A Review on the Arctic–Midlatitudes Connection: Interactive Impacts, Physical Mechanisms, and Nonstationary
Abstract
:1. Introduction
2. Possible Role of Arctic Variations in Mid-Low Latitude Climate/Weather
2.1. Autumn–Winter Arctic Variations
2.2. Spring–Summer Arctic Variations
3. Contribution of Midlatitudes and Tropical Systems to Arctic Variation/Anomalies
3.1. Influences of Midlatitude Systems on the Arctic
3.2. Influences of the Tropic to the Arctic
4. Nonstationary Arctic–Midlatitude Connection
5. Summary and Perspectives
- For autumn–winter Arctic variations, the Barents–Kara (BK) and East Siberia–Chukchi–Beaufort (EsCB) Seas are the primary regions where sea ice or thermal anomalies significantly impact midlatitude atmospheric variability, particularly the latter playing a more crucial role due to its increasingly enhanced interannual amplitude in the context of global warming.
- The reduction of autumn–winter sea ice in both BK and EsCB Seas generally favors the development of strong anticyclonic anomalies over northern Eurasia, accompanied by a deepened East Asian trough and intensified Siberian High. This results in significant temperature drops, more frequent extreme low temperatures, and heavy snowfall in the midlatitudes of Eurasia.
- The various mechanisms currently proposed to explain the impact of Arctic variations on midlatitude variability can be categorized into tropospheric and stratospheric pathways. The tropospheric pathways involve surface heat flux–circulation interactions, changes in the intensity and position of the jet stream due to altered meridional temperature gradients, horizontal propagation of Rossby waves, and synoptic eddy–mean flow interactions associated with storm track anomalies. The stratospheric pathways encompass anomalous vertical propagation of quasi-stationary planetary waves, as well as the disturbance and downward control of the polar vortex. The tropospheric and stratospheric processes are coupled, as upward quasi-stationary planetary waves are influenced by the tropospheric wave pattern and westerlies’ intensity, while anomalous stratospheric signals, in turn, modulate underlying tropospheric atmospheric anomalies.
- The impact of sea ice anomalies in distinct Arctic regions on midlatitudes exhibits certain differences in influencing months, range, intensity, and mechanisms. For instance, autumn EsCB sea ice loss generates moderate Arctic anticyclonic anomalies over northern Europe, peaking in early winter, resulting in a noticeable temperature decrease, while autumn BK sea ice loss favors stronger and larger-scale Arctic anticyclonic anomalies, peaking in midwinter, leading to broader cooling across northern Eurasia. The stratospheric pathways associated with EsCB and BK sea ice loss are respectively dominated by planetary waves 2 and 1.
- Summer sea ice decreases, cold anomalies and positive SWCRE in the Arctic region create favorable conditions for sustained anticyclonic anomalies and strengthen the zonal eastward wave train, propagating further downstream in the mid-high latitudes. This facilitates more frequent and stronger heatwaves in the midlatitude continent but has limited impacts on summer precipitation in central and southern China. The spring Arctic Sea ice in both the North Atlantic and NP sectors has the potential to serve as a predictor for summer Eurasian precipitation—for instance, sea ice decreases correspond to deficient precipitation in Northeast China and excessive precipitation around the Yangtze River.
- The prevailing atmospheric patterns in midlatitudes, such as AO/NAO, UB, and PNA patterns, can lead to Arctic thermal and sea ice anomalies through the meridional transport of heat and moisture. These atmospheric intrinsic modes may be associated with changes in the ground albedo of midlatitude continents and teleconnection wave trains triggered by tropical forcing.
- The Arctic–midlatitudes connection is nonstationary and fluctuates over time, following the continuous melting and northward shrinking of climatological sea ice. The role of autumn sea ice in distinct Arctic regions at midlatitudes has become opposite, with a strengthened linkage for EsCB sea ice and a weakened linkage for BK sea ice since the late 1990s. Furthermore, the nonstationary Arctic–midlatitudes connection is influenced by atmospheric intrinsic modes, other external forcings, and nonlinear responses to sea ice anomalies of varying magnitudes and seasonality.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jarraud, M.; Steiner, A. Summary for Policymakers. In Climate Change 2021—The Physical Science Basis; Cambridge University Press: Navi Mumbai, India, 2023; Volume 9781107025, pp. 3–32. ISBN 9781139177245. [Google Scholar]
- Shepherd, T.G. Effects of a Warming Arctic. Science 2016, 353, 989–990. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.E. Intensified Warming of the Arctic: Causes and Impacts on Middle Latitudes. Glob. Planet. Change 2014, 117, 52–63. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. The Central Role of Diminishing Sea Ice in Recent Arctic Temperature Amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- Boeke, R.C.; Taylor, P.C. Seasonal Energy Exchange in Sea Ice Retreat Regions Contributes to Differences in Projected Arctic Warming. Nat. Commun. 2018, 9, 5017. [Google Scholar] [CrossRef]
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.J.; Bhatt, U.S.; Chen, H.W.; Coumou, D.; et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Coumou, D.; Di Capua, G.; Vavrus, S.; Wang, L.; Wang, S. The Influence of Arctic Amplification on Mid-Latitude Summer Circulation. Nat. Commun. 2018, 9, 2959. [Google Scholar] [CrossRef]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35, L01703. [Google Scholar] [CrossRef]
- Vavrus, S. The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Clim. 2004, 17, 603–615. [Google Scholar] [CrossRef]
- Ruckstuhl, C.; Philipona, R.; Morland, J.; Ohmura, A. Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J. Geophys. Res. Atmos. 2007, 112, D03302. [Google Scholar] [CrossRef]
- Pithan, F.; Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 2014, 7, 181–184. [Google Scholar] [CrossRef]
- Lee, S.; Gong, T.; Feldstein, S.B.; Screen, J.A.; Simmonds, I. Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett. 2017, 44, 10654–10661. [Google Scholar] [CrossRef]
- Wu, B.; Ding, S. Cold-Eurasia contributes to arctic warm anomalies. Clim. Dyn. 2023, 60, 4157–4172. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Luo, D.; Chen, Y.; Dai, A.; Mu, M.; Zhang, R.; Ian, S. Winter Eurasian cooling linked with the Atlantic Multidecadal Oscillation. Environ. Res. Lett. 2017, 12, 125002. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Wekerle, C.; Danilov, S.; Jung, T.; Koldunov, N.; Lind, S.; Sein, D.; Shu, Q.; Sidorenko, D. Ocean heat transport into the Barents Sea: Distinct controls on the upward trend and interannual variability. Geophys. Res. Lett. 2019, 46, 13180–13190. [Google Scholar] [CrossRef]
- Cao, Y.; Liang, S. Recent advances in driving mechanisms of the Arctic amplification: A review. Chin. Sci. Bull. 2018, 63, 2757–2771. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Pepin, N.; Chen, D.; Ahrens, B.; Jiang, Z.; Wu, F.; Kang, S.; Zhang, R.; Wu, T.; et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Sci. Rev. 2021, 217, 103625. [Google Scholar] [CrossRef]
- Serreze, M.C.; Holland, M.M.; Stroeve, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 2007, 315, 1533–1536. [Google Scholar] [CrossRef]
- Curry, J.A.; Schramm, J.L.; Ebert, E.E. Sea ice-albedo climate feedback mechanism. J. Clim. 1995, 8, 240–247. [Google Scholar] [CrossRef]
- Dai, A.; Luo, D.; Song, M.; Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 2019, 10, 121. [Google Scholar] [CrossRef]
- Gao, K.; Duan, A.; Chen, D.; Wu, G. Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth’s three poles in recent decades. Sci. Bull. 2019, 64, 1140–1143. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Dai, A. Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region. Nat. Commun. 2022, 13, 2100. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, L.; Semenov, V.A.; Johannessen, O.M. The early twentieth-century warming in the Arctic—A possible mechanism. J. Clim. 2004, 17, 4045–4057. [Google Scholar] [CrossRef]
- Kim, B.M.; Son, S.W.; Min, S.K.; Jeong, J.H.; Kim, S.J.; Zhang, X.; Shim, T.; Yoon, J.H. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun. 2014, 5, 4646. [Google Scholar] [CrossRef]
- Smith, E.T.; Sheridan, S.C. The influence of extreme cold events on mortality in the United States. Sci. Total Environ. 2019, 647, 342–351. [Google Scholar] [CrossRef]
- Comiso, J.C.; Hall, D.K. Climate trends in the Arctic as observed from space. WIREs Clim. Change 2014, 5, 389–409. [Google Scholar] [CrossRef]
- Parkinson, C.L.; DiGirolamo, N.E. Sea ice extents continue to set new records: Arctic, Antarctic, and global results. Remote Sens. Environ. 2021, 267, 112753. [Google Scholar] [CrossRef]
- Ding, Y.H.; Wang, Z.Y.; Song, Y.F. Cause of the unprecedented freezing disaster in January 2008 and its possible association with the global warming. Acta. Meteor. Sin. 2008, 66, 808–825. [Google Scholar]
- Cattiaux, J.; Vautard, R.; Cassou, C.; Yiou, P.; Masson-Delmotte, V.; Codron, F. Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Let. 2010, 37, L20704. [Google Scholar] [CrossRef]
- Wu, B.; Yang, K.; Francis, J.A. A cold event in Asia during January–February 2012 and its possible association with Arctic sea ice loss. J. Clim. 2017, 30, 7971–7990. [Google Scholar] [CrossRef]
- Bailey, H.; Hubbard, A.; Klein, E.S.; Mustonen, K.R.; Akers, P.D.; Marttila, H.; Welker, J.M. Arctic sea-ice loss fuels extreme European snowfall. Nat. Geosci. 2021, 14, 283–288. [Google Scholar] [CrossRef]
- Seo, E.; Lee, M.I.; Schubert, S.D.; Koster, R.D.; Kang, H.S. Investigation of the 2016 Eurasia heat wave as an event of the recent warming. Environ. Res. Let. 2020, 15, 114018. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ding, S. Summer Russian Heat Waves Linked to Arctic Sea Ice Anomalies in 2010 and 2016. J. Clim. 2024, 37, 1597–1611. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Xie, S.P.; Zhang, R. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA 2021, 118, e2022255118. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Dai, A.; Wen, Z.; Song, Y. Contributions of Arctic sea-ice loss and East Siberian atmospheric blocking to 2020 record-breaking Meiyu-Baiu rainfall. Geophys. Res. Lett. 2021, 48, e2021GL092748. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Z.; Lu, R.; Miao, Z.; Li, W.; Hsu, P. Unprecedented July rainfall in North China in 2021: Combined effect of Atlantic warming and Arctic sea-ice loss. J. Geophys. Res. Atmos. 2023, 128, e2022JD038068. [Google Scholar] [CrossRef]
- Honda, M.; Inoue, J.; Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Overland, J.E.; Wood, K.R.; Wang, M. Warm Arctic—Cold continents: Climate impacts of the newly open Arctic Sea. Polar Res. 2011, 30, 15787. [Google Scholar] [CrossRef]
- Mori, M.; Watanabe, M.; Shiogama, H.; Inoue, J.; Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 2014, 7, 869–873. [Google Scholar] [CrossRef]
- Kug, J.S.; Jeong, J.H.; Jang, Y.S.; Kim, B.M.; Folland, C.K.; Min, S.K.; Son, S.W. Two Distinct Influences of Arctic Warming on Cold Winters over North America and East Asia. Nat. Geosci. 2015, 8, 759–762. [Google Scholar] [CrossRef]
- Mori, M.; Kosaka, Y.; Watanabe, M.; Nakamura, H.; Kimoto, M. A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Clim. Change 2019, 9, 123–129. [Google Scholar] [CrossRef]
- Xu, X.; He, S.; Gao, Y.; Furevik, T.; Wang, H.; Li, F.; Ogawa, F. Strengthened Linkage between Midlatitudes and Arctic in Boreal Winter. Clim. Dyn. 2019, 53, 3971–3983. [Google Scholar] [CrossRef]
- Pang, X.; Wu, B.; Ding, S. Strengthened Connection between Meridional Location of Winter Polar Front Jet and Surface Air Temperature since the Mid-1990s. Clim. Dyn. 2023, 60, 3211–3224. [Google Scholar] [CrossRef]
- Wu, B.; Francis, J.A. Summer Arctic cold anomaly dynamically linked to East Asian heat waves. J. Clim. 2019, 32, 1137–1150. [Google Scholar] [CrossRef]
- Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef]
- Barnes, E.A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett. 2013, 40, 4734–4739. [Google Scholar] [CrossRef]
- Blackport, R.; Screen, J.A.; van der Wiel, K.; Bintanja, R. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Clim. Change 2019, 9, 697–704. [Google Scholar] [CrossRef]
- Blackport, R.; Screen, J.A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv. 2020, 6, eaay2880. [Google Scholar] [CrossRef]
- Blackport, R.; Screen, J.A. Observed statistical connections overestimate the causal effects of Arctic sea ice changes on midlatitude winter climate. J. Clim. 2021, 34, 3021–3038. [Google Scholar] [CrossRef]
- Meleshko, V.P.; Johannessen, O.M.; Baidin, A.V.; Pavlova, T.V.; Govorkova, V.A. Arctic amplification: Does it impact the polar jet stream? Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 32330. [Google Scholar] [CrossRef]
- Overland, J.E.; Dethloff, K.; Francis, J.A.; Hall, R.J.; Hanna, E.; Kim, S.J.; Screen, J.A.; Shepherd, T.G.; Vihma, T. Nonlinear response of mid-latitude weather to the changing Arctic. Nat. Clim. Change 2016, 6, 992–999. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Chen, W.; Song, L.; Cheng, W.; Shi, W. Weakened impact of autumn Arctic sea ice concentration change on the subsequent winter Siberian High variation around the late-1990s. Int. J. Climtol. 2021, 41, E2700–E2717. [Google Scholar] [CrossRef]
- Wu, B.; Li, Z.; Francis, J.A.; Ding, S. A recent weakening of winter temperature association between Arctic and Asia. Environ. Res. Lett. 2022, 17, 034030. [Google Scholar] [CrossRef]
- Zhang, R.; Screen, J.A. Diverse Eurasian winter temperature responses to Barents-Kara sea ice anomalies of different magnitudes and seasonality. Geophys. Res. Lett. 2021, 48, e2021GL092726. [Google Scholar] [CrossRef]
- Ma, X.; Wang, L.; Smith, D.; Hermanson, L.; Eade, R.; Dunstone, N.; Hardiman, S.; Zhang, J. ENSO and QBO modulation of the relationship between Arctic sea ice loss and Eurasian winter climate. Environ. Res. Lett. 2022, 17, 124016. [Google Scholar] [CrossRef]
- Kolstad, E.W.; Screen, J.A. Nonstationary relationship between autumn Arctic sea ice and the winter North Atlantic Oscillation. Geophys. Res. Lett. 2019, 46, 7583–7591. [Google Scholar] [CrossRef]
- Wang, C.; Ren, B.; Li, G.; Zheng, J.; Jiang, L.; Xu, D. An interdecadal change in the influence of the NAO on Atlantic-induced Arctic daily warming around the mid-1980s. Adv. Atmos. Sci. 2023, 40, 1285–1297. [Google Scholar] [CrossRef]
- Luo, D.; Chen, X.; Dai, A.; Simmonds, I. Changes in atmospheric blocking circulations linked with winter Arctic warming: A new perspective. J. Clim. 2018, 31, 7661–7678. [Google Scholar] [CrossRef]
- Liu, Z.; Risi, C.; Codron, F.; He, X.; Poulsen, C.J.; Wei, Z.; Chen, D.; Li, S.; Bowen, G.J. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern. Nat. Commun. 2021, 12, 1519. [Google Scholar] [CrossRef]
- Ding, Q.; Wallace, J.M.; Battisti, D.S.; Steig, E.J.; Gallant, A.J.; Kim, H.J.; Geng, L. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 2014, 509, 209–212. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. When Will the Summer Arctic Be Nearly Sea Ice Free? Geophys. Res. Lett. 2013, 40, 2097–2101. [Google Scholar] [CrossRef]
- Stroeve, J.; Notz, D. Changing State of Arctic Sea Ice across All Seasons. Environ. Res. Lett. 2018, 13, 103001. [Google Scholar] [CrossRef]
- Notz, D.; SIMIP Community. Arctic sea ice in CMIP6. Geophys. Res. Let. 2020, 47, e2019GL086749. [Google Scholar] [CrossRef]
- Jahn, A.; Holland, M.M.; Kay, J.E. Projections of an ice-free Arctic Ocean. Nat. Rev. Earth Environ. 2024, 5, 164–176. [Google Scholar] [CrossRef]
- Deser, C.; Teng, H. Recent trends inArctic sea ice and the evolving role of atmospheric circulation forcing, 1979–2007. In Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2008; Volume 180, pp. 7–26. [Google Scholar] [CrossRef]
- Francis, J.A.; Chan, W.; Leathers, D.J.; Miller, J.R.; Veron, D.E. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett. 2009, 36, L07503. [Google Scholar] [CrossRef]
- Petoukhov, V.; Semenov, V.A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res. Atmos. 2010, 115, D21111. [Google Scholar] [CrossRef]
- Wu, B.; Su, J.; Zhang, R. Effects of autumn-winter Arctic sea ice on winter Siberian High. Chin. Sci. Bull. 2011, 56, 3220–3228. [Google Scholar] [CrossRef]
- Inoue, J.; Hori, M.E.; Takaya, K. The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Clim. 2012, 25, 2561–2568. [Google Scholar] [CrossRef]
- Jaiser, R.; Dethloff, K.; Handorf, D.; Rinke, A.; Cohen, J. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A Dyn. Meteorol. Oceanogr. 2012, 64, 11595. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, R.; Chen, W. Impacts of autumn Arctic sea ice concentration changes on the East Asian winter monsoon variability. J. Clim. 2014, 27, 5433–5450. [Google Scholar] [CrossRef]
- Nakamura, T.; Yamazaki, K.; Iwamoto, K.; Honda, M.; Miyoshi, Y.; Ogawa, Y.; Ukita, J. A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res. Atmos. 2015, 120, 3209–3227. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, Y.; Smith, K.L. Prolonged effect of the stratospheric pathway in linking Barents–Kara Sea sea ice variability to the midlatitude circulation in a simplified model. Clim. Dyn. 2018, 50, 527–539. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, Y.; Simpson, I.R.; Smith, K.L.; Zhang, X.; De, B.; Callaghan, P. A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv. 2018, 4, eaat6025. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Wu, B.; Chen, W. Dominant characteristics of early autumn Arctic sea ice variability and its impact on winter Eurasian climate. J. Clim. 2021, 34, 1825–1846. [Google Scholar] [CrossRef]
- Overland, J.E.; Ballinger, T.J.; Cohen, J.; Francis, J.A.; Hanna, E.; Jaiser, R.; Kim, B.M.; Kim, S.J.; Ukita, J.; Vihma, T.; et al. How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events? Environ. Res. Lett. 2021, 16, 043002. [Google Scholar] [CrossRef]
- Alexander, M.A.; Bhatt, U.S.; Walsh, J.E.; Timlin, M.S.; Miller, J.S.; Scott, J.D. The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Clim. 2004, 17, 890–905. [Google Scholar] [CrossRef]
- Magnusdottir, G.; Deser, C.; Saravanan, R. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Clim. 2004, 17, 857–876. [Google Scholar] [CrossRef]
- Deser, C.; Magnusdottir, G.; Saravanan, R.; Phillips, A. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Clim. 2004, 17, 877–889. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Nat. Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef]
- Singarayer, J.S.; Valdes, P.J.; Bamber, J.L. The atmospheric impact of uncertainties in recent Arctic sea ice reconstructions. J. Clim. 2005, 18, 3996–4012. [Google Scholar] [CrossRef]
- Sorokina, S.A.; Li, C.; Wettstein, J.J.; Kvamstø, N.G. Observed atmospheric coupling between Barents Sea ice and the warm-Arctic cold-Siberian anomaly pattern. J. Clim. 2016, 29, 495–511. [Google Scholar] [CrossRef]
- Blackport, R.; Kushner, P.J. Isolating the atmospheric circulation response to Arctic sea ice loss in the coupled climate system. J. Clim. 2017, 30, 2163–2185. [Google Scholar] [CrossRef]
- Ogawa, F.; Keenlyside, N.; Gao, Y.; Koenigk, T.; Yang, S.; Suo, L.; Wang, T.; Gastineau, G.; Nakamura, T.; Cheung, H.N.; et al. Evaluating impacts of recent Arctic sea ice loss on the northern hemisphere winter climate change. Geophys. Res. Lett. 2018, 45, 3255–3263. [Google Scholar] [CrossRef]
- Rinke, A.; Dethloff, K.; Dorn, W.; Handorf, D.; Moore, J.C. Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies. J. Geophys. Res. Atmos. 2013, 118, 7698–7714. [Google Scholar] [CrossRef]
- Pedersen, R.A.; Cvijanovic, I.; Langen, P.L.; Vinther, B.M. The impact of regional Arctic sea ice loss on atmospheric circulation and the NAO. J. Clim. 2016, 29, 889–902. [Google Scholar] [CrossRef]
- Chen, H.W.; Alley, R.B.; Zhang, F. Interannual Arctic sea ice variability and associated winter weather patterns: A regional perspective for 1979–2014. J. Geophys. Res. Atmos. 2016, 121, 14–433. [Google Scholar] [CrossRef]
- Screen, J.A. Simulated atmospheric response to regional and pan-Arctic sea ice loss. J. Clim. 2017, 30, 3945–3962. [Google Scholar] [CrossRef]
- Yang, X.Y.; Yuan, X.; Ting, M. Dynamical link between the Barents–Kara sea ice and the Arctic Oscillation. J. Clim. 2016, 29, 5103–5122. [Google Scholar] [CrossRef]
- Hopsch, S.; Cohen, J.; Dethloff, K. Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A Dyn. Meteorol. Oceanogr. 2012, 64, 18624. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R. Impacts of early autumn Arctic sea ice concentration on subsequent spring Eurasian surface air temperature variations. Clim. Dyn. 2018, 51, 2523–2542. [Google Scholar] [CrossRef]
- Ding, S.; Wu, B.; Chen, W.; Graf, H.F.; Zhang, X. Possible Linkage Between Winter Extreme Low Temperature Over Western-Central China and Autumn Sea Ice Loss. J. Geophys. Res. Atmos. 2023, 128, e2023JD038547. [Google Scholar] [CrossRef]
- Ding, S.; Wu, B. Linkage between autumn sea ice loss and ensuing spring Eurasian temperature. Clim. Dyn. 2021, 57, 2793–2810. [Google Scholar] [CrossRef]
- Cohen, J.; Pfeiffer, K.; Francis, J.A. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nat. Commun. 2018, 9, 869. [Google Scholar] [CrossRef] [PubMed]
- Vihma, T.; Graversen, R.; Chen, L.; Handorf, D.; Skific, N.; Francis, J.A.; Tyrrell, N.; Hall, R.; Hanna, E.; Uotila, P.; et al. Effects of the tropospheric large-scale circulation on European winter temperatures during the period of amplified Arctic warming. Int. J. Climtol. 2020, 40, 509. [Google Scholar] [CrossRef]
- Sun, L.; Deser, C.; Tomas, R.A. Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Clim. 2015, 28, 7824–7845. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. Resolving future Arctic/midlatitude weather connections. Earth’s Future 2018, 6, 1146–1152. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Wang, J.; Kim, H.M.; Chang, E.K. Changes in Northern Hemisphere winter storm tracks under the background of Arctic amplification. J. Clim. 2017, 30, 3705–3724. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ding, S. Combined effects of La Niña events and Arctic tropospheric warming on the winter North Pacific storm track. Clim. Dyn. 2023, 60, 1351–1368. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 2015, 10, 014005. [Google Scholar] [CrossRef]
- Wang, S.; Nath, D.; Chen, W.; Wang, L. Changes in winter stationary wave activity during weak mid-latitude and Arctic thermal contrast period. Int. J. Climtol. 2020, 40, 1755–1768. [Google Scholar] [CrossRef]
- Cohen, J.; Agel, L.; Barlow, M.; Garfinkel, C.I.; White, I. Linking Arctic variability and change with extreme winter weather in the United States. Science 2021, 373, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Deser, C.; Walsh, J.E.; Timlin, M.S. Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Clim. 2000, 13, 617–633. [Google Scholar] [CrossRef]
- Newson, R.L. Response of a general circulation model of the atmosphere to removal of the Arctic ice-cap. Nature 1973, 241, 39–40. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39, L06801. [Google Scholar] [CrossRef]
- Mohanakumar, K. Stratosphere Troposphere Interactions: An Introduction; Springer: Berlin/Heidelberg, Germany, 2008; p. 416. [Google Scholar]
- Castanheira, J.M.; Liberato, M.L.R.; De La Torre, L.; Graf, H.F.; DaCamara, C.C. Baroclinic Rossby wave forcing and barotropic Rossby wave response to stratospheric vortex variability. J. Atmos. Sci. 2009, 66, 902–914. [Google Scholar] [CrossRef]
- Graf, H.F.; Zanchettin, D.; Timmreck, C.; Bittner, M. Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex. Clim. Dyn. 2014, 43, 3245–3266. [Google Scholar] [CrossRef]
- Ding, S.; Chen, W.; Graf, H.F.; Chen, Z.; Ma, T. Quasi-stationary extratropical wave trains associated with distinct tropical Pacific seasonal mean convection patterns: Observational and AMIP model results. Clim. Dyn. 2019, 53, 2451–2476. [Google Scholar] [CrossRef]
- Chen, X.; Luo, D. Arctic sea ice decline and continental cold anomalies: Upstream and downstream effects of Greenland blocking. Geophys. Res. Lett. 2017, 44, 3411–3419. [Google Scholar] [CrossRef]
- Luo, D.; Chen, X.; Overland, J.; Simmonds, I.; Wu, Y.; Zhang, P. Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes. J. Clim. 2019, 32, 4235–4261. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, D. A nonlinear theory of atmospheric blocking: An application to Greenland blocking changes linked to winter Arctic sea ice loss. J. Atmos. Sci. 2019, 77, 723–751. [Google Scholar] [CrossRef]
- Wang, H.; Luo, D. North Atlantic footprint of summer Greenland ice sheet melting on interannual to interdecadal time scales: A Greenland blocking perspective. J. Clim. 2022, 35, 1939–1961. [Google Scholar] [CrossRef]
- Yao, Y.; Zhuo, W.; Gong, Z.; Luo, B.; Luo, D.; Zheng, F.; Zhong, L.; Huang, F.; Ma, S.; Zhu, C.; et al. Extreme cold events in North America and Eurasia in November-December 2022: A potential vorticity gradient perspective. Adv. Atmos. Sci. 2023, 40, 953–962. [Google Scholar] [CrossRef]
- Song, Y.; Yao, Y.; Luo, D.; Li, Y. Loss of autumn Kara-East Siberian Sea ice intensifies winter Ural blocking and cold anomalies in high latitudes of Eurasia. Atmos. Res. 2023, 295, 107038. [Google Scholar] [CrossRef]
- Chen, H.W.; Zhang, F.; Alley, R.B. The robustness of midlatitude weather pattern changes due to Arctic sea ice loss. J. Clim. 2016, 29, 7831–7849. [Google Scholar] [CrossRef]
- McCusker, K.E.; Fyfe, J.C.; Sigmond, M. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci. 2016, 9, 838–842. [Google Scholar] [CrossRef]
- Smith, D.M.; Dunstone, N.J.; Scaife, A.A.; Fiedler, E.K.; Copsey, D.; Hardiman, S.C. Atmospheric response to Arctic and Antarctic sea ice: The importance of ocean–atmosphere coupling and the background state. J. Clim. 2017, 30, 4547–4565. [Google Scholar] [CrossRef]
- Collow, T.W.; Wang, W.; Kumar, A. Simulations of Eurasian winter temperature trends in coupled and uncoupled CFSv2. Adv. Atmos. Sci. 2018, 35, 14–26. [Google Scholar] [CrossRef]
- Koenigk, T.; Gao, Y.; Gastineau, G.; Keenlyside, N.; Nakamura, T.; Ogawa, F.; Orsolini, Y.; Semenov, V.; Suo, L.; Tian, T.; et al. Impact of Arctic sea ice variations on winter temperature anomalies in northern hemispheric land areas. Clim. Dyn. 2019, 52, 3111–3137. [Google Scholar] [CrossRef]
- Orsolini, Y.J.; Senan, R.; Vitart, F.; Balsamo, G.; Weisheimer, A.; Doblas-Reyes, F.J. Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010. Clim. Dyn. 2016, 47, 1325–1334. [Google Scholar] [CrossRef]
- Dai, A.; Fyfe, J.C.; Xie, S.P.; Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 2015, 5, 555–559. [Google Scholar] [CrossRef]
- Luo, B.; Luo, D.; Dai, A.; Simmonds, I.; Wu, L. Decadal variability of winter warm Arctic-cold Eurasia dipole patterns modulated by Pacific decadal oscillation and Atlantic multidecadal oscillation. Earth’s Future 2022, 10, e2021EF002351. [Google Scholar] [CrossRef]
- Wang, H.; Zuo, Z.; Qiao, L.; Zhang, K.; Sun, C.; Xiao, D.; Lin, Z.; Bu, L.; Zhang, R. Frequency of the winter temperature extremes over Siberia dominated by the Atlantic Meridional Overturning Circulation. NPJ Clim. Atmos. Sci. 2022, 5, 84. [Google Scholar] [CrossRef]
- Matsumura, S.; Kosaka, Y. Arctic–Eurasian climate linkage induced by tropical ocean variability. Nat. Commun. 2019, 10, 3441. [Google Scholar] [CrossRef]
- Sato, K.; Inoue, J.; Watanabe, M. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett. 2014, 9, 084009. [Google Scholar] [CrossRef]
- Rousi, E.; Kornhuber, K.; Beobide-Arsuaga, G.; Luo, F.; Coumou, D. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 2022, 13, 3851. [Google Scholar] [CrossRef]
- Di Capua, G.; Sparrow, S.; Kornhuber, K.; Rousi, E.; Osprey, S.; Wallom, D.; van den Hurk, B.; Coumou, D. Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. NPJ Clim. Atmos. Sci. 2021, 4, 55. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, C.; Zhu, J.; Zhang, R.; Li, W. Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. NPJ Clim. Atmos. Sci. 2020, 3, 7. [Google Scholar] [CrossRef]
- Wang, H.; Luo, D. Summer Russian heat waves and their links to Greenland’s ice melt and sea surface temperature anomalies over the North Atlantic and the Barents–Kara Seas. Environ. Res. Lett. 2020, 15, 114048. [Google Scholar] [CrossRef]
- Screen, J.A. Influence of Arctic sea ice on European summer precipitation. Environ. Res. Lett. 2013, 8, 044015. [Google Scholar] [CrossRef]
- Deng, K.; Jiang, X.; Hu, C.; Chen, D. More frequent summer heat waves in southwestern China linked to the recent declining of Arctic sea ice. Environ. Res. Lett. 2020, 15, 074011. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, C.; Zhang, R.; Jia, L.; Li, W. The impact of Arctic sea ice on the inter-annual variations of summer Ural blocking. Int. J. Climtol. 2018, 38, 4632–4650. [Google Scholar] [CrossRef]
- Wu, Q.; Cheng, L.; Chan, D.; Yao, Y.; Hu, H.; Yao, Y. Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979–2012. Geophys. Res. Lett. 2016, 43, 2792–2800. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, X.; Francis, J.A. Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nat. Clim. Change 2014, 4, 45–50. [Google Scholar] [CrossRef]
- Petrie, R.E.; Shaffrey, L.C.; Sutton, R. Atmospheric response in summer linked to recent Arctic sea ice loss. Q. J. R. Meteorol. Soc. 2015, 141, 2070–2076. [Google Scholar] [CrossRef]
- Knudsen, E.M.; Orsolini, Y.J.; Furevik, T.; Hodges, K.I. Observed anomalous atmospheric patterns in summers of unusual Arctic sea ice melt. J. Geophys. Res. Atmos. 2015, 120, 2595–2611. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ding, S. Influence of spring Arctic sea ice melt on Eurasian surface air temperature. Clim. Dyn. 2022, 59, 3305–3316. [Google Scholar] [CrossRef]
- Wu, B.; Li, Z. Possible impacts of anomalous Arctic sea ice melting on summer atmosphere. Int. J. Climtol. 2022, 42, 1818–1827. [Google Scholar] [CrossRef]
- Wu, B.; Li, Z.; Zhang, X.; Sha, Y.; Duan, X.; Pang, X.; Ding, S. Has Arctic sea ice loss affected summer precipitation in North China? Int. J. Climtol. 2023, 43, 4835–4848. [Google Scholar] [CrossRef]
- Wu, Z.; Li, X.; Li, Y.; Li, Y. Potential influence of Arctic sea ice to the interannual variations of East Asian spring precipitation. J. Clim. 2016, 29, 2797–2813. [Google Scholar] [CrossRef]
- Sun, L.; Shen, B.; Sui, B.; Huang, B. The influences of East Asian Monsoon on summer precipitation in Northeast China. Clim. Dyn. 2017, 48, 1647–1659. [Google Scholar] [CrossRef]
- Zhou, J.; Zuo, Z.; Rong, X.; Wen, J. Role of May surface temperature over eastern China in East Asian summer monsoon circulation and precipitation. Int. J. Climtol. 2020, 40, 6396–6409. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, R.; D’Arrigo, R.; Su, J. On the relationship between winter sea ice and summer atmospheric circulation over Eurasia. J. Clim. 2013, 26, 5523–5536. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, Z.; Jin, R. How can the winter North Atlantic Oscillation influence the early summer precipitation in Northeast Asia: Effect of the Arctic sea ice. Clim. Dyn. 2021, 56, 1989–2005. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, J.; Zhao, S.; Chen, Z. A mechanism of spring Barents Sea ice effect on the extreme summer droughts in northeastern China. Clim. Dyn. 2022, 58, 1033–1048. [Google Scholar] [CrossRef]
- Yu, Q.; Wu, B. Summer Arctic atmospheric circulation and its association with the ensuing East Asian Winter Monsoon variability. J. Geophys. Res. Atmos. 2023, 128, e2022JD037104. [Google Scholar] [CrossRef]
- Chen, X.; Wen, Z.; Song, Y.; Guo, Y. Causes of extreme 2020 Meiyu-Baiu rainfall: A study of combined effect of Indian Ocean and Arctic. Clim. Dyn. 2022, 59, 3485–3501. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, Y.; Guo, D. The relationship between melt season sea ice over the Bering Sea and summer precipitation over mid-latitude East Asia. Adv. Atmos. Sci. 2021, 38, 918–930. [Google Scholar] [CrossRef]
- Fu, H.; Zhan, R.; Wu, Z.; Wang, Y.; Zhao, J. How does the Arctic sea ice affect the interannual variability of tropical cyclone activity over the western North Pacific? Front. Earth Sci. 2021, 9, 675150. [Google Scholar] [CrossRef]
- Rinke, A.; Knudsen, E.M.; Mewes, D.; Dorn, W.; Handorf, D.; Dethloff, K.; Moore, J.C. Arctic summer sea ice melt and related atmospheric conditions in coupled regional climate model simulations and observations. J. Geophys. Res. Atmos. 2019, 124, 6027–6039. [Google Scholar] [CrossRef]
- Gultepe, I.; Isaac, G.A.; Williams, A.; Marcotte, D.; Strawbridge, K.B. Turbulent heat fluxes over leads and polynyas, and their effects on arctic clouds during FIRE. ACE: Aircraft observations for April 1998. Atmos. Ocean. 2003, 41, 15–34. [Google Scholar] [CrossRef]
- Liu, L.; Wu, B.; Ding, S. On the association of the summertime shortwave cloud radiative effect in northern Russia with atmospheric circulation and climate over East Asia. Geophys. Res. Lett. 2022, 49, e2021GL096606. [Google Scholar] [CrossRef]
- Liu, L.; Wu, B.; Ding, S. Combined impact of summer NAO and northern Russian shortwave cloud radiative effect on Eurasian atmospheric circulation. Environ. Res. Lett. 2023, 18, 014015. [Google Scholar] [CrossRef]
- Perlwitz, J.; Hoerling, M.; Dole, R. Arctic tropospheric warming: Causes and linkages to lower latitudes. J. Clim. 2015, 28, 2154–2167. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Marine. Syst. 2010, 79, 231–244. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M.Y. Recent extreme Arctic temperatures are due to a split polar vortex. J. Clim. 2016, 29, 5609–5616. [Google Scholar] [CrossRef]
- Graham, R.M.; Cohen, L.; Petty, A.A.; Boisvert, L.N.; Rinke, A.; Hudson, S.R.; Nicolaus, M.; Granskog, M.A. Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett. 2017, 44, 6974–6983. [Google Scholar] [CrossRef]
- Kim, B.M.; Hong, J.Y.; Jun, S.Y.; Zhang, X.; Kwon, H.; Kim, S.J.; Kim, J.H.; Kim, S.W.; Kim, H.K. Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Sci. Rep. 2017, 7, 40051. [Google Scholar] [CrossRef]
- Wang, C.; Ren, B.; Zheng, J. Two impacts of arctic rapid tropospheric daily warming from different warm temperature advection on cold winters over northern hemisphere. Earth Space Sci. 2019, 6, 1667–1674. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Hodges, K.I. New perspectives on the northern hemisphere winter storm tracks. J. Atmos. Sci. 2002, 59, 1041–1061. [Google Scholar] [CrossRef]
- Pinto, J.G.; Spangehl, T.; Ulbrich, U.; Speth, P. Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology. Meteorol. Z. 2005, 14, 823–838. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.W.; Zhang, Q.; Körnich, H.; Chen, D. A robust mode of climate variability in the Arctic: The Barents Oscillation. Geophys. Res. Lett. 2013, 40, 2856–2861. [Google Scholar] [CrossRef]
- Martius, O.; Polvani, L.M.; Davies, H.C. Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett. 2009, 36, L14806. [Google Scholar] [CrossRef]
- Peings, Y. Ural blocking as a driver of early-winter stratospheric warmings. Geophys. Res. Lett. 2019, 46, 5460–5468. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, D.; Dai, A.; Simmonds, I. Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I Insights Obs. Analyses. J. Clim. 2017, 30, 3549–3568. [Google Scholar]
- Tyrlis, E.; Bader, J.; Manzini, E.; Ukita, J.; Nakamura, H.; Matei, D. On the role of Ural Blocking in driving the Warm Arctic–Cold Siberia pattern. Q. J. R. Meteorol. Soc. 2020, 146, 2138–2153. [Google Scholar] [CrossRef]
- Chen, X.; Luo, D.; Feldstein, S.B.; Lee, S. Impact of winter Ural blocking on Arctic sea ice: Short-time variability. J. Clim. 2018, 31, 2267–2282. [Google Scholar] [CrossRef]
- Luo, B.; Yao, Y. Recent rapid decline of the Arctic winter sea ice in the Barents–Kara Seas owing to combined effects of the Ural blocking and SST. J Meteorol. Res. 2018, 32, 191–202. [Google Scholar] [CrossRef]
- Xu, X.; He, S.; Zhou, B.; Wang, H.; Outten, S. The role of mid-latitude westerly jet in the impacts of november ural blocking on early-winter warmer arctic-colder eurasia pattern. Geophys. Res. Lett. 2022, 49, e2022GL099096. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. J. Geophys. Res. Atmos. 2003, 108, D214677. [Google Scholar] [CrossRef]
- Pozo-Vázquez, D.; Gámiz-Fortis, S.R.; Tovar-Pescador, J.; Esteban-Parra, M.J.; Castro-Díez, Y. North Atlantic winter SLP anomalies based on the autumn ENSO state. J. Clim. 2005, 18, 97–103. [Google Scholar] [CrossRef]
- Bell, C.J.; Gray, L.J.; Charlton-Perez, A.J.; Joshi, M.M.; Scaife, A.A. Stratospheric communication of El Niño teleconnections to European winter. J. Clim. 2009, 22, 4083–4096. [Google Scholar] [CrossRef]
- Ineson, S.; Scaife, A.A. The role of the stratosphere in the European climate response to El Niño. Nat. Geosci. 2009, 2, 32–36. [Google Scholar] [CrossRef]
- OrtizBevia, M.J.; Pérez-González, I.; Alvarez-García, F.J.; Gershunov, A. Nonlinear estimation of El Niño impact on the North Atlantic winter. J. Geophys. Res. Atmos. 2010, 115, D21123. [Google Scholar] [CrossRef]
- Lee, S. Testing of the tropically excited Arctic warming mechanism (TEAM) with traditional El Niño and La Niña. J. Clim. 2012, 25, 4015–4022. [Google Scholar] [CrossRef]
- Clancy, R.; Bitz, C.; Blanchard-Wrigglesworth, E. The influence of ENSO on Arctic sea ice in large ensembles and observations. J. Clim. 2021, 34, 9585–9604. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Krishnamurti, R.; Das, S.; Kumar, V.; Jayakumar, A.; Simon, A. A pathway connecting the monsoonal heating to the rapid Arctic ice melt. J. Atmos. Sci. 2015, 72, 5–34. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Kumar, V. Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events. Clim. Dyn. 2017, 48, 2315–2337. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ravichandran, M.; Murukesh, N.; Raj, R.P.; Johannessen, O.M. A possible relation between Arctic sea ice and late season Indian summer monsoon rainfall extremes. NPJ Clim. Atmos. Sci. 2021, 4, 36. [Google Scholar] [CrossRef]
- Luo, B.; Luo, D.; Ge, Y.; Dai, A.; Wang, L.; Simmonds, I.; Xiao, C.; Wu, L.; Yao, Y. Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño–Southern Oscillation. Nat. Commun. 2023, 14, 585. [Google Scholar] [CrossRef]
- Hu, C.; Yang, S.; Wu, Q.; Li, Z.; Chen, J.; Deng, K.; Zhang, T.; Zhang, C. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nat. Commun. 2016, 7, 11721. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, W.; Stuecker, M.F.; Xu, H.; Jin, F.F.; Liu, C. Different effects of two ENSO types on Arctic surface temperature in boreal winter. J. Clim. 2019, 32, 4943–4961. [Google Scholar] [CrossRef]
- Jeong, H.; Park, H.S.; Stuecker, M.F.; Yeh, S.W. Distinct impacts of major El Niño events on Arctic temperatures due to differences in eastern tropical Pacific sea surface temperatures. Sci. Adv. 2022, 8, eabl8278. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ren, B.; Li, G.; Zheng, J.; Jiang, L.; Zhang, Z. Why could ENSO directly affect the occurrence frequency of Arctic daily warming events after the late 1970s? Environ. Res. Lett. 2023, 18, 024009. [Google Scholar] [CrossRef]
- L’Heureux, M.L.; Higgins, R. Boreal Winter Links between the Madden-Julian Oscillation and the Arctic Oscillation. J. Clim. 2008, 21, 3040–3050. [Google Scholar] [CrossRef]
- Flatau, M.; Kim, Y.J. Interaction between the MJO and Polar Circulations. J. Clim. 2013, 26, 3562–3574. [Google Scholar] [CrossRef]
- Yoo, C.; Feldstein, S.B.; Lee, S. The impact of the Madden-Julian oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett. 2011, 38, L24804. [Google Scholar] [CrossRef]
