Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (508)

Search Parameters:
Keywords = wet fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4874 KiB  
Article
Influence of Vegetation Cover and Soil Properties on Water Infiltration: A Study in High-Andean Ecosystems of Peru
by Azucena Chávez-Collantes, Danny Jarlis Vásquez Lozano, Leslie Diana Velarde-Apaza, Juan-Pablo Cuevas, Richard Solórzano and Ricardo Flores-Marquez
Water 2025, 17(15), 2280; https://doi.org/10.3390/w17152280 - 31 Jul 2025
Viewed by 173
Abstract
Water infiltration into soil is a key process in regulating the hydrological cycle and sustaining ecosystem services in high-Andean environments. However, limited information is available regarding its dynamics in these ecosystems. This study evaluated the influence of three types of vegetation cover and [...] Read more.
Water infiltration into soil is a key process in regulating the hydrological cycle and sustaining ecosystem services in high-Andean environments. However, limited information is available regarding its dynamics in these ecosystems. This study evaluated the influence of three types of vegetation cover and soil properties on water infiltration in a high-Andean environment. A double-ring infiltrometer, the Water Drop Penetration Time (WDPT, s) method, and laboratory physicochemical characterization were employed. Soils under forest cover exhibited significantly higher quasi-steady infiltration rates (is, 0.248 ± 0.028 cm·min−1) compared to grazing areas (0.051 ± 0.016 cm·min−1) and agricultural lands (0.032 ± 0.013 cm·min−1). Soil organic matter content was positively correlated with is. The modified Kostiakov infiltration model provided the best overall fit, while the Horton model better described infiltration rates approaching is. Sand and clay fractions, along with K+, Ca2+, and Mg2+, were particularly significant during the soil’s wet stages. In drier stages, increased Na+ concentrations and decreased silt content were associated with higher water repellency. Based on WDPT, agricultural soils exhibited persistent hydrophilic behavior even after drying (median [IQR] from 0.61 [0.38] s to 1.24 [0.46] s), whereas forest (from 2.84 [3.73] s to 3.53 [24.17] s) and grazing soils (from 4.37 [1.95] s to 19.83 [109.33] s) transitioned to weakly or moderately hydrophobic patterns. These findings demonstrate that native Andean forest soils exhibit a higher infiltration capacity than soils under anthropogenic management (agriculture and grazing), highlighting the need to conserve and restore native vegetation cover to strengthen water resilience and mitigate the impacts of land-use change. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

20 pages, 3271 KiB  
Article
Calculation Model for the Degree of Hydration and Strength Prediction in Basalt Fiber-Reinforced Lightweight Aggregate Concrete
by Yanqun Sun, Haoxuan Jia, Jianxin Wang, Yanfei Ding, Yanfeng Guan, Dongyi Lei and Ying Li
Buildings 2025, 15(15), 2699; https://doi.org/10.3390/buildings15152699 - 31 Jul 2025
Viewed by 232
Abstract
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In [...] Read more.
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In this study, high-strength LWAC was developed by incorporating low water absorption LWAs, various volume fractions of basalt fiber (BF) (0.1%, 0.2%, and 0.3%), and a ternary cementitious system consisting of 70% cement, 20% fly ash, and 10% silica fume. The hydration-related properties were evaluated through isothermal calorimetry test and high-temperature calcination test. The results indicate that incorporating 0.1–0.3% fibers into the cementitious system delays the early hydration process, with a reduced peak heat release rate and a delayed peak heat release time compared to the control group. However, fitting the cumulative heat release over a 72-h period using the Knudsen equation suggests that BF has a minor impact on the final degree of hydration, with the difference in maximum heat release not exceeding 3%. Additionally, the calculation model for the final degree of hydration in the ternary binding system was also revised based on the maximum heat release at different water-to-binder ratios. The results for chemically bound water content show that compared with the pre-wetted LWA group, under identical net water content conditions, the non-pre-wetted LWA group exhibits a significant reduction at three days, with a decrease of 28.8%; while under identical total water content conditions it shows maximum reduction at ninety days with a decrease of 5%. This indicates that pre-wetted LWAs help maintain an effective water-to-binder ratio and facilitate continuous advancement in long-term hydration reactions. Based on these results, influence coefficients related to LWAs for both final degree of hydration and hydration rate were integrated into calculation models for degrees of hydration. Ultimately, this study verified reliability of strength prediction models based on degrees of hydration. Full article
Show Figures

Figure 1

5 pages, 665 KiB  
Proceeding Paper
Opportunities of Coupling Hydrothermal Liquefaction with Wet Oxidation: Significance of Appropriate Thermodynamic Model Selection in Process Modeling
by Arif Hussain, Bertram Thoning Hvass Søgaard and Konstantinos Anastasakis
Proceedings 2025, 121(1), 7; https://doi.org/10.3390/proceedings2025121007 - 17 Jul 2025
Viewed by 188
Abstract
This study examines the significance of thermodynamic model selection to improve predictions when modeling a wet oxidation (WO) process. WO is a promising technology for treating the highly concentrated process water stream from hydrothermal liquefaction (HTL) while generating heat, due to the exothermic [...] Read more.
This study examines the significance of thermodynamic model selection to improve predictions when modeling a wet oxidation (WO) process. WO is a promising technology for treating the highly concentrated process water stream from hydrothermal liquefaction (HTL) while generating heat, due to the exothermic oxidation reactions, leading to a potential integrated HTL-WO autothermal process. However, the harsh process conditions employed fail to describe oxygen solubility accurately, leading to major deviations in predicted COD reduction, heat generation, vapor fraction, and final design. To accurately capture oxygen solubility at elevated temperatures and pressures, experimental oxygen solubility data were regressed using activity coefficient models. This yielded improved oxygen solubility predictions at 280–350 °C, more realistic vapor fractions and heat outputs, and COD reduction close to experimental values. Full article
Show Figures

Figure 1

19 pages, 1165 KiB  
Article
Expansion of Mechanical Biological Residual Treatment Plant with Fermentation Stage for Press Water from Organic Fractions Involving a Screw Press
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Recycling 2025, 10(4), 141; https://doi.org/10.3390/recycling10040141 - 16 Jul 2025
Viewed by 285
Abstract
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the [...] Read more.
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the employed screw press, such as pressure, liquid-to-MSFF, feeding quantity per hour, and press basket mesh size, to enhance volatile solids and biogas recovery in the generated press water for anaerobic digestion. Experiments were performed at the full-scale facility to evaluate the efficiency of screw press extraction with other pretreatment methods, like press extrusion, wet pulping, and hydrothermal treatment. The results indicated that hydrolysis of the organic fractions in MSFF was the most important factor for improving organic extraction from the MSFF to press water for fermentation. Optimal hydrolysis efficiency was achieved with a digestate and process water-to-MSFF of approximately 1000 L/ton, with a feeding rate between 8.8 and 14 tons per hour. Increasing pressure from 2.5 to 4.0 bar had minimal impact on press water properties or biogas production, regardless of the press basket size. The highest volatile solids (29%) and biogas (50%) recovery occurred at 4.0 bar pressure with a 1000 L/ton liquid-to-MSFF. Further improvements could be achieved with longer mixing times before pressing. These findings demonstrate the technical feasibility of the pressing system for preparing an appropriate substrate for the fermentation process, underscoring the potential for optimizing the system. However, further research is required to assess the cost–benefit balance. Full article
Show Figures

Figure 1

17 pages, 4206 KiB  
Article
Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media
by Yuhao Ai, Zhifeng Wan, Han Xu, Yan Li, Yijia Sun, Jingya Xi, Hongfan Hou and Yihang Yang
Water 2025, 17(14), 2115; https://doi.org/10.3390/w17142115 - 16 Jul 2025
Viewed by 281
Abstract
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by [...] Read more.
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by soil matrix particle size distribution. Changes in the DNE across porous media with discrete particle size fractions are investigated via stepwise drying experiments. Through quantification of saturation–capillary pressure hysteresis and DNE metrics, three critical signatures are identified: (1) the temporal lag between peak capillary pressure and minimum water saturation; (2) the pressure gap between transient and equilibrium states; and (3) residual water saturation. In the four experimental sets, with the finest material (Test 1), the peak capillary pressure consistently precedes the minimum water saturation by up to 60 s. Conversely, with the coarsest material (Test 4), peak capillary pressure does not consistently precede minimum saturation, with a maximum lag of only 30 s. The pressure gap between transient and equilibrium states reached 14.04 cm H2O in the finest sand, compared to only 2.65 cm H2O in the coarsest sand. Simultaneously, residual water saturation was significantly higher in the finest sand (0.364) than in the coarsest sand (0.086). The results further reveal that the intensity of the DNE scales inversely with particle size and linearly with wetting phase saturation (Sw), exhibiting systematic decay as Sw decreases. Coarse media exhibit negligible hysteresis due to suppressed capillary retention; this is in stark contrast with fine sands, in which the DNE is observed to persist in advanced drying stages. These results establish pore geometry and capillary dominance as fundamental factors controlling non-equilibrium fluid dynamics, providing a mechanistic framework for the refinement of multi-phase flow models in heterogeneous porous systems. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

