Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = wave-ice interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6522 KiB  
Article
Arctic Wave Climate Including Marginal Ice Zone and Future Climate Scenario
by Hamid Goharnejad, William Perrie, Bechara Toulany, Minghong Zhang, Zhenxia Long, Michael Casey and Michael H. Meylan
J. Mar. Sci. Eng. 2025, 13(8), 1562; https://doi.org/10.3390/jmse13081562 - 14 Aug 2025
Abstract
This study examines the variation and trends in wave parameters across the Arctic, including the marginal ice zone (MIZ), by comparing historical data (1980–2009) with projections for a future climate scenario (2070–2099) as outlined by the IPCC. Utilizing the WAVEWATCH III (WW3) numerical [...] Read more.
This study examines the variation and trends in wave parameters across the Arctic, including the marginal ice zone (MIZ), by comparing historical data (1980–2009) with projections for a future climate scenario (2070–2099) as outlined by the IPCC. Utilizing the WAVEWATCH III (WW3) numerical wave prediction model, we simulate the wave climate for these periods, incorporating advanced parameterizations to account for wave-ice interactions within the MIZ. Our analysis focuses on the extreme values of significant wave heights (Hs), mean wave periods (T0), and dominant mean wave direction (MWD), calculated for both winter and summer seasons. To assess changes in wave climate under future climate scenarios, we first use a similarity matrix, applying the kappa variable and cell-by-cell numerical comparison methods to assess model congruence across different conditions. We also follow a standard approach, by assessing the extreme wave conditions for 20 and 100-year return periods using standard stochastic models, including Gumbel, exponential, and Weibull distributions. Full article
Show Figures

Figure 1

14 pages, 2075 KiB  
Article
Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause
by Arseniy Sokolov, Elena Savenkova, Andrey Koval, Nikolai Gavrilov, Karina Kravtsova, Kseniia Didenko and Tatiana Ermakova
Atmosphere 2025, 16(8), 922; https://doi.org/10.3390/atmos16080922 - 30 Jul 2025
Viewed by 275
Abstract
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating [...] Read more.
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating by PMC crystals has been developed, the main feature of which is to incorporate the thermal properties of ice and the interaction of cloud particles with the environment. Parametrization is based on PMCs zero-dimensional (0-D) model and uses temperature, pressure, and water vapor data in the 80–90 km altitude range retrieved from Solar Occultation for Ice Experiment (SOFIE) measurements. The calculations are made for 14 PMC seasons in both hemispheres with the summer solstice as the central date. The obtained results show that PMCs can make a significant contribution to the heat balance of the upper atmosphere, comparable to the heating caused, for example, by the dissipation of atmospheric gravity waves (GWs). The interhemispheric differences in heating are manifested mainly in the altitude structure: in the Southern Hemisphere (SH), the area of maximum heating values is 1–2 km higher than in the Northern Hemisphere (NH), while quantitatively they are of the same order. The most intensive heating is observed at the lower boundary of the minimum temperature layer (below 150 K) and gradually weakens with altitude. The NH heating median value is 5.86 K/day, while in the SH it is 5.24 K/day. The lowest values of heating are located above the maximum of cloud ice concentration in both hemispheres. The calculated heating rates are also examined in the context of the various factors of temperature variation in the observed atmospheric layers. It is shown in particular that the thermal impact of PMC is commensurate with the influence of dissipating gravity waves at heights of the mesosphere and lower thermosphere (MLT), which parameterizations are included in all modern numerical models of atmospheric circulation. Hence, the developed parameterization can be used in global atmospheric circulation models for further study of the peculiarities of the thermodynamic regime of the MLT. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

36 pages, 11747 KiB  
Article
Numerical Study on Interaction Between the Water-Exiting Vehicle and Ice Based on FEM-SPH-SALE Coupling Algorithm
by Zhenting Diao, Dengjian Fang and Jingwen Cao
Appl. Sci. 2025, 15(15), 8318; https://doi.org/10.3390/app15158318 - 26 Jul 2025
Viewed by 179
Abstract
The icebreaking process of water-exiting vehicles involves complex nonlinear interactions as well as multi-physical field coupling effects among ice, solids, and fluids, which poses enormous challenges for numerical calculations. Addressing the low solution accuracy of traditional grid methods in simulating large deformation and [...] Read more.
The icebreaking process of water-exiting vehicles involves complex nonlinear interactions as well as multi-physical field coupling effects among ice, solids, and fluids, which poses enormous challenges for numerical calculations. Addressing the low solution accuracy of traditional grid methods in simulating large deformation and destruction of ice layers, a numerical model was established based on the FEM-SPH-SALE coupling algorithm to study the dynamic characteristics of the water-exiting vehicle on the icebreaking process. The FEM-SPH adaptive algorithm was used to simulate the damage performance of ice, and its feasibility was verified through the four-point bending test and vehicle breaking ice experiment. The S-ALE algorithm was used to simulate the process of fluid/structure interaction, and its accuracy was verified through the wedge-body water-entry test and simulation. On this basis, numerical simulations were performed for different ice thicknesses and initial velocities of vehicles. The results show that the motion characteristics of the vehicle undergoes a sudden change during the ice-breaking. The head and middle section of the vehicle are subject to greater stress, which is related to the transmission of stress waves and inertial effect. The velocity loss rate of the vehicle and the maximum stress increase with the thickness of ice. The higher the initial velocity of the vehicle, the larger the acceleration and maximum stress in the process of the vehicle breaking ice. The acceleration peak is sensitive to the variation in the vehicle’s initial velocity but insensitive to the thickness of the ice. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

32 pages, 5641 KiB  
Review
Review of the Research on Underwater Explosion Ice-Breaking Technology
by Xiao Huang, Zi-Xian Zhong, Xiao Luo and Yuan-Dong Wang
J. Mar. Sci. Eng. 2025, 13(7), 1359; https://doi.org/10.3390/jmse13071359 - 17 Jul 2025
Viewed by 552
Abstract
Underwater explosion ice-breaking technology is critical for Arctic development and ice disaster prevention due to its high efficiency, yet it faces challenges in understanding the coupled dynamics of shock waves, pulsating bubbles, and heterogeneous ice fracture. This review synthesizes theoretical models, experimental studies, [...] Read more.
Underwater explosion ice-breaking technology is critical for Arctic development and ice disaster prevention due to its high efficiency, yet it faces challenges in understanding the coupled dynamics of shock waves, pulsating bubbles, and heterogeneous ice fracture. This review synthesizes theoretical models, experimental studies, and numerical simulations investigating damage mechanisms. Key findings establish that shock waves initiate brittle fracture via stress superposition while bubble pulsation drives crack propagation through pressure oscillation; optimal ice fragmentation depends critically on charge weight, standoff distance, and ice thickness. However, significant limitations persist in modeling sea ice heterogeneity, experimental replication of polar conditions, and computational efficiency. Future advancements require multiscale fluid–structure interaction models integrating brine migration effects, enhanced experimental diagnostics for transient processes, and optimized numerical algorithms to enable reliable predictions for engineering applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 859 KiB  
Article
Theoretical Description of Changes in Conformation and Symmetry of Supramolecular Systems During the Reception of a Molecular Signal
by Yuriy Gorovoy, Natalia Rodionova, German Stepanov, Anastasia Petrova, Nadezda Penkova and Nikita Penkov
Int. J. Mol. Sci. 2025, 26(13), 6411; https://doi.org/10.3390/ijms26136411 - 3 Jul 2025
Viewed by 276
Abstract
Aqueous solutions are not homogeneous and could be considered supramolecular systems. They can emit electromagnetic waves. Electromagnetic emission from one supramolecular system (“source”) can be received by another supramolecular system (“receiver”) without direct contact (distantly). This process represents a transfer of a “molecular [...] Read more.
Aqueous solutions are not homogeneous and could be considered supramolecular systems. They can emit electromagnetic waves. Electromagnetic emission from one supramolecular system (“source”) can be received by another supramolecular system (“receiver”) without direct contact (distantly). This process represents a transfer of a “molecular signal” and causes changes in conformation and symmetry of the “receiver”. The aim of the current work is to theoretically describe such changes primarily using a solution of the chiral protein interferon-gamma (IFNγ) as an example. We provide theoretical evidence that supramolecular systems of highly diluted (HD) aqueous solutions formed by self-assembly after mechanical activation generate a stronger molecular signal compared to non-activated solutions, due to their higher energy-saturated state. Additionally, molecular signals cause supramolecular systems with complex (including chiral) structures to undergo easier changes in conformation and symmetry compared to simpler systems, enhancing their biological activity. Using statistical physics, we obtained the parameter Ic, characterizing the magnitude of conformational and symmetry changes in supramolecular (including chiral) systems caused by molecular signals. In quantum information science, there is an analogue of the parameter Ic, which characterizes the entanglement depth of quantum systems. This study contributes to the understanding of the physico-chemical basis of distant molecular interactions and opens up new possibilities for controlling the properties of complex biological and chemical systems. Full article
(This article belongs to the Special Issue Supramolecular Chiral Self-Assembly and Applications)
Show Figures