- Henderson, G.R.; Barrett, B.S.; Lafleur, D.M. Arctic sea ice and the Madden–Julian oscillation (MJO). Clim. Dyn. 2014, 43, 2185–2196. [Google Scholar] [CrossRef]
- Graversen, R.G. Do changes in the midlatitude circulation have any impact on the Arctic surface air temperature trend? J. Clim. 2006, 19, 5422–5438. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Feldstein, S.B.; Waugh, D.W.; Yoo, C.; Lee, S. Observed connection between stratospheric sudden warmings and the Madden-Julian Oscillation. Geophys. Res. Lett. 2012, 39, L18807. [Google Scholar] [CrossRef]
- Ding, Q.; Schweiger, A.; L’Heureux, M.; Battisti, D.S.; Po-Chedley, S.; Johnson, N.C.; Blanchard-Wrigglesworth, E.; Harnos, K.; Zhang, Q.; Eastman, R.; et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Change 2017, 7, 289–295. [Google Scholar] [CrossRef]
- Ding, Q.; Schweiger, A.; L’Heureux, M.; Steig, E.J.; Battisti, D.S.; Johnson, N.C.; Blanchard-Wrigglesworth, E.; Po-Chedley, S.; Zhang, Q.; Harnos, K.; et al. Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci. 2019, 12, 28–33. [Google Scholar] [CrossRef]
- Ding, Q.; Schweiger, A.; Baxter, I. Nudging observed winds in the Arctic to quantify associated sea ice loss from 1979 to 2020. J. Clim. 2022, 35, 6797–6813. [Google Scholar] [CrossRef]
- Jeong, Y.C.; Yeh, S.W.; Lim, Y.K.; Santoso, A.; Wang, G. Indian Ocean warming as key driver of long-term positive trend of Arctic Oscillation. NPJ Clim. Atmos. Sci. 2022, 5, 56. [Google Scholar] [CrossRef]
- Barnes, E.A.; Screen, J.A. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIREs Clim. Change 2015, 6, 277–286. [Google Scholar] [CrossRef]
- Dai, A.; Song, M. Little influence of Arctic amplification on mid-latitude climate. Nat. Clim. Change 2020, 10, 231–237. [Google Scholar] [CrossRef]
- Screen, J.A.; Deser, C.; Smith, D.M.; Zhang, X.; Blackport, R.; Kushner, P.J.; Oudar, T.; McCusker, K.E.; Sun, L. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci. 2018, 11, 155–163. [Google Scholar] [CrossRef]
- He, X.; Zhang, R.; Ding, S.; You, Q.; Cai, Z. Decadal changes in the linkage between autumn sea ice and the winter Eurasian temperature in the 20th century. Geophys. Res. Lett. 2023, 50, e2023GL103851. [Google Scholar] [CrossRef]
- Cai, Z.; You, Q.; Chen, H.W.; Zhang, R.; Zuo, Z.; Dai, G.; Chen, D.; Cohen, J.; Zolina, O.; Gulev, S.K. Interdecadal variability of the warm Arctic-cold Eurasia pattern linked to the Barents oscillation. Atmos. Res. 2023, 287, 106712. [Google Scholar] [CrossRef]
- Sung, M.K.; Kim, S.H.; Kim, B.M.; Choi, Y.S. Interdecadal variability of the warm Arctic and cold Eurasia pattern and its North Atlantic origin. J. Clim. 2018, 31, 5793–5810. [Google Scholar] [CrossRef]
- Semenov, V.A.; Latif, M. Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environ. Res. Lett. 2015, 10, 054020. [Google Scholar] [CrossRef]
- Komatsu, K.K.; Takaya, Y.; Toyoda, T.; Hasumi, H. Response of Eurasian Temperature to Barents–Kara Sea Ice: Evaluation by Multi-Model Seasonal Predictions. Geophys. Res. Lett. 2022, 49, e2021GL097203. [Google Scholar] [CrossRef]
- Screen, J.A.; Francis, J.A. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Clim. Change 2016, 6, 856–860. [Google Scholar] [CrossRef]
- Zhang, R.; Screen, J.A.; Zhang, R. Arctic and Pacific Ocean conditions were favorable for cold extremes over Eurasia and North America during winter 2020/21. Bull. Am. Meteorol. Soc. 2022, 103, E2285–E2301. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, R.; Dai, G. Intraseasonal contributions of Arctic sea-ice loss and Pacific decadal oscillation to a century cold event during early 2020/21 winter. Clim. Dyn. 2022, 58, 741–758. [Google Scholar] [CrossRef]
- Zheng, F.; Yuan, Y.; Ding, Y.; Li, K.; Fang, X.; Zhao, Y.; Sun, Y.; Zhu, J.; Ke, Z.; Wang, J.; et al. The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic. Adv. Atmos. Sci. 2022, 39, 546–552. [Google Scholar] [CrossRef]
- Wang, Q.; Mu, M.; Sun, G. A useful approach to sensitivity and predictability studies in geophysical fluid dynamics: Conditional non-linear optimal perturbation. Nat. Sci. Rev. 2020, 7, 214–223. [Google Scholar] [CrossRef]
- Yu, Q.; Wu, B.; Zhang, W. The atmospheric connection between the Arctic and Eurasia is underestimated in simulations with prescribed sea ice. Commun. Earth Environ. 2024, 5, 435. [Google Scholar] [CrossRef]
- Liu, J.; Song, M.; Zhu, Z.; Horton, R.M.; Hu, Y.; Xie, S.P. Arctic sea-ice loss is projected to lead to more frequent strong El Niño events. Nat. Commun. 2022, 13, 4952. [Google Scholar] [CrossRef]
- Deng, J.; Dai, A. Arctic sea ice–air interactions weaken El Niño–Southern Oscillation. Sci. Adv. 2024, 10, eadk3990. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Chen, X.; Zhang, X.; Zhang, X.; Xu, P. A Review on the Arctic–Midlatitudes Connection: Interactive Impacts, Physical Mechanisms, and Nonstationary. Atmosphere 2024, 15, 1115. https://doi.org/10.3390/atmos15091115
Ding S, Chen X, Zhang X, Zhang X, Xu P. A Review on the Arctic–Midlatitudes Connection: Interactive Impacts, Physical Mechanisms, and Nonstationary. Atmosphere. 2024; 15(9):1115. https://doi.org/10.3390/atmos15091115
Chicago/Turabian StyleDing, Shuoyi, Xiaodan Chen, Xuanwen Zhang, Xiang Zhang, and Peiqiang Xu. 2024. "A Review on the Arctic–Midlatitudes Connection: Interactive Impacts, Physical Mechanisms, and Nonstationary" Atmosphere 15, no. 9: 1115. https://doi.org/10.3390/atmos15091115
APA StyleDing, S., Chen, X., Zhang, X., Zhang, X., & Xu, P. (2024). A Review on the Arctic–Midlatitudes Connection: Interactive Impacts, Physical Mechanisms, and Nonstationary. Atmosphere, 15(9), 1115. https://doi.org/10.3390/atmos15091115