18 pages, 2645 KiB  
Review
Pre-Treatment Equipment for Processing Grape Marc into Valorised By-Products: A Review
by Stepan Akterian, Kostadin Fikiin, Georgi Georgiev and Angel Terziev
Sustainability 2025, 17(13), 6188; https://doi.org/10.3390/su17136188 - 5 Jul 2025
Viewed by 483
Abstract
While traditional disposal of solid waste from the global wine industry causes significant environmental burden and hazards, a range of value-added by-products can be produced from the grape marc. This review focuses therefore on crucial sustainability-enhancing technologies for pomace dewatering and separation, which [...] Read more.
While traditional disposal of solid waste from the global wine industry causes significant environmental burden and hazards, a range of value-added by-products can be produced from the grape marc. This review focuses therefore on crucial sustainability-enhancing technologies for pomace dewatering and separation, which constitute a mandatory stage in obtaining storage-stable by-products and final value-added commodities. A number of dryers and separators were considered for pre-treatment of wet grape marc and analysed in terms of their design characteristics, functionality, feasibility, throughput and efficiency. A multi-criteria decision analysis was carried out to compare, rank and select the equipment which is most suitable for the purpose. It was found out that the rotary drum dryer and the drum screen separator with internal blade rotor are the best candidates to fulfil the technology requirements, while the flowsheet that includes an initial separation followed by drying of the resulting fractions is a rather attractive option. Valorising grape waste worldwide contributes substantially to achieving the United Nations Sustainable Development Goals for responsible consumption and production, mitigating climate change, caring for health and well-being, preserving land life and combating hunger. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

35 pages, 5144 KiB  
Systematic Review
A Systematic Review of Two-Phase Expansion Losses: Challenges, Optimization Opportunities, and Future Research Directions
by Muhammad Syaukani, Szymon Lech, Sindu Daniarta and Piotr Kolasiński
Energies 2025, 18(13), 3504; https://doi.org/10.3390/en18133504 - 2 Jul 2025
Cited by 1 | Viewed by 363
Abstract
Two-phase expansion processes have emerged as a promising technology for enhancing energy efficiency in power generation, refrigeration, waste heat recovery systems (for example, partially evaporated organic Rankine cycle, organic flash cycle, and trilateral flash cycle), oil and gas, and other applications. However, despite [...] Read more.
Two-phase expansion processes have emerged as a promising technology for enhancing energy efficiency in power generation, refrigeration, waste heat recovery systems (for example, partially evaporated organic Rankine cycle, organic flash cycle, and trilateral flash cycle), oil and gas, and other applications. However, despite their potential, widespread adoption is hindered by inherent challenges, particularly energy losses that reduce operational efficiency. This review systematically evaluates the current state of two-phase expansion technologies, focusing on the root causes, impacts, and mitigation strategies for expansion losses. This work used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Using the PRISMA framework, 52 relevant publications were identified from Scopus and Web of Science to conduct the systematic review. A preliminary co-occurrence analysis of keywords was also conducted using VOSviewer version 1.6.20. Three clusters were observed in this co-occurrence analysis. However, the results may not be significant. Therefore, the extended work was done through a comprehensive analysis of experimental and simulation studies from the literature. This study identifies critical loss mechanisms in key components of two-phase expanders, such as the nozzle, diffuser, rotor, working chamber, and vaneless space. Also, losses arising from wetness, such as droplet formation, interfacial friction, and non-equilibrium phase transitions, are examined. These phenomena degrade performance by disrupting flow stability, increasing entropy generation, and causing mechanical erosion. Several losses in the turbine and volumetric expanders operating in two-phase conditions are reported. Ejectors, throttling valves, and flashing flow systems that exhibit similar challenges of losses are also discussed. This review discusses the mitigation and the strategy to minimize the two-phase expansion losses. The geometry of the inlet of the two-phase expanders plays an important role, which also needs improvement to minimize losses. The review highlights recent advancements in addressing these challenges and shows optimization opportunities for further research. Full article
(This article belongs to the Special Issue Design and Experimental Study of Organic Rankine Cycle System)
Show Figures

Figure 1

15 pages, 3183 KiB  
Article
Platinum-Functionalized Hierarchically Structured Flower-like Nickel Ferrite Sheets for High-Performance Acetone Sensing
by Ziwen Yang, Zhen Sun, Yuhao Su, Caixuan Sun, Peishuo Wang, Shaobin Yang, Xueli Yang and Guofeng Pan
Chemosensors 2025, 13(7), 234; https://doi.org/10.3390/chemosensors13070234 - 26 Jun 2025
Viewed by 541
Abstract
Acetone detection is crucial for non-invasive health monitoring and environmental safety, so there is an urgent demand to develop high-performance gas sensors. Here, platinum (Pt)-functionalized layered flower-like nickel ferrite (NiFe2O4) sheets were efficiently fabricated via facile hydrothermal synthesis and [...] Read more.
Acetone detection is crucial for non-invasive health monitoring and environmental safety, so there is an urgent demand to develop high-performance gas sensors. Here, platinum (Pt)-functionalized layered flower-like nickel ferrite (NiFe2O4) sheets were efficiently fabricated via facile hydrothermal synthesis and wet chemical reduction processes. When the Ni/Fe molar ratio is 1:1, the sensing material forms a Ni/NiO/NiFe2O4 composite, with performance further optimized by tuning Pt loading. At 1.5% Pt mass fraction, the sensor shows a high acetone response (Rg/Ra = 58.33 at 100 ppm), a 100 ppb detection limit, fast response/recovery times (7/245 s at 100 ppm), and excellent selectivity. The enhancement in performance originates from the synergistic effect of the structure and Pt loading: the layered flower-like morphology facilitates gas diffusion and charge transport, while Pt nanoparticles serve as active sites to lower the activation energy of acetone redox reactions. This work presents a novel strategy for designing high-performance volatile organic compound (VOC) sensors by combining hierarchical nanostructured transition metal ferrites with noble metal modifications. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Graphical abstract

19 pages, 1954 KiB  
Article
Biochar Makes Soil Organic Carbon More Labile, but Its Carbon Sequestration Potential Remains Large in an Alternate Wetting and Drying Paddy Ecosystem
by Wanning Dai, Zhengrong Bao, Jun Meng, Taotao Chen and Xiao Liang
Agronomy 2025, 15(7), 1547; https://doi.org/10.3390/agronomy15071547 - 25 Jun 2025
Cited by 1 | Viewed by 422
Abstract
Given the worsening global climate change that drives drought frequency and irrigation water shortages, implementing water-conserving practices like alternate wetting and drying (AWD) is now critically urgent. Biochar is widely used for soil carbon sequestration. However, there is limited information on the effects [...] Read more.
Given the worsening global climate change that drives drought frequency and irrigation water shortages, implementing water-conserving practices like alternate wetting and drying (AWD) is now critically urgent. Biochar is widely used for soil carbon sequestration. However, there is limited information on the effects of biochar on soil organic carbon (SOC) and its labile fractions in paddy fields, especially under AWD. A two-year field experiment was conducted with two irrigation regimes (CF: continuous flooding irrigation; AWD) as the main plots and 0 (B0) and 20 t ha−1 (B1) biochar as sub-plots. AWD had no effect on the SOC and particulate organic carbon (POC) content, but increased the dissolved organic carbon (DOC), microbial biomass carbon (MBC), easily oxidizable organic carbon (EOC), light fraction organic carbon (LFOC), and carbon pool management index (CPMI) at 0–10 cm depths, by 24.4–56.4%, 12.6–17.7%, 9.2–16.8%, 25.6–28.1%, and 11.3–18.6%, respectively. Biochar increased SOC while also increasing DOC, MBC, EOC, LFOC, POC, and CPMI at 0–20 cm depths, by 18.4–53.3%, 14.7–70.2%, 17.4–22.3%, 10.2–27.6%, 95.2–188.3%, 46.6–224%, and 5.6–27.2, respectively, making SOC more labile under AWD. Our results highlight that biochar still holds great potential for improving soil quality and carbon sequestration under AWD, and the combination of biochar and AWD can achieve the synergistic optimization of the food–water–carbon sequestration trade-off, which is beneficial to sustainable agricultural production. Full article
(This article belongs to the Special Issue Biochar’s Role in the Sustainability of Agriculture)
Show Figures

Figure 1

17 pages, 3077 KiB  
Article
Development of Mannitol-Based Microparticles for Dry Powder Inhalers: Enhancing Pulmonary Delivery of NSAIDs
by Petra Party, Zsófia Ilona Piszman and Rita Ambrus
Pharmaceuticals 2025, 18(6), 923; https://doi.org/10.3390/ph18060923 - 19 Jun 2025
Viewed by 590
Abstract
Background/Objectives: Chronic lung diseases are among the leading causes of death worldwide. In the treatment of these diseases, non-steroidal anti-inflammatory drugs can be effective. We have previously developed an excipient formulation alongside a modern manufacturing protocol, which we aim to further investigate. We [...] Read more.
Background/Objectives: Chronic lung diseases are among the leading causes of death worldwide. In the treatment of these diseases, non-steroidal anti-inflammatory drugs can be effective. We have previously developed an excipient formulation alongside a modern manufacturing protocol, which we aim to further investigate. We have chosen two new model drugs, meloxicam (MX) and its water-soluble salt, meloxicam-potassium (MXP). The particles in dry powder inhaler (DPI) formulation were expected to have a spherical shape, fast drug release, and good aerodynamic properties. Methods: The excipients were poloxamer-188, mannitol, and leucine. The samples were prepared by spray drying, preceded by solution preparation and wet grinding. Particle size was determined by laser diffraction, shape by scanning electron microscopy (SEM), crystallinity by powder X-ray diffraction (PXRD), interactions by Fourier-transform infrared spectroscopy (FT-IR), in vitro drug dissolution by paddle apparatus, and in vitro aerodynamic properties by Andersen cascade impactor and Spraytec® device. Results: We achieved the proper particle size (<5 μm) and spherical shape according to laser diffraction and SEM. The XRPD showed partial amorphization. FT-IR revealed no interaction between the materials. During the in vitro dissolution tests, more than 90% of MX and MXP were released within the first 5 min. The best products exhibited an aerodynamic diameter of around 4 µm, a fine particle fraction around 50%, and an emitted fraction over 95%. The analysis by Spraytec® supported the suitability for lung targeting. Conclusions: The developed preparation process and excipient system can be applied in the development of different drugs containing DPIs. Full article
(This article belongs to the Special Issue Recent Advances in Inhalation Therapy)
Show Figures

Graphical abstract

21 pages, 16825 KiB  
Article
Insights into the Optical and Physical Characteristics of Low Clouds and Aerosols in Africa from Satellite Lidar Measurements
by Bo Su, Dekai Lin, Xiaozhe Lv, Shuo Kong, Wenkai Song and Miao Zhang
Atmosphere 2025, 16(6), 717; https://doi.org/10.3390/atmos16060717 - 13 Jun 2025
Viewed by 321
Abstract
This study presents a systematic analysis of the optical-physical properties of low clouds and their vertical interaction mechanisms with aerosols over three African sub-regions (A: North African Desert; B: Congo Basin; C: Southeastern Plateau and Coastal Zone) using CALIPSO satellite vertical observations taken [...] Read more.
This study presents a systematic analysis of the optical-physical properties of low clouds and their vertical interaction mechanisms with aerosols over three African sub-regions (A: North African Desert; B: Congo Basin; C: Southeastern Plateau and Coastal Zone) using CALIPSO satellite vertical observations taken between 2006 and 2021. The results revealed distinct spatiotemporal variations: For example, the low-cloud aerosol optical depth (AOD) in Region A peaked during December–February, while Regions B and C exhibited higher values from June to November, with elevated dry-season and daytime levels. A positive correlation emerged between low-cloud AOD and its fractional contribution. Regional contrasts in low-cloud vertical structure were evident, with Region C showing the highest seasonal mean cloud base/top heights and Region A the lowest. The depolarisation ratio of low clouds was higher in desert areas (Region A) but lower in rainforest regions (Region B), while the SRlc (Low-cloud spectral reflectance ratio) was maximised in the Congo Basin (Region B), with wet-season and daytime enhancements. The near-surface aerosol AOD in Regions A and B was positively correlated with low-cloud AOD proportion (PAODlc). Across all regions, the near-surface aerosol layer top height showed positive correlations with the low-cloud base height and vertical extent, while the height of the bottom of the near-surface aerosol layer was positively aligned with the low-cloud base height. For Region C, there were negative correlations between near-surface aerosol layer heights and PAODlc, whereas the springtime aerosol parameters in Region A exhibited positive PAODlc correlations. These findings advance the current understanding of aerosol sources and ecosystem impacts, and provide critical insights for refining aerosol and low-cloud parameterisations in climate models. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 6561 KiB  
Article
The Ecological Quality Variation of Vegetation on the Tibetan Plateau from 2001 to 2020 and Its Relationship with Westerly Monsoon Synergy
by Jingjing Lin, Ting Miao, Guangsheng Zhou, Qiang Zhang, Junbao An, Feng Fang, Xiaomin Lv and Huihui Dang
Agronomy 2025, 15(6), 1317; https://doi.org/10.3390/agronomy15061317 - 28 May 2025
Viewed by 358
Abstract
This study evaluates the spatio-temporal variations in vegetation ecological quality (EQI) on the Tibetan Plateau (TP) from 2001 to 2020 by integrating net primary productivity (NPP) and fractional vegetation cover (FVC). The results show that annual EQI increased at 0.8 decade−1, [...] Read more.
This study evaluates the spatio-temporal variations in vegetation ecological quality (EQI) on the Tibetan Plateau (TP) from 2001 to 2020 by integrating net primary productivity (NPP) and fractional vegetation cover (FVC). The results show that annual EQI increased at 0.8 decade−1, with 65.6% of areas exhibiting improvement, particularly in sparse grasslands and mixed forests. NPP and FVC rose by 5.4 g C m−2 decade−1 and 0.008 decade−1, respectively, displaying southeast–northwest spatial gradients. Climate warming (0.18 °C decade−1) and wetting (27.5 mm decade−1) drove EQI trends, with temperature positively correlating with EQI in eastern forests (29% mixed forests) but negatively in southern grasslands. Atmospheric circulation further modulated EQI: enhanced zonal water vapor flux and monsoon indices (IVarea, EMI) significantly impacted 10–25% of areas. Despite persistent improvement trends (13.9% of TP), 5.9% of regions face sustained degradation risks, emphasizing the need for climate-adaptive vegetation management. This synthesis of ecological-climate coupling provides actionable insights for conservation on the warming TP. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