Figure 1

25 pages, 3764 KiB  
Article
An Improved Size and Direction Adaptive Filtering Method for Bathymetry Using ATLAS ATL03 Data
by Lei Kuang, Mingquan Liu, Dongfang Zhang, Chengjun Li and Lihe Wu
Remote Sens. 2025, 17(13), 2242; https://doi.org/10.3390/rs17132242 - 30 Jun 2025
Viewed by 396
Abstract
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) employs a photon-counting detection mode with a 532 nm laser to obtain high-precision Earth surface elevation data and offers a new remote sensing method for nearshore bathymetry. [...] Read more.
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) employs a photon-counting detection mode with a 532 nm laser to obtain high-precision Earth surface elevation data and offers a new remote sensing method for nearshore bathymetry. The key issues in using ATLAS ATL03 data for bathymetry are achieving automatic and accurate extraction of signal photons in different water environments. Especially for areas with sharply fluctuating topography, the interaction of various impacts, such as topographic fluctuations, sea waves, and laser pulse direction, can result in a sharp change in photon density and distribution at the seafloor, which can cause the signal photon detection at the seafloor to be misinterpreted or omitted during analysis. Therefore, an improved size and direction adaptive filtering (ISDAF) method was proposed for nearshore bathymetry using ATLAS ATL03 data. This method can accurately distinguish between the original photons located above the sea surface, on the sea surface, and the seafloor. The size and direction of the elliptical density filter kernel automatically adapt to the sharp fluctuations in topography and changes in water depth, ensuring precise extraction of signal photons from both the sea surface and the seafloor. To evaluate the precision and reliability of the ISDAF, ATLAS ATL03 data from different water environments and seafloor terrains were used to perform bathymetric experiments. Airborne LiDAR bathymetry (ALB) data were also used to validate the bathymetric accuracy and reliability. The experimental findings show that the ISDAF consistently exhibits effectiveness in detecting and retrieving signal photons, regardless of whether the seafloor terrain is stable or dynamic. After applying refraction correction, the high accuracy of bathymetry was evidenced by a strong coefficient of determination (R2) and a low root mean square error (RMSE) between the ICESat-2 bathymetry data and ALB data. This research offers a promising approach to advancing remote sensing technologies for precise nearshore bathymetric mapping, with implications for coastal monitoring, marine ecology, and resource management. Full article
Show Figures

