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Abstract: Genetic variation in high molecular weight glutenin (HMW-GS) genes is tightly linked with
the breadmaking quality of wheat. Hundreds of different alleles have been identified in HMW-GS
genes worldwide. Such huge variability makes it difficult to distinguish them using conventional
genotyping methods (for example, SDS-PAGE, SNP detection, etc.). Here, we exploited the nanopore
amplicon sequencing technique (Amplicon-Seq) to uncover genetic variants distributed along the full-
length sequence of six HMW-GSs, including the promoter and protein-coding regions. We analyzed
23 wheat accessions for allelic variants of HMW-GSs using the Amplicon-Seq and SDS-PAGE methods.
We obtained sufficient (>50×) target gene coverage by ONT reads in just one hour. Using the obtained
data, we identified numerous single nucleotide polymorphisms and InDels in the protein coding and
promoter regions. Moreover, Amplicon-Seq allowed for the identification of new alleles (Glu-A1x1-T)
of the Glu-1Ax gene that could not be recognized by SDS-PAGE. Collectively, our results showed
that Amplicon-Seq is a rapid, multiplexed, and efficient method for high-throughput genotyping
of full-length genes in large and complex genomes. This opens new avenues for the assessment of
target gene variation to select novel alleles and create unique combinations of desirable traits in plant
breeding programs.

Keywords: nanopore; amplicon sequencing; SDS-PAGE; glutenin genes; wheat

1. Introduction

Genetic variation in key genes involved in shaping desired agronomic traits is crucial
for plant breeding programs, including grain quality and breadmaking characteristics [1].
Over the past 25 years, research has revealed a well-defined correlation between distinct
allelic variants of high-molecular-weight glutenin subunits (HMW-GS) and breadmaking
quality [2,3]. HMW-GSs are a polymorphic family of wheat storage proteins encoded by
three loci (Glu-A1, Glu-B1, and Glu-D1), located on the long arms of chromosome one of
the A, B, and D subgenomes, respectively [4–6]. Each Glu locus includes two orthologous
genes encoding a large molecular weight x-type subunit (Glu-A1x, Glu-B1x, and Glu-D1x)
and a lower molecular weight y-type subunit (Glu-A1y, Glu-B1y, and Glu-D1y) [7]. In
addition, y-type subunits have a second proline replaced by leucine in the nanopeptide
motif of the central domains, whereas x-type subunits have a unique tripeptide repeat
motif [8,9]. Payne and Lawrence’s 1983 study discovered 3 Glu-A1 alleles, 11 Glu-B1 alleles,
and 6 Glu-D1 alleles [10]. During the last 40 years, over 200 alleles for the HMW glutenin
loci [11] have been discovered in local wheat varieties, mutants, and wild species [11–14].
The combination of HMW-GSs significantly affected grain and bread quality. The most
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valuable x- and y-subunit allele combinations were as follows: Glu-A1a (Glu-A1x), Glu-A1b
(Glu-A1x2*), Glu-B1b (Glu-B1x7 and Glu-B1y8), Glu-B1f (Glu-B1x13 and Glu-B1y16), Glu-
B1i (Glu-B1x17 and Glu-B1y18), and Glu-D1d (Glu-D1x5 and Glu-D1y10). The Glu-B1al
(Glu-B1x7) allele also strengthens dough [8,15,16]. Introducing the Ay21* subunit gene
affects both grain protein content and dough quality [17,18].

Traditionally, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
has been applied to assess allelic variants of HMW-GSs [13] and is now frequently used in
breeding practice [19]. However, some HMW-GSs are quite difficult to distinguish from
each other on SDS-PAGE electropherograms because of their similar mobility in the gel. It is
particularly difficult to distinguish, for example, subunits 2 and 2*, as well as a combination
of subunits 14 + 15 and 20 [20]. The HMW-GS identification problem can be solved using
RP-HPLC [21] and MALDI-TOF-MS [3] techniques. However, these techniques are time-
consuming, require high-precision equipment, and cannot be scaled to evaluate breeding
material. Allelic variants of HMW-GSs are also detected by DNA markers, including
KASP markers, enabling the differentiation of high-molecular-weight glutenin subunits,
even when they have similar molecular weights [7,22]. For example, KASP markers have
been used to accurately detect alleles of the Glu-1 locus by identifying single nucleotide
polymorphisms (SNPs) in gene sequences. The relationship between some SNPs and the
rheological properties of dough has been demonstrated [23,24]. This technique permits
the tracking of most Glu-A1, Glu-B1, and Glu-D1 alleles, even those that are challenging
to detect via SDS-PAGE, such as Glu-A1-2 gene alleles encoding the y-type subunit of the
A-subgenome. However, this analysis required a set of 17 markers for comprehensive
HMW-GS identification, making this procedure time-consuming and complicated. Another
method for detecting distinct alleles of HMW-GSs is optimized RP-UPLC, which offers
rapid and precise HMW-GS identification. Nevertheless, SDS-PAGE may still be utilized
for specific alleles such as Bx7, Bx 17, By 8*, By 9, and By 15. RP-UPLC works solely with
protein sequences and does not reveal gene sequences, thus limiting its capacity to assess
gene expression levels. Furthermore, it cannot monitor the allelic state of Glu-A1-2, which
is frequently unexpressed in cultivated varieties.

Whole-genome sequencing (WGS) of different wheat varieties and available high-quality
wheat genome assemblies provide comprehensive insights into genetic variation [25,26].
Nonetheless, WGS is not a rapid and expensive method for assessing the sequence variation
of target genes in large wheat genomes. Instead, target DNA amplification followed by
Sanger sequencing or next-generation short-read sequencing (NGS) has also been used [25,26].
While Sanger sequencing has been widely used to characterize gluten proteins [24], its
application is limited by the maximum template length of 300–1000 bp, which is less than
the length of HMW-GS genes (>3Kb) [12,27,28]. In turn, short-read sequencing of PCR
products after their fragmentation has limitations in sequencing and assembly of genes
with repetitive structures, such as HMW-GS, while this method has high throughput and a
low error rate. In our previous study, we employed novel Cas9-mediated target nanopore
sequencing (nCATS, [29]) to sequence multiple glutenin genes (specifically Glu-A1x, Glu-
B1x, and Glu-B1y) and their respective promoters in hexaploid triticale [30]. This method is
particularly useful for investigating gene variability and DNA methylation profiles [30].
However, this method is not high-throughput, and the genes of only one variety have
been sequenced at once, resulting in relatively low gene coverage by nanopore reads. An
alternative method for target gene sequencing is the PCR amplification of genes, followed
by fragmentation and short-read sequencing [24]. Therefore, alternative approaches are
required for high-throughput sequencing of the entire HMW-GS gene to identify novel and
potentially valuable alleles.

Long-read Nanopore sequencing of amplicons (ONT Amplicon-Seq) has recently been
used in several studies to study microbial diversity [31]. For example, ONT Amplicon-Seq
was used to sequence 4.4 Kb ribosomal RNA operons from a microbial community [32]
to decrease the error rate of ONT Amplicon-Seq reads (usually around 5–25%) [33], and
unique molecular identifiers (UMIs) were used [32]. The UMI application resulted in a



Agronomy 2024, 14, 13 3 of 14

dramatic increase in sequence accuracy of up to ~98%. Errors in individual ONT reads are
randomly distributed. This distribution allows for the identification of SNPs without UMIs,
even at medium-sequence coverage [30]. Only a few reports have used ONT Amplicon-Seq
to elucidate the genetic variation in eukaryotic genes [34–36]. For example, Nanopore
Amplicon-Seq has been used to validate IGVH mutations in clinical studies of FFPE (Nz66)
gliomas. While this study amplified relatively small PCR products within the 300–600 bp
size range, these products proved adequate for obtaining reliable clinical validation data,
demonstrating the feasibility of this approach for detecting single nucleotide variants [36].
ONT Amplicon-Seq has been performed to investigate the effects of plasmotype on chloro-
phyll fluorescence in barley (Hordeum vulgare ssp. spontaneum) [37]. Thus, a systematic
assessment of ONT Amplicon-Seq for the survey of allelic variation of multiple target genes
in crops has not yet been conducted.

Here, we tested the Amplicon-Seq method to uncover allelic variation in six HMW-
GS genes in a wheat collection of 23 varieties and compared the results with SDS-PAGE.
Both approaches have identified various alleles of Glu genes in a collection of wheat
accessions. Nanopore amplicon sequencing provided deep coverage (>50×) and allowed
the uncovering of SNPs and InDels in Glu genes after just one hour of sequencing. Moreover,
ONT Amplicon-Seq allowed us to detect novel allelic variants that could not be identified
by SDS-PAGE. Additionally, Nanopore amplicon sequencing detected differences both
in the coding region of glutenin genes and in the promoter regions, which cannot be
performed using SDS-PAGE electrophoresis. In summary, our study showed that nanopore
amplicon sequencing is a rapid and multiplex approach for the analysis of genetic variation
of full-length genes in plant species with large and complex genomes. This paves the way
for the development of full-length target gene panels that can be applied in plant breeding
processes when the number of alleles in a gene is high.

2. Materials and Methods
2.1. Plant Material

A total of 23 cultivars of spring bread wheat cultivars were used in this study. Nine-
teen samples of hybrid origin were obtained from the International Maize and Wheat
Improvement Center (CIMMYT), and four samples were of different geographical origins
(Supplementary Table S1). The bread wheat line Chinese Spring (CS) was used as a stan-
dard for HMW-GS by SDS-PAGE. Grains of each cultivar were separated into two parts,
embryo and endosperm, to investigate one grain by amplicon sequencing and SDS-PAGE.

2.2. SDS-PAGE of HMW-GS

Proteins were extracted from individual half-grains using the sequential procedure
described by Singh et al. [38]. Three grains were analyzed per variety. Electrophoresis
of HMW-GSs was performed on a vertical gel (200 × 183 × 1 mm) (Bio-Rad Protean
XL apparatus, Hercules, CA, USA) according to the SDS-PAGE protocol described by
Barnlard et al. [39], with modifications: Time of running was 20 h with 20 mA per gel.
The HMW-GSs were identified by their electrophoretic mobility relative to the subunits of
the Chinese Spring variety, which had a composition of AxN/Bx7+By8/Dx2+Dy12. The
nomenclature of Payne and Lawrence [10] was used for HMW-GS.

2.3. DNA Isolation

Total DNA was extracted from the embryo seedlings using the CTAB protocol [40],
which were germinated in the dark at room temperature on wet filter paper disks. Five-
day-old seedlings were homogenized in liquid nitrogen. It takes 500 mg of plant material
for extraction using 500 µL CTAB1. Process of DNA isolation was carried out according
to the published protocol (https://www.protocols.io/view/plant-dna-extraction-and-
preparation-for389-ont-seque-bcvyiw7w, accessed on 4 September 2021). The DNA pellet
was washed with 70% ethanol and resuspended in 50 µL of nuclease-free water. DNA
concentration and integrity were estimated using Nanodrop (Nanodrop Technologies,
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Wilmington, CA, USA) and gel electrophoresis using a 1% agarose gel with ethidium
bromide staining.

2.4. PCR Amplification of Glutenin Subunits

Primer pairs were designed to amplify promoter and coding regions. The amplicon
lengths ranged from 2600 bp (Glu-A1x) to 5000 bp (Glu-D1y) (Supplementary Table S2).
Primer pairs were used to detect the longest conserved region of each gene. All primers
were designed using Primer 3.0 software (https://www.bioinformatics.nl/cgi-bin/primer3
plus/primer3plus.cgi) (accessed on 1 September 2022) and checked by PrimerBLAST
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed on 22 November 2023).

To optimize PCR conditions, we employed a mix of PCR enzymes, combining proof-
reading and highly processive types, along with hot-start antibodies. These antibodies
effectively suppressed polymerase activity at room temperature, thus preventing non-
specific amplification and enabling a versatile reaction setup. To successfully amplify
Glu-B1x and Glu-B1y, PCR was performed using Encyclo DNA polymerase (Evrogen,
Moscow, Russia) and magnesium-free encyclo buffer. MgCl2 and DMSO concentrations
were used for PCR optimization to achieve the desired results. MgCl2 (1 mM) influences
polymerase activity, primer-template interactions, and the overall specificity and efficiency
of DNA amplification. DMSO (3%) was used in PCR to hinder the formation of secondary
structures in either the DNA template or DNA primers. We conducted long-range PCR to
amplify four fragments (Glu-A1x, Glu-A1y, Glu-D1x, and Glu-D1y) using Biolabmix LR
HS polymerase and 5% DMSO according to the manufacturer’s instructions (Biolabmix,
Novosibirsk, Russia). The PCR conditions were specific for each subunit (Supplemen-
tary Table S3). The obtained PCR results were visualized via gel electrophoresis using a
1% agarose gel with ethidium bromide staining.

After amplification, 4 kb full-length products of Glu-B1x were purified from a
1% agarose gel using a Cleanup Standard kit (Evrogen, Moscow, Russia) according to
the manufacturer’s instructions. PCR products of other glutenin subunits were equalized
in concentration and pooled into one sample according to the cultivar. Pooling amplicons
were purified using 1.8× Agencourt AMPure XP Beads (Beckman Coulter, Pasadena, CA,
USA) in accordance with the manufacturer’s instructions. Purified amplicons of Glu-B1x
and pooled amplicons were equalized in concentration and pooled in one final sample
according to the cultivars. The pooled amplicon concentration and integrity were estimated
using Nanodrop (Nanodrop Technologies, Wilmington, CA, USA) and Qubit (Qubit ds-
DNA BR Assay Kits, Thermo Fisher Scientific, Waltham, MA, USA) and checked by gel
electrophoresis.

2.5. Library Preparation and Nanopore Sequencing

In this study, we did not use phosphorylated primers for PCR amplification. In this
case, the 5′-ends of the amplicon are non-phosphorylated and need to be treated by a
T4 polynucleotide kinase to introduce 5′-phosphate. The phosphorylation mix was pre-
pared in 22 µL with the use of 10 µL pooling amplicons (200 ng), 2.2 µL 10× T4 polynu-
cleotide kinase reaction buffer, 2 µL dATP (1 mM), 0.2 µL T4 polynucleotide kinase (2 units),
and nuclease-free water up to the necessary volume. Incubation was performed on a
thermocycler with the following program: 37 ◦C for 30 min, and then 65 ◦C for 20 min.
Phosphorylated amplicons were purified using an equal volume of Agencourt AMPure XP
Beads (Beckman Coulter, Pasadena, CA, USA), and 100 µL of freshly prepared 70% ethanol
was washed twice. The obtained amplicons were resuspended in 4.5 µL nuclease-free water
in a new LoBind tube for downstream analysis.

For Nanopore sequencing, a library was prepared from 23 pooled samples using the
nanopore native barcoding genomic DNA SQK-NBD110-24 (Oxford Nanopore Technolo-
gies, Oxford, UK), with some modifications in the process of using the NEBNext Companion
Module for Oxford Nanopore Technologies Ligation Sequencing (New England Biolabs,
MA, USA). Briefly, ~100 ng of each pooling sample in 4.5 µL was mixed with 0.5 µL Native

https://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
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Barcode and 5 µL Blunt/TA Ligase Master Mix and incubated on a Hula mixer for 10 min
at room temperature. Purification by Agencourt AMPure XP Beads was performed during
phosphorylation. Each of the 12 barcoded samples was resuspended in 2.7 µL of nuclease-
free water and transferred to a new LoBind tube for adapter ligation. Then, ~32.5 µL pooled
and barcoded amplicons were mixed with 10 µL NEBNext Quick Ligation Reaction Buffer
(5X), 5 µL Quick T4 DNA Ligase, and 2.5 µL Adapter Mix II (AMII). Adapter Ligation Mix
was incubated on a Hula mixer for 10 min at room temperature. Double washing was per-
formed using 125 µL of Short Fragment Buffer (SFB). Incubation was performed in a water
bath at 37 ◦C for 10 min, and then for 5 min at room temperature. Sequencing was carried
out using MinION and a flow cell SQK-LSK109. Basecalling was performed by Guppy
(Version 6.3.8). The obtained reads were aligned to the reference sequences of HMW-GS
genes from NCBI (Glu-1A: AF145590.1, KJ531446.1, M22208.2, MF568383.1, EU984510.1; Glu-
1B: DQ119142.1, FM955452.1, MH108092.1, KC254854.1, JN255519.1, X61026.1, EU137874.1,
EF540765.1, KF430649.1; Glu-1D: BK006460.1, AB485591.1, X12929.2, JF736016.1) using min-
imap2 [41]. The obtained BAM files were visualized using JBrowse2 [42].

2.6. PCR Validation of the Deletion in Glu-1Bx7 Gene

To confirm the deletion in the promoter region of Glu-1Bx7 (approximately 60 bp), as
identified by Nanopore amplicon sequencing, we used the primers provided in Supplementary
Table S4. PCR was conducted using Encyclo DNA polymerase (Evrogen, Moscow, Russia)
following the manufacturer’s instructions. The PCR conditions were 95 ◦C for 5 min;
33 cycles of 95 ◦C for 30 s, 59 ◦C for 30 s, and 72 ◦C for 35 s; and final elongation at 72 ◦C
for 3 min.

3. Results
3.1. Assesment of HMW-GS Alleles in Different Wheat Varieties Using SDS-PAGE

To evaluate the allelic variants of high molecular weight glutenin (HMW-GS) present
in the accessions of our wheat collection, individual wheat grains were analyzed using
SDS-PAGE and ONT Amplicon-Seq. Each grain of the 23 selected wheat accessions was
divided into two parts (Figure 1).
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Figure 1. Schematic depicting the identification of HMW-GSs by ONT Amplicon-Seq and SDS-PAGE.
Each grain was divided into two parts: the endosperm was used for SDS-PAGE, and seedlings
obtained from the embryo were subjected to DNA isolation, PCR amplification with specific primers,
and barcoding. Barcoded amplicons from different grains were mixed and sequenced on a single
MinION flow cell. The percentage of wheat accessions carrying different HMW-GSs as assessed by
SDS-PAGE is shown at the bottom. The figures were generated using BioRender (https://biorender.
com/, accessed on 3 June 2023).

SDS-PAGE analysis of the allelic variants of HMW-GSs showed (Supplementary Table S5)
that seven accessions carried the Glu-A1x1 allele, 14 accessions carried the Glu-A1x2 * allele,
and 2 accessions carried the Glu-A1x-null allele. The studied accessions had the following

https://biorender.com/
https://biorender.com/
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combinations of allelic variants of the Glu-B1 locus: Glu-B1x7 and Glu-B1y8—8 accessions,
Glu-B1x7 and Glu-B1y9—9 accessions, Glu-B1x13 and Glu-B1y16—2 accessions, Glu-B1x14
and Glu-B1y15—2 accessions, and Glu-B1x17 and Glu-B1y18—2 accessions. The lowest
allelic diversity was found at the Glu-D1 locus: eight accessions carried Glu-D1x2 and
Glu-D1y12; 15 accessions carried Glu-D1x5 and Glu-D1y10 (Figure 2).
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bread wheat accessions: 1. MC № 23; 2. MC № 35; 3. MC № 59; 4. MC № 65; 5. MC № 66; 6. MC
№ 67; 7. MC № 70; 8. MC № 79; 9. MC № 147; 10. MC № 150; 11. MC № 151. 12. MC № 152. MC mean
“Mexican Collection”, 13. MC № 153; 14. MC № 178; 15. MC № 187; 16. MC № 215; 17. MC № 217;
18. MC № 220; 19. MC № 223; 20. Glenlea; 21. Bombona; 22. Agatha; 23. Kanyuk. MC means
“Mexican Collection”, CS—Chinese Spring.

3.2. Preparation of PCR amplicons of HMW-GS genes

Next, we performed Amplicon-Seq of full-length HMW-GS genes. For this, we de-
signed custom primers to obtain PCR products covering the promoter (−1500 bp from the
transcription start site) and coding region of the six HMW-GS wheat genes. The primers
were located in regions that were conserved between different alleles of the HMW-GS
genes, as determined by BLAST analysis. PCR conditions were optimized for each primer
pair. The obtained PCR products had the following length: 4.3 kb and 2.6 kb for Glu-A1x
and Glu-A1y, 3.9 kb and 3.6 kb for Glu-1Bx and Glu-1By, and 3.0 kb and 5.0 kb for Glu-D1x
and Glu-D1y, respectively (Figure 3).

In total, 138 PCR products (Figure 3) were purified and mixed to obtain the final sam-
ples for barcoding (Figure 1). Notably, because we used conventional non-phosphorylated
primers, the obtained PCR products were phosphorylated, barcoded, and sequenced using
a single MinION flow cell. The analysis of read generation during the sequencing procedure
showed that a read coverage of 50×–150× was obtained for each amplicon of an individual
wheat accession after just one hour of sequencing. In total, we obtained approximately
215,000 reads with an N50 value of ~3.2 kb. On average, approximately 9000 reads were
associated with each barcode. The results demonstrate that ONT Amplicon-Seq can rapidly
generate a sufficient amount of data in a short time.
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Figure 3. Gel electrophoresis of the PCR products after amplification of the target regions
(promoter + coding sequence) of the six glutenin genes (Glu-A1x, Glu-A1y, Glu-B1x, Glu-B1y, Glu-D1x,
Glu-D1y) and the mixes of purified and pooled amplicons for 23 bread wheat accessions. Individual
wheat genotypes were (see material and methods for details): MC №23, MC №35, MC №59, MC №65,
MC №66, MC №67, MC №70, MC №79, MC №147, MC №150, MC №151, MC №152, MC №153, MC
№178, MC №187, MC №215, MC №217, MC №220, MC №223, Glenlea, Bombona, Agatha, Kanyuk.
The DNA marker Sky-High (Biolabmix, Novosibirsk, Russia) (M) MC means “Mexican Collection”.

3.3. Analysis of HMW-GS Allele Sequences Deduced by ONT Amplicon-Seq

To identify the allelic variants of each of the six HMW-GSs, the obtained ONT reads
were aligned to the reference set of the HMW-GSs. Then, the SNPs and InDels were
detected, and the corresponding known HMW-GS allele ids were assigned based on their
identity to the sequences from NCBI.

The analysis of ONT data for Glu-A1x variation across 23 wheat samples revealed that
14 (61%) samples had the Glu-A1x2* allele, two accessions (9%) had the Glu-A1x-null allele,
and seven accessions (30%) had the Glu-A1x1 allele, corroborating the SDS-PAGE data. The
sequence of Glu-A1x genes of two wheat accessions (MC №147, MC №151) had a specific
SNP (3136C -> T) in the coding region of the gene, distinguishing them from the known
sequences of the Glu-A1x1 allele (Figure 4). This substitution is non-synonymous, causing
the replacement of Pro by Ser. SDS-PAGE identified the Glu-A1x allele as Glu-A1x1. The
new Glu-A1x allele was called Glu-A1x1-T.

Glu-A1y is typically inactive in cultivated hexaploid wheat varieties, making SDS-
PAGE analysis impossible. ONT Amplicon-Seq enabled analysis of the Glu-A1y sequence.
We found two Glu-A1y alleles in the wheat collection. These alleles were identical to two
known alleles deposited at NCBI: Glu-A1y-d (MF568383.1 [43]) and A1y/Td-s (EU984510.1,
Glu-A1-2 [26]). The Glu-A1y-d allele was detected in 16 accessions (70%) in our wheat
collection. The remaining seven accessions (30%) carried the inactive Glu-A1-2 allele [26].

Amplicon-Seq ONT read mapping to the known Glu-B1x alleles revealed the presence
of a diverse panel of Bx alleles in our wheat collection: Bx7 (17 accessions, 73%), Bx17
(2 accessions, 9%), Bx13 (2 accessions, 9%), and Bx14 (2 accessions, 9%). The results of ONT
Amplicon-Seq and SDS-PAGE were concordant. Using ONT data, we easily uncovered
a ~60 bp deletion and SNP (C -> G) present in the promoter of the 1Bx7 allele (Figure 5).
To confirm these findings, we developed unique primer pairs and performed PCR. The
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PCR results and Sanger sequencing verified the presence of the deletion in the Glu-B1x7
promoter in the 12 wheat accessions (Supplementary Table S5).
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Figure 5. Sequence analysis of Glu-1Bx (A) Read alignment of the two accessions to the reference
sequence of Glu-1Bx and the positions of primers for InDel validation. (B) PCR results with specific
primer pairs flanking the InDels of Glu-1Bx7 variants. Individual wheat genotypes were as follows:
2. MC № 35, 4. MC № 65, 8. MC № 79, 9. MC № 147, 10. MC № 150, 12. MC № 152, 14. MC № 178,
15. MC № 187, 16. MC № 215, 17. MC № 217, 18. MC № 220, 20. MC № 223 (with 60 bp deletion);
1. MC № 23, 3. MC № 59, 5. MC № 66, 21. Glenlea, 23. Agatha (without deletion). (C) Identification of
deletion after multiple alignment of sequences obtained by Sanger sequencing. DNA marker Step50
plus (Biolabmix, Novosibirsk, Russia) (M). Alleles with deletion are indicated by star (*). MC mean
“Mexican Collection”.
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Analysis of Glu-B1y sequences by ONT Amplicon-Seq revealed that MC №151 and
MC №67 samples carried alleles similar to the known By16 and By19* alleles, respectively.
The two alleles differed by 27 bp in-frame InDel. However, SDS-PAGE indicated the
presence of the By16 allele in all analyzed wheat accessions suggesting 9aa deletion is too
small to be detected by SDS-PAGE. Analysis of the other 21 wheat samples revealed that
8 (35%) accessions had the Glu-B1y8 allele, and 9 accessions (40%) had Glu-B1y9, Glu-B1y15
(9%), and Glu-B1y8 (9%) alleles by two accessions, corroborating with the SDS-PAGE data.