31 pages, 2478 KiB  
Article
Wetted and Projected Area Relationships in Commercial Airplane Design
by Pasquale M. Sforza
Aerospace 2025, 12(6), 462; https://doi.org/10.3390/aerospace12060462 - 23 May 2025
Viewed by 523
Abstract
Using generally available geometric data, calculations of wetted and projected areas of major components, that is, wings, fuselages, empennage, and engine nacelles, for 55 airplanes were compiled into a database comprising four groups: commercial, supersonic, all-wing, and military airplanes. Attention is primarily focused [...] Read more.
Using generally available geometric data, calculations of wetted and projected areas of major components, that is, wings, fuselages, empennage, and engine nacelles, for 55 airplanes were compiled into a database comprising four groups: commercial, supersonic, all-wing, and military airplanes. Attention is primarily focused on subsonic and supersonic commercial airliners, and the wetted areas of the components of each are discussed and shown to be reasonably estimated by simple functions of airplane geometry, like gross wing planform area, fuselage length and diameter. Comparisons of total wetted areas of 13 commercial airplanes and 5 military airplanes with results reported by 14 independent studies showed good agreement. Total wetted areas for all the airplanes were shown to be well-represented by simple functions of wing planform area S alone. Relationships between the projected and wetted areas of the commercial airplanes were explored to illustrate the implications for airplane design, including accommodation of fuselage stretch, trends in component wetted area fractions, correspondence of wetted areas to planform envelope—that is, the product of wingspan and fuselage length, relation of frontal areas to wetted areas, and application of a planform configuration parameter, B = (bAR)3/16(1 + 3.5/AR9/4)−1/2, to estimation of (L/D)max—and prediction of wetted area as a function of gross weight based on the square–cube relation between area and volume. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 3728 KiB  
Article
Effect of Vegetation Degradation on Soil Nitrogen Components and N-Cycling Enzyme Activities in a Wet Meadow on the Qinghai–Tibetan Plateau
by Wanpeng He, Weiwei Ma, Jianan Du, Wenhua Chang and Guang Li
Plants 2025, 14(10), 1549; https://doi.org/10.3390/plants14101549 - 21 May 2025
Viewed by 436
Abstract
The responses of soil nitrogen component dynamics and enzyme activities to vegetation degradation in wet meadows ecosystems remain unclear. This study employed a combination of field surveys and laboratory experiments to investigate soil nitrogen components and nitrogen cycling enzyme activities under different intensities [...] Read more.
The responses of soil nitrogen component dynamics and enzyme activities to vegetation degradation in wet meadows ecosystems remain unclear. This study employed a combination of field surveys and laboratory experiments to investigate soil nitrogen components and nitrogen cycling enzyme activities under different intensities of vegetation degradation and during the vegetation growth season in a wet meadow on the Qinghai–Tibetan Plateau. The aim was to explore the responses of soil nitrogen components and nitrogen cycling enzyme activities to vegetation degradation and their interrelationships. The results showed that vegetation degradation significantly reduced TN, NH4+-N, MBN, PRO, and NiR, and increased NO3-N, URE, and NR. Soil nitrogen components and enzyme activities exhibited seasonal fluctuations across different degradation levels during the growing season. The Pearson correlation analysis revealed a significant positive correlation between temperature, moisture, nitrogen fractions, and nitrogen cycle-related enzyme activities, as well as between the nitrogen fractions and the enzyme activities themselves. Partial Least Squares Path Modeling (PLS-PM) elucidated the relationships between soil properties and nitrogen components under different degradation levels, explaining 78% of the variance in nitrogen components. Degradation level, growth season, and soil physical properties had indirect associations with nitrogen components, whereas soil enzyme activities exerted a direct positive influence on nitrogen components. Our research revealed the universal impact mechanism of environmental factors, soil characteristics, and vegetation degradation on nitrogen cycling in a wet meadow, thereby making a significant contribution to the restoration and maintenance of functional integrity in alpine wetland ecosystems. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

21 pages, 6029 KiB  
Article
Exploring Perhydro-Benzyltoluene Dehydrogenation Using Sulfur-Doped PtMo/Al2O3 Catalysts
by Kevin Alconada, Fatima Mariño, Ion Agirre and Victoria Laura Barrio
Catalysts 2025, 15(5), 485; https://doi.org/10.3390/catal15050485 - 16 May 2025
Viewed by 658
Abstract
This study investigates the dehydrogenation of perhydrobenzyltoluene, a Liquid Organic Hydrogen Carrier (LOHC), using sulfur-doped bimetallic PtMo/Al2O3 catalysts. Based on previous research that highlighted the superior performance of PtMo catalysts over monometallic Pt catalysts, this work focuses on minimizing byproduct [...] Read more.
This study investigates the dehydrogenation of perhydrobenzyltoluene, a Liquid Organic Hydrogen Carrier (LOHC), using sulfur-doped bimetallic PtMo/Al2O3 catalysts. Based on previous research that highlighted the superior performance of PtMo catalysts over monometallic Pt catalysts, this work focuses on minimizing byproduct formation, specifically methylfluorene, through sulfur doping. Catalysts with low platinum content (<0.3 wt.%) were synthesized using the wet impregnation method by varying sulfur concentrations to study their impact on catalytic activity. Characterization techniques, including CO–DRIFT and CO–TPD, revealed the role of sulfur in selectively blocking low-coordinated Pt sites, thus improving selectivity and maintaining high dispersion. Catalytic tests revealed that samples with ≥0.1 wt.% sulfur achieved up to a threefold reduction in methylfluorene formation compared to the unpromoted PtMo/Al2O3 sample, with a molar fraction below 2% at 240 min. In parallel, these samples reached a degree of dehydrogenation (DoD) above 85% within 240 min, demonstrating that improved selectivity can be achieved without compromising catalytic performance. Full article
(This article belongs to the Special Issue Catalysts for Energy Storage)
Show Figures

Graphical abstract

Back to TopTop