Figure 1

17 pages, 4945 KiB  
Article
Numerical Simulation of Regular Wave and Ice Floe Interaction Using Coupled Eulerian–Lagrangian Method
by Chaoge Yu and Yukui Tian
Water 2025, 17(13), 1879; https://doi.org/10.3390/w17131879 - 24 Jun 2025
Viewed by 515
Abstract
Wave propagation is impacted by the presence of ice floes. The influence of waves, on the other hand, causes ice floes to overlap and accumulate. In this paper, the interaction of ice floes and regular waves was simulated using the Finite Element Method. [...] Read more.
Wave propagation is impacted by the presence of ice floes. The influence of waves, on the other hand, causes ice floes to overlap and accumulate. In this paper, the interaction of ice floes and regular waves was simulated using the Finite Element Method. Firstly, natural ice floe fields were generated using the Python 3.10 programing language, with floe size distribution and randomness taken into consideration. Then, using the velocity inlet boundary wave generation method, regular simple harmonic waves were produced. The process where ice floes couple with waves was simulated with the Coupled Eulerian–Lagrangian (CEL) approach. Variations in wave height after passing through the ice floe field were investigated, and further research was conducted on the movement and fragmentation characteristics of ice floes. Simulations employing the Coupled Eulerian–Lagrangian (CEL) approach reveal that (1) ice floe motion exhibits periodic characteristics synchronized with incident wave periods; (2) wave height attenuation increases by 62–80% with rising ice concentration (70–90%); and (3) fragmentation predominantly occurs at wave trough phases due to flexural stress concentration. These findings quantitatively characterize wave–ice energy transfer mechanisms critical for polar navigation safety assessments. Full article
Show Figures

Figure 1

20 pages, 22717 KiB  
Article
Görtler Vortices in the Shock Wave/Boundary-Layer Interaction Induced by Curved Swept Compression Ramp
by Liang Chen, Yue Zhang, Juanjuan Wang, Hongchao Xue, Yixuan Xu, Ziyun Wang and Huijun Tan
Aerospace 2024, 11(9), 760; https://doi.org/10.3390/aerospace11090760 - 17 Sep 2024
Cited by 1 | Viewed by 1187
Abstract
This study builds on previous research into the basic flow structure of a separated curved swept compression ramp shock wave/turbulence boundary layer interaction (CSCR-SWBLI) at the leading edge of an inward-turning inlet. We employ the ice-cluster-based planar laser scattering (IC-PLS) technique, which integrates [...] Read more.
This study builds on previous research into the basic flow structure of a separated curved swept compression ramp shock wave/turbulence boundary layer interaction (CSCR-SWBLI) at the leading edge of an inward-turning inlet. We employ the ice-cluster-based planar laser scattering (IC-PLS) technique, which integrates multiple observation directions and positions, to experimentally investigate a physical model with typical parameter states at a freestream Mach number of 2.85. This study captures the fine structure of some sections of the flow field and identifies the presence of Görtler vortices (GVs) in the CSCR-SWBLI. It is observed that due to the characteristics of variable sweep angle, variable intensity interaction, and centrifugal force, GVs exhibit strong three-dimensional characteristics in the curved section. Additionally, their position is not fixed in the spanwise direction, demonstrating strong intermittence. As the vortices develop downstream, their size gradually increases while the number decreases, always corresponding to the local boundary layer thickness. When considering the effects of coupling of bilateral walls, it is noted that the main difference between double-sided coupling and single-sided uncoupling conditions is the presence of a large-scale vortex in the central plane and an odd number of GVs in the double-sided model. Finally, the existence of GVs in CSCR-SWBLI is verified through the classical determine criteria Görtler number (GT) and Floryan number (F) decision basis. Full article
Show Figures