For Glu-1D genes, the alleles identified by SDS-PAGE correlated with those identified
by sequencing. Both methods revealed the following distribution of alleles: 8 accessions
(35%) had Glu-D1x2 and Glu-D1y12 alleles, and 15 accessions (65%) had Glu-D1x5 and
Glu-D1y10 alleles.

Thus, the results showed that ONT Amplicon-Seq can identify all alleles of HMW-GS
genes and, in some cases, has higher precision than SDS-PAGE. Moreover, using ONT
data, we found the previously unknown allele Glu-A1x1-T, paving the way for further
functional characterization.

4. Discussion

In this study, we successfully applied the ONT Amplicon-Seq technique to rapidly
determine allelic variants of six full-length HMW-GS in a collection of 23 wheat accessions
of different origins. Fourteen alleles were identified and verified using Sanger sequencing
and SDS-PAGE. Many of these alleles have been previously observed in cultivated wheat
varieties and in genetic collections. Ten alleles (Glu-A1x1, Glu-A1x2*, Glu-B1x7 and Glu-
B1y8, Glu-B1x13 and Glu-B1y16, Glu-B1x17 and Glu-B1y18, Glu-D1x5 and Glu-D1y10)
are considered advantageous for baking and are commonly used in breeding programs
worldwide [8,15].

We demonstrated that the ONT Amplicon-Seq and SDS-PAGE methods have their
own advantages and disadvantages (Table 1). Although SDS-PAGE is a straightforward and
accessible method for assessing the baking potential of wheat breeding material through
HMW-GS identification, it has distinct limitations including low processing capacity.

Table 1. Characteristics of SDS-PAGE and Nanopore Amplicon-Seq for HMW-GSs identification.

Characteristics SDS-PAGE Nanopore Amplicon-Seq

Target Protein Nucleic acid

Analyzed material Endosperm DNA containing parts

Ability to analyze an individual plant + +

Number of simultaneously
tested samples Up to 40 Up to 96

Operating time of the device (excluding
sample preparation and subsequent

detection)
Up to 20 h About 1 h to achieve the

required coverage

The number of simultaneously studied
HMW-GS loci Five Multiple

Analysis range 5–250 kDa 250–10,000 bp

Possible cause of the error

Errors of low gel resolution and
the similar

electrophoretic mobility
of some subunits

PCR and
sequencing errors

Reliability of identification + +++

Search for non-annotated alleles ± +++

Portability – +++
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Both traditional SDS-PAGE and Nanopore Amplicon-Seq offer the ability to analyze
individual plants, which is particularly valuable for assessing breeding material during
early hybrid generations. Amplicon-Seq DNA from the leaf material of mature plants can
be used for ONT. SDS-PAGE, on the other hand, requires at least half a grain without a
germ, raising concerns about the further viability of the remaining half with the germ.

SDS-PAGE is well known for its relative simplicity and affordability of reagents and
equipment. However, SDS-PAGE characterizes HMW-GSs based on their relative mobility
in the gel, which does not always correspond to their actual molecular weights. In contrast,
ONT Amplicon-Seq results in the sequencing of an entire target locus, providing informa-
tion on gene and promoter nucleotide sequences. ONT Amplicon-Seq can detect different
variations, ranging from SNPs to in-frame InDels. This enables the precise identification of
known alleles and the discovery of new alleles, characterized by mutations in the coding
and promoter regions. The promoter regions of wheat glutenin genes are of particular
interest because of their significant variability and direct impact on gene expression and,
consequently, the quality of wheat flour [44]. Such novel alleles can potentially explain
cases where a high Glu-score does not translate to good bread quality, or vice versa [8].
For example, some researchers associate the high bread quality of wheat varieties from
Russia [45], Turkey [46], and India [47] with the Glu-D1a allele and recently discovered
alleles, such as Dy12.7 [27] and 1Dy12** [14], which have the same electrophoretic mobility
as Dy12 but determine baking quality as Dy10.

Another important characteristic is the time required for allele identification (Figure 6).
The results demonstrate that ONT Amplicon-Seq significantly shortens the analysis time
compared to SDS-PAGE. Various sources indicate the duration of electrophoresis from
2.5 to 17 h [3,38] without considering sample preparation and visualization of protein
profiles. However, the task of optimizing SDS-PAGE parameters is intricate and time-
consuming, involving numerous adjustments, including pH level, sample size, ammonium
concentration in terms of sulfate (APS), and staining duration, to obtain a highly accurate
image for the registration of the most polymorphic proteins, with molecular weights
ranging from 80–130 kDa. Protein separation on the polyacrylamide gel took 20 h. The final
stage of protein analysis, involving fixation, staining, washing, and subsequent detection
of the obtained subunits, is typically the least time-consuming, requiring approximately
1 h. In contrast, ONT Amplicon-Seq requires significantly less time for sample preparation
and sequencing, while the data analysis step is more time-consuming than SDS-PAGE.
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ONT Amplicon-Seq has several limitations that should be considered. First, the error
rate of the ONT reads is still quite high [48]. Polymerase errors during amplification
are another source of sequencing errors [32]. Therefore, individual reads cannot be used
to determine polymorphisms. To overcome this limitation, sufficient coverage (>30× in

https://biorender.com/


Agronomy 2024, 14, 13 11 of 14

our experience) of the target loci by ONT reads is required, and high-precision DNA
polymerase should be used for target amplification. In addition, some DNA conformation
forms (e.g., non-B DNA structures) and sequence motifs (e.g., polypurine/polypyrimidine
tracts) are more prone to introduce errors during sequencing [49]. Secondly, primer design
and PCR optimization are the most time-consuming and critical steps in ONT Amplicon-
Seq. Notably, the designed primers should be extensively tested to limit non-specific
primer annealing. Additionally, the primer sites should be placed in regions that are well-
conserved between different cultivars to ensure uniform amplification of the target loci
across genotypes. Third, we performed PCR amplification of individual genes, followed by
pooling the PCR products from a cultivar into one tube. This strategy can be challenging
when the number of targets is large. In this case, multiplex amplification can be applied,
which requires extensive optimization. The number of genes involved in crucial pathways
for plant breeding (e.g., grain development [50]) is rapidly growing. Multiplex ONT
Amplicon-Seq can be a useful strategy for building ONT-based platforms for simultaneous
high-throughput genotyping of multiple genes in plant collections. ONT Amplicon-Seq
platforms for full-length genotyping are easily scalable, and novel target genes can be
rapidly added. Finally, DNA polymorphisms established by sequencing are not always
informative for predicting their effect on protein functions. In the case of novel HMW-
GSs, SDS-PAGE and ONT Amplicon-Seq can be complementary approaches to better
characterize the consequences of mutations at the protein level.

5. Conclusions

Our results show that the ONT Amplicon-Seq technique is an accurate and rapid
method for multiplexed genotyping of full-length target genes in plant species with large
and complex genomes. Using ONT Amplicon-Seq, different variations ranging from
SNPs to in-frame indels can be easily detected in a short time. This enables the precise
identification of known alleles and the discovery of new alleles characterized by mutations
in coding and promoter regions. The obtained results provide useful information for the
selection of a desirable combination of HMW-GSs for wheat breeding.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/agronomy14010013/s1, Table S1: 23 cultivars of spring
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amplification of glutenin subunits; Table S4: Primers used for SV identifications; Table S5: The HMW
glutenin subunit composition of bread wheat cultivars.
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