. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS ONE 2011, 6, e27772. [Google Scholar] [CrossRef]
- Sotta, N.; Chiba, Y.; Miwa, K.; Takamatsu, S.; Tanaka, M.; Yamashita, Y.; Naito, S.; Fujiwara, T. Global analysis of boron-induced ribosome stalling reveals its effects on translation termination and unique regulation by AUG-stops in Arabidopsis shoots. Plant J. 2021, 106, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhao, X.; Wang, X.; Jia, L.; Zhou, Y.; Xie, M.; Li, Q.; Su, E.; Fan, L. Transcriptome analysis of soybean roots in response to boron deficiency. Biotechnol. Biotechnol. Equip. 2023, 37, 2200510. [Google Scholar] [CrossRef]
- Chen, L.; Han, J.; Deng, X.; Tan, S.; Li, L.; Li, L.; Zhou, J.; Peng, H.; Yang, G.; He, G. Expansion and stress responses of AP2/EREBP superfamily in Brachypodium distachyon. Sci. Rep. 2016, 6, 21623. [Google Scholar] [CrossRef]
- Michailidis, M.; Bazakos, C.; Kollaros, M.; Adamakis, I.D.S.; Ganopoulos, I.; Molassiotis, A.; Tanou, G. Boron stimulates fruit formation and reprograms developmental metabolism in sweet cherry. Physiol. Plant. 2023, 175, e13946. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, R.; Huang, Y.; Shi, L.; Wang, S.; Xu, F. Repression of transcription factor AtWRKY47 confers tolerance to boron toxicity in Arabidopsis thaliana. Ecotoxicol. Environ. Saf. 2021, 220, 112406. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Sharoni, A.M.; Kikuchi, S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 2013, 4, 248. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, K.; Shimizu, A.; Okumoto, Y.; Fujiwara, T.; Matoh, T. Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice. Plant Physiol. 2011, 156, 1457–1463. [Google Scholar] [CrossRef]
- Öz, M.T.; Yilmaz, R.; Eyidoğan, F.; Graaff, L.D.; Yücel, M.; Öktem, H.A. Microarray analysis of late response to boron toxicity in barley (Hordeum vulgare L.) leaves. Turk. J. Agric. For. 2009, 33, 191–202. [Google Scholar] [CrossRef]
- Koeduka, T.; Matsui, K.; Hasegawa, M.; Akakabe, Y.; Kajiwara, T. Rice fatty acid α-dioxygenase is induced by pathogen attack and heavy metal stress: Activation through jasmonate signaling. J. Plant Physiol. 2005, 162, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Tirajoh, A.; Aung, T.S.T.; McKay, A.B.; Plant, A.L. Stress-responsive α-dioxygenase expression in tomato roots. J. Exp. Bot. 2004, 56, 713–723. [Google Scholar] [CrossRef]
- Abdeen, A.; Schnell, J.; Miki, B. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genom. 2010, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Yang, X.; Xu, J.; Zhang, K.; Zhang, M.; Liu, G.; Yao, X.; Lou, L.; Xu, J.; Zhu, L.; et al. Genome-wide identification and analysis of promising GDSL-type lipases related to gummy stem blight resistance in watermelon (Citrullus lanatus). Sci. Hortic. 2021, 289, 110461. [Google Scholar] [CrossRef]
- Li, H.; Luo, W.; Ji, R.; Xu, Y.; Xu, G.; Qiu, S.; Tang, H. A comparative proteomic study of cold responses in potato leaves. Heliyon 2021, 7, e06002. [Google Scholar] [CrossRef]
- Luo, G.; Shen, L.; Song, Y.; Yu, K.; Ji, J.; Zhang, C.; Yang, W.; Li, X.; Sun, J.; Zhan, K. The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat. Plant Biotechnol. J. 2021, 19, 1863–1877. [Google Scholar] [CrossRef] [PubMed]
Traits/Genotypes | Bolal 2973 Triticum aestivum L. | PI662222 Triticum urartu L. |
---|---|---|
Shoot Length | −28 | 8 |
Root Length | −33 | −28 |
Shoot Fresh Weight | −23 | −33 |
Root Fresh Weight | −52 | −14 |
Shoot Dry Weight | −1 | 0 |
Root Dry Weight | −36 | −7 |
Pathway ID | #Pathway | Number of Annotated Genes | Level 1 | Level 2 |
---|---|---|---|---|
ko01100 | Metabolic pathways | 207 | Metabolism | Global and overview maps |
ko01110 | Biosynthesis of secondary metabolites | 72 | Metabolism | Global and overview maps |
ko00190 | Oxidative phosphorylation | 54 | Metabolism | Energy metabolism |
ko03010 | Ribosome | 47 | Genetic Information Processing | Translation |
ko00195 | Photosynthesis | 35 | Metabolism | Energy metabolism |
ko03020 | RNA polymerase | 24 | Genetic Information Processing | Transcription |
ko04016 | MAPK signaling pathway–plant | 22 | Environmental Information Processing | Signal transduction |
ko04626 | Plant–pathogen interaction | 21 | Organismal Systems | Environmental adaptation |
ko00940 | Phenylpropanoid biosynthesis | 20 | Metabolism | Biosynthesis of other secondary metabolites |
ko03013 | RNA transport | 20 | Genetic Information Processing | Translation |
Gene Code | Targeted Gene | Annotation | log2 Fold Change RNA-seq | Primer Type | Sequence (5′->3′) |
---|---|---|---|---|---|
TuαDOX-like (α-DOX) | TraesCS3B02G549000 | PREDICTED: Triticum dicoccoides alpha-dioxygenase 1-like (LOC119326475), transcript variant X1, mRNA | −14.98 | Forward primer | GGCATGGGTTGAGCCTCTT |
Reverse primer | AACCCATGGCTCTGGTAGAA | ||||
TuGDSL-like (GELP) | TraesCS3B02G219300 | PREDICTED: Triticum dicoccoides GDSL esterase/lipase At4g10955-like (LOC119275874), mRNA | −14.48 | Forward primer | AACAGGGAAGTTGAAGGGGA |
Reverse primer | CAATTACCAGCCCTCCCCAG | ||||
TuFTSH9-like (FTSH9) | TraesCS3B02G252900 | PREDICTED: Triticum dicoccoides ATP-dependent zinc metalloprotease FTSH 9, chloroplastic/mitochondrial (LOC119276292), mRNA | −13.66 | Forward primer | GCTGAGAAGTGCATCACGCT |
Reverse primer | GTTTCCTTTAAACAATGGCGAGGCA | ||||
Reference gene | TaGAP | Glyceraldehyde-3-phosphate dehydrogenase | - | Forward primer | TTCAACATCATTCCAAGCAGCA |
Reverse primer | CGTAACCCAAAATGCCCTTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uyar, G.S.; Pandey, A.; Hamurcu, M.; Vyhnanek, T.; Harmankaya, M.; Topal, A.; Gezgin, S.; Khan, M.K. Transcriptome Analysis Reveals Key Genes Involved in the Response of Triticum urartu to Boron Toxicity Stress. Agronomy 2025, 15, 191. https://doi.org/10.3390/agronomy15010191
Uyar GS, Pandey A, Hamurcu M, Vyhnanek T, Harmankaya M, Topal A, Gezgin S, Khan MK. Transcriptome Analysis Reveals Key Genes Involved in the Response of Triticum urartu to Boron Toxicity Stress. Agronomy. 2025; 15(1):191. https://doi.org/10.3390/agronomy15010191
Chicago/Turabian StyleUyar, Gul Sema, Anamika Pandey, Mehmet Hamurcu, Tomas Vyhnanek, Mustafa Harmankaya, Ali Topal, Sait Gezgin, and Mohd. Kamran Khan. 2025. "Transcriptome Analysis Reveals Key Genes Involved in the Response of Triticum urartu to Boron Toxicity Stress" Agronomy 15, no. 1: 191. https://doi.org/10.3390/agronomy15010191
APA StyleUyar, G. S., Pandey, A., Hamurcu, M., Vyhnanek, T., Harmankaya, M., Topal, A., Gezgin, S., & Khan, M. K. (2025). Transcriptome Analysis Reveals Key Genes Involved in the Response of Triticum urartu to Boron Toxicity Stress. Agronomy, 15(1), 191. https://doi.org/10.3390/agronomy15010191