Advances in Wheat Molecular Genetics and Genomics

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Crop Breeding and Genetics".

Deadline for manuscript submissions: closed (31 March 2024) | Viewed by 3099

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Interests: wheat molecular genetics and genomics

E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Institute of Advanced Agricultural Sciences, Peking University, Weifang, China
Interests: identification and characterization of disease resistance genes in wheat; mapping, cloning, and functional analysis of R genes; multi-omics approaches to understanding the molecular bases of disease resistance; molecular-marker-assisted breeding for enhancing disease resistance
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Wheat is one of the earliest crops of the Old World. It originated from the Fertile Crescent of the Near East, and today still serves as a major source of global food. It is estimated that wheat production needs to double by 2050 to nourish the rising population; however, the current yield increase is far below what is required, and has been threatened by climatic stress. A further yield gain must be achieved by developing smarter cultivars with higher productivity and better resilience in a changing climate. To meet this goal, understanding the genetic basis of wheat for yield formation and stress resistance is essential for molecular manipulation in breeding. The research progress in these fields has been slow due to the polyploidy of the crop and its complex genome. Recent advances in genome sequencing, transformation and gene-editing technologies provide great opportunities for functional genomics in wheat.

This Special Issue welcomes original research papers and review articles on recent achievements in any aspect of wheat molecular genetics and genomics, with emphasis on the broad areas of yield and quality improvement, ideal plant architecture, resistance to biotic and abiotic stresses, germplasm exploitation and evolution, genome structure and sequencing in Triticeae, and molecular breeding technologies.

Dr. Quan Xie
Prof. Dr. Jian Ma
Dr. Shisheng Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wheat
  • genetics
  • genomics
  • grain yield
  • end-use quality
  • plant architecture
  • stress resistance
  • germplasm
  • genome sequencing
  • molecular breeding

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2451 KiB  
Article
Nanopore Amplicon Sequencing Allows Rapid Identification of Glutenin Allelic Variants in a Wheat Collection
by Ekaterina Polkhovskaya, Ivan Gruzdev, Evgeniy Moskalev, Pavel Merkulov, Anna Bolotina, Alexander Soloviev and Ilya Kirov
Agronomy 2024, 14(1), 13; https://doi.org/10.3390/agronomy14010013 - 20 Dec 2023
Viewed by 1100
Abstract
Genetic variation in high molecular weight glutenin (HMW-GS) genes is tightly linked with the breadmaking quality of wheat. Hundreds of different alleles have been identified in HMW-GS genes worldwide. Such huge variability makes it difficult to distinguish them using conventional genotyping methods (for [...] Read more.
Genetic variation in high molecular weight glutenin (HMW-GS) genes is tightly linked with the breadmaking quality of wheat. Hundreds of different alleles have been identified in HMW-GS genes worldwide. Such huge variability makes it difficult to distinguish them using conventional genotyping methods (for example, SDS-PAGE, SNP detection, etc.). Here, we exploited the nanopore amplicon sequencing technique (Amplicon-Seq) to uncover genetic variants distributed along the full-length sequence of six HMW-GSs, including the promoter and protein-coding regions. We analyzed 23 wheat accessions for allelic variants of HMW-GSs using the Amplicon-Seq and SDS-PAGE methods. We obtained sufficient (>50×) target gene coverage by ONT reads in just one hour. Using the obtained data, we identified numerous single nucleotide polymorphisms and InDels in the protein coding and promoter regions. Moreover, Amplicon-Seq allowed for the identification of new alleles (Glu-A1x1-T) of the Glu-1Ax gene that could not be recognized by SDS-PAGE. Collectively, our results showed that Amplicon-Seq is a rapid, multiplexed, and efficient method for high-throughput genotyping of full-length genes in large and complex genomes. This opens new avenues for the assessment of target gene variation to select novel alleles and create unique combinations of desirable traits in plant breeding programs. Full article
(This article belongs to the Special Issue Advances in Wheat Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 7611 KiB  
Article
Genome-Wide Identification, Characterization, and Expression Profiling of TaDUF668 Gene Family in Triticum aestivum
by Xiaohui Yin, Yi Yuan, Xiaowen Han, Shuo Han, Yiting Li, Dongfang Ma, Zhengwu Fang, Shuangjun Gong and Junliang Yin
Agronomy 2023, 13(8), 2178; https://doi.org/10.3390/agronomy13082178 - 20 Aug 2023
Cited by 6 | Viewed by 1443
Abstract
DUF668s, a plant-specific gene family, encode proteins containing domain of unknown function (DUF) domains. Despite their essential functions, there is a lack of insight into Triticum aestivum TaDUF668s. Here, 31 TaDUF668s were identified from the wheat genome; according to phylogenetic relationships, they [...] Read more.
DUF668s, a plant-specific gene family, encode proteins containing domain of unknown function (DUF) domains. Despite their essential functions, there is a lack of insight into Triticum aestivum TaDUF668s. Here, 31 TaDUF668s were identified from the wheat genome; according to phylogenetic relationships, they were named TaDUF668-01 to TaDUF668-31. All TaDUF668s were hydrophilic and unstable proteins. There were 22 TaDUF668s that showed subcellular localization in nucleus. Evolutionary analysis demonstrated that TaDUF668s had undergone strong purifying selection, and fragment duplication plays major role in TaDUF668 family expansion. Cis-element prediction displayed that over 90% of TaDUF668 promoter regions contain the growth and abiotic responsiveness element. Consistently, expression profiling showed that TaDUF668s were highly induced in five wheat growth and development stages, seven main different tissues, five abiotic stresses, and five pathogenic stresses. In total, 12 TaDUF668s were targeted by 20 miRNAs through the inhibition of translation and cleavage patterns. RT-qPCR results confirmed that the expression of six TaDUF668s was significantly regulated by NaCl, PEG, F. graminearum, and P. striiformis; nevertheless, the regulation patterns were different. In summary, through systematic identification, characterization, evolutionary analysis, and expression profiling, a comprehensive understanding of TaDUF668 has been obtained, which lays a foundation for further functional studies of TaDUF668. Full article
(This article belongs to the Special Issue Advances in Wheat Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop