Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,316)

Search Parameters:
Keywords = water surface elevation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5212 KiB  
Article
Assessing the Land Surface Temperature Trend of Lake Drūkšiai’s Coastline
by Jūratė Sužiedelytė Visockienė, Eglė Tumelienė and Rosita Birvydienė
Land 2025, 14(8), 1598; https://doi.org/10.3390/land14081598 - 5 Aug 2025
Abstract
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its [...] Read more.
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its legacy continues to influence the lake’s thermal regime. Using Landsat 8 thermal infrared imagery and NDVI-based methods, we analysed spatial and temporal LST variations from 2013 to 2024. The results indicate persistent temperature anomalies and elevated LST values, particularly in zones previously affected by thermal discharges. The years 2020 and 2024 exhibited the highest average LST values; some years (e.g., 2018) showed lower readings due to localised environmental factors such as river inflow and seasonal variability. Despite a slight stabilisation observed in 2024, temperatures remain higher than those recorded in 2013, suggesting that pre-industrial thermal conditions have not yet been restored. These findings underscore the long-term environmental impacts of industrial activity and highlight the importance of satellite-based monitoring for the sustainable management of land, water resources, and coastal zones. Full article
Show Figures

Figure 1

16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 (registering DOI) - 4 Aug 2025
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

26 pages, 2221 KiB  
Article
Effects of ε-Poly-L-Lysine/Chitosan Composite Coating on the Storage Quality, Reactive Oxygen Species Metabolism, and Membrane Lipid Metabolism of Tremella fuciformis
by Junzheng Sun, Yingying Wei, Longxiang Li, Mengjie Yang, Yusha Liu, Qiting Li, Shaoxiong Zhou, Chunmei Lai, Junchen Chen and Pufu Lai
Int. J. Mol. Sci. 2025, 26(15), 7497; https://doi.org/10.3390/ijms26157497 - 3 Aug 2025
Viewed by 111
Abstract
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated [...] Read more.
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated by surface spraying, with distilled water serving as the control. The effects of the coating on storage quality, physicochemical properties, reactive oxygen species (ROS) metabolism, and membrane lipid metabolism were evaluated during storage at (25 ± 1) °C. The results showed that the ε-PL/CTS composite coating significantly retarded quality deterioration, as evidenced by reduced weight loss, maintained whiteness and color, and higher retention of soluble sugars, soluble solids, and soluble proteins. The coating also effectively limited water migration and loss. Mechanistically, the coated T. fuciformis exhibited enhanced antioxidant capacity, characterized by increased superoxide anion (O2) resistance capacity, higher activities of antioxidant enzymes (SOD, CAT, APX), and elevated levels of non-enzymatic antioxidants (AsA, GSH). This led to a significant reduction in malondialdehyde (MDA) accumulation, alongside improved DPPH radical scavenging activity and reducing power. Furthermore, the ε-PL/CTS coating preserved cell membrane integrity by inhibiting the activities of lipid-degrading enzymes (lipase, LOX, PLD), maintaining higher levels of key phospholipids (phosphatidylinositol and phosphatidylcholine), delaying phosphatidic acid accumulation, and consequently reducing cell membrane permeability. In conclusion, the ε-PL/CTS composite coating effectively extends the shelf life and maintains the quality of postharvest T. fuciformis by modulating ROS metabolism and preserving membrane lipid homeostasis. This study provides a theoretical basis and a practical approach for the quality control of fresh T. fuciformis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

26 pages, 8897 KiB  
Article
Numerical Study of Wave-Induced Longshore Current Generation Zones on a Circular Sandy Sloping Topography
by Mohammad Shaiful Islam, Tomoaki Nakamura, Yong-Hwan Cho and Norimi Mizutani
Water 2025, 17(15), 2263; https://doi.org/10.3390/w17152263 - 29 Jul 2025
Viewed by 269
Abstract
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes [...] Read more.
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes of coastal beaches. In this study, a two-phase incompressible flow model along with a sandy sloping topography was employed to investigate the wave deformation and longshore current generation areas in a circular wave basin model. The finite volume method (FVM) was implemented to discretize the governing equations in cylindrical coordinates, the volume-of-fluid method (VOF) was adopted to differentiate the air–water interfaces in the control cells, and the zonal embedded grid technique was employed for grid generation in the cylindrical computational domain. The water surface elevations and velocity profiles were measured in different wave conditions, and the measurements showed that the maximum water levels per wave were high and varied between cases, as well as between cross-sections in a single case. Additionally, the mean water levels were lower in the adjacent positions of the approximated wave-breaking zones. The wave-breaking positions varied between cross-sections in a single case, with the incident-wave height, mean water level, and wave-breaking position measurements indicating the influence of downstream flow variation in each cross-section on the sloping topography. The cross-shore velocity profiles became relatively stable over time, while the longshore velocity profiles predominantly moved in the alongshore direction, with smaller fluctuations, particularly during the same time period and in measurement positions near the wave-breaking zone. The computed velocity profiles also varied between cross-sections, and for the velocity profiles along the cross-shore and longshore directions nearest the wave-breaking areas where the downstream flow had minimal influence, it was presumed that