Figure 1

24 pages, 2008 KiB  
Review
A Review on the Arctic–Midlatitudes Connection: Interactive Impacts, Physical Mechanisms, and Nonstationary
by Shuoyi Ding, Xiaodan Chen, Xuanwen Zhang, Xiang Zhang and Peiqiang Xu
Atmosphere 2024, 15(9), 1115; https://doi.org/10.3390/atmos15091115 - 13 Sep 2024
Cited by 2 | Viewed by 2635
Abstract
In light of the rapid Arctic warming and continuous reduction in Arctic Sea ice, the complex two-way Arctic–midlatitudes connection has become a focal point in recent climate research. In this paper, we review the current understanding of the interactive influence between midlatitude atmospheric [...] Read more.
In light of the rapid Arctic warming and continuous reduction in Arctic Sea ice, the complex two-way Arctic–midlatitudes connection has become a focal point in recent climate research. In this paper, we review the current understanding of the interactive influence between midlatitude atmospheric variability and Arctic Sea ice or thermal conditions on interannual timescales. As sea ice diminishes, in contrast to the Arctic warming (cooling) in boreal winter (summer), Eurasia and North America have experienced anomalously cold (warm) conditions and record snowfall (rainfall), forming an opposite oscillation between the Arctic and midlatitudes. Both statistical analyses and modeling studies have demonstrated the significant impacts of autumn–winter Arctic variations on winter midlatitude cooling, cold surges, and snowfall, as well as the potential contributions of spring–summer Arctic variations to midlatitude warming, heatwaves and rainfall, particularly focusing on the role of distinct regional sea ice. The possible physical processes can be categorized into tropospheric and stratospheric pathways, with the former encompassing the swirling jet stream, horizontally propagated Rossby waves, and transient eddy–mean flow interaction, and the latter manifested as anomalous vertical propagation of quasi-stationary planetary waves and associated downward control of stratospheric anomalies. In turn, atmospheric prevailing patterns in the midlatitudes also contribute to Arctic Sea ice or thermal condition anomalies by meridional energy transport. The Arctic–midlatitudes connection fluctuates over time and is influenced by multiple factors (e.g., continuous melting of climatological sea ice, different locations and magnitudes of sea ice anomalies, internal variability, and other external forcings), undoubtedly increasing the difficulty of mechanism studies and the uncertainty surrounding predictions of midlatitude weather and climate. In conclusion, we provide a succinct summary and offer suggestions for future research. Full article
(This article belongs to the Special Issue Arctic Atmosphere–Sea Ice Interaction and Impacts)
Show Figures

Figure 1

18 pages, 1914 KiB  
Article
Transient Shallow Water Wave Interactions with a Partially Fragmented Ice Shelf
by Faraj Alshahrani, Michael H. Meylan and Ben Wilks
Fluids 2024, 9(8), 192; https://doi.org/10.3390/fluids9080192 - 21 Aug 2024
Cited by 1 | Viewed by 934
Abstract
This work investigates the interaction between water waves and multiple ice shelf fragments in front of a semi-infinite ice sheet. The hydrodynamics are modelled using shallow water wave theory and the ice shelf vibration is modelled using Euler–Bernoulli beam theory. The ensuing multiple [...] Read more.
This work investigates the interaction between water waves and multiple ice shelf fragments in front of a semi-infinite ice sheet. The hydrodynamics are modelled using shallow water wave theory and the ice shelf vibration is modelled using Euler–Bernoulli beam theory. The ensuing multiple scattering problem is solved in the frequency domain using the transfer matrix method. The appropriate conservation of energy identity is derived in order to validate our numerical calculations. The transient scattering problem for incident wave packets is constructed from the frequency domain solutions. By incorporating multiple scattering, this paper extends previous models that have only considered a continuous semi-infinite ice shelf. This paper serves as a fundamental step towards developing a comprehensive model to simulate the breakup of ice shelves. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

19 pages, 4982 KiB  
Article
Leaky Wave Modes and Edge Waves in Land-Fast Ice Split by Parallel Cracks
by Aleksey Marchenko, Mark Johnson and Dmitry Brazhnikov
J. Mar. Sci. Eng. 2024, 12(8), 1247; https://doi.org/10.3390/jmse12081247 - 23 Jul 2024
Cited by 2 | Viewed by 1158
Abstract
In this paper we consider flexural-gravity waves propagating in a layer of water of constant depth limited by a vertical wall simulating a straight coastline. The water surface is covered with an elastic ice sheet of constant thickness. The ice sheet is split [...] Read more.
In this paper we consider flexural-gravity waves propagating in a layer of water of constant depth limited by a vertical wall simulating a straight coastline. The water surface is covered with an elastic ice sheet of constant thickness. The ice sheet is split by one or two straight cracks parallel to the coastline, simulating the structure of land-fast ice with a refrozen lead. Analytical solutions of hydrodynamic equations describing the interaction of flexural-gravity waves with the ice sheet and cracks have been constructed and studied. In this paper, the amplification of the amplitude of incident waves between the shoreline and cracks was described depending on the incident angle of the wave coming from offshore. The constructed solutions allow the existence of edge waves propagating along the coastline and attenuated offshore. The energy of edge waves is trapped between the coastline and ice cracks. The application of the constructed solutions to describe wave phenomena observed in the land-fast ice of the Arctic shelf of Alaska is discussed. Full article
(This article belongs to the Special Issue Recent Research on the Measurement and Modeling of Sea Ice)
Show Figures

Figure 1

18 pages, 4119 KiB  
Article
Biofuel Concentration in Low-Speed Pre-Ignition in Gasoline Engines
by Jake Relf, Simon Petrovich and Kambiz Ebrahimi
Fuels 2024, 5(2), 243-260; https://doi.org/10.3390/fuels5020014 - 17 Jun 2024
Viewed by 1945
Abstract
Low-Speed Pre-Ignition (LSPI) is a destructive combustion event associated primarily with new, ultra-efficient, downsized gasoline engines, which provide efficiency benefits in general operation. Biofuels, specifically bio-gasoline, are an alternative fuel that attempts to reduce the harmful emissions output by modern Internal Combustion Engines [...] Read more.
Low-Speed Pre-Ignition (LSPI) is a destructive combustion event associated primarily with new, ultra-efficient, downsized gasoline engines, which provide efficiency benefits in general operation. Biofuels, specifically bio-gasoline, are an alternative fuel that attempts to reduce the harmful emissions output by modern Internal Combustion Engines (ICEs). This study attempts to understand the effect of biofuel use on LSPI, through the use of a numerical simulation tool developed in Ricardo Wave. Development of the tool includes the integration of RFlame, an extension capable of modeling autoignition within a 1D domain. Use of the tool highlights the impact of five ethanol blends, E10, E20, E30, E50 and E85, with clear impacts on both the severity and frequency of LSPI events correlated with chemical properties, such as the enthalpy of vaporization (HoV) and octane number. E30 is highlighted as the critical blend for LSPI severity, with both increased severity and intensity seen with a 30% concentration, and a greater sensitivity to effects such as the start of ignition (SOI). Higher-concentration biofuels, such as E50 and E85 bio-gasoline, show much more favorable behaviors, such as a vast reduction in end-gas knock events, but are limited in their use due to their deployment being both cost-prohibitive and potentially damaging in current hardware. Future work on this topic will surround the further development of the simulation tool to integrate 3D solving elements, understand the role of fluid interactions in LSPI, and study optimal fuel characteristics for future use in ICEs. Full article
Show Figures

Figure 1

16 pages, 4816 KiB  
Article
Wireless EEG Recording of Audiogenic Seizure Activity in Freely Moving Krushinsky-Molodkina Rats
by Sergey Krivopalov, Boris Yushkov and Alexey Sarapultsev
Biomedicines 2024, 12(5), 946; https://doi.org/10.3390/biomedicines12050946 - 24 Apr 2024
Cited by 1 | Viewed by 1837
Abstract
This study investigates audiogenic epilepsy in Krushinsky-Molodkina (KM) rats, questioning the efficacy of conventional EEG techniques in capturing seizures during animal restraint. Using a wireless EEG system that allows unrestricted movement, our aim was to gather ecologically valid data. Nine male KM rats, [...] Read more.
This study investigates audiogenic epilepsy in Krushinsky-Molodkina (KM) rats, questioning the efficacy of conventional EEG techniques in capturing seizures during animal restraint. Using a wireless EEG system that allows unrestricted movement, our aim was to gather ecologically valid data. Nine male KM rats, prone to audiogenic seizures, received implants of wireless EEG transmitters that target specific seizure-related brain regions. These regions included the inferior colliculus (IC), pontine reticular nucleus, oral part (PnO), ventrolateral periaqueductal gray (VLPAG), dorsal area of the secondary auditory cortex (AuD), and motor cortex (M1), facilitating seizure observation without movement constraints. Our findings indicate that targeted neural intervention via electrode implantation significantly reduced convulsive seizures in approximately half of the subjects, suggesting therapeutic potential. Furthermore, the amplitude of brain activity in the IC, PnO, and AuD upon audiogenic stimulus onset significantly influenced seizure severity and nature, highlighting these areas as pivotal for epileptic propagation. Severe cases exhibited dual waves of seizure generalization, indicative of intricate neural network interactions. Distinctive interplay between specific brain regions, disrupted during convulsive activity, suggests neural circuit reconfiguration in response to escalating seizure intensity. These discoveries challenge conventional methodologies, opening avenues for novel approaches in epilepsy research and therapeutic interventions. Full article
Show Figures

Figure 1

17 pages, 6934 KiB  
Article
Investigating Load Calculation for Broken Ice and Cylindrical Structures Using the Discrete Element Method
by Chuan Wang, Jinjing Gong, Ya Zhang, Lianghai Liu and Min Lou
J. Mar. Sci. Eng. 2024, 12(3), 395; https://doi.org/10.3390/jmse12030395 - 25 Feb 2024
Cited by 6 | Viewed by 1714
Abstract
Ice loads are critical forces that impact the structural integrity of offshore equipment in high-latitude sea areas and play a pivotal role in the design of structures in ice-prone regions. The primary objective of this study is to investigate both experimental and numerical [...] Read more.
Ice loads are critical forces that impact the structural integrity of offshore equipment in high-latitude sea areas and play a pivotal role in the design of structures in ice-prone regions. The primary objective of this study is to investigate both experimental and numerical approaches to analyze ice loads on marine structures, elucidate their characteristics and patterns, and offer technical support for the design of structures in ice-prone areas. To achieve this goal, an ice model was built using polypropylene material, and experiments were conducted in a wave flume at room temperature to measure the ice resistance on cylindrical structures. Structural loads were assessed at various ice velocities while maintaining a fixed ice concentration. Furthermore, a high-performance discrete element technology was employed to develop a numerical simulation method for calculating ice resistance on cylindrical structures. Sensitivity analysis was conducted to evaluate the influence of discrete element density on the resistance outcomes. The predicted structural resistance for ice velocities corresponding to the experimental conditions was compared with the results obtained from the model experiment. The research findings indicate that the primary cause of ice resistance is the interaction between the structure and fragmented ice, which leads to collisions, friction, rotation, and local ice accumulation. To quantify the resistance, ice resistance coefficients were defined using an average resistance formula, representing different statistical values. These coefficients were found to remain relatively constant at varying sailing speeds. The results obtained through the discrete element method for ice resistance demonstrated a remarkable agreement with the experimental findings, both in terms of observed phenomena and numerical values. This agreement serves as evidence substantiating the effectiveness of the numerical approach. These methods offer efficient and accurate load prediction solutions for the design of structures in cold regions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 19856 KiB  
Article
Two-Dimensional Wave Interaction with a Rigid Body Floating near the Marginal Ice Zone
by Bingbing Wan, Yuyun Shi and Zhifu Li
J. Mar. Sci. Eng. 2024, 12(2), 272; https://doi.org/10.3390/jmse12020272 - 1 Feb 2024
Cited by 1 | Viewed by 1267
Abstract
The interaction problem of waves with a body floating near the marginal ice zone is studied, where the marginal ice zone is modeled as an array of multiple uniformly sized floating ice sheets. The linear velocity potential theory is applied for fluid flow, [...] Read more.
The interaction problem of waves with a body floating near the marginal ice zone is studied, where the marginal ice zone is modeled as an array of multiple uniformly sized floating ice sheets. The linear velocity potential theory is applied for fluid flow, and the thin elastic plate mode is utilized to describe the ice sheet deflection. A hybrid method is used to solve the disturbed velocity potential; i.e., around the floating body, a boundary integral equation is established, while in the domain covered by ice sheets, the velocity potential is expanded into an eigenfunction series, and in the far-field with a free surface, a similar eigenfunction expansion is used to satisfy the radiation condition. The boundary integral equation and the coefficients of the eigenfunction expansions are solved together based on the continuous conditions of pressure and velocity on the interface between the sub-domains. Extensive results for the equivalent Young’s modulus of the ice sheet array and hydrodynamic force on the body are provided, and the effect of individual ice sheet length as well as wave parameters are investigated in detail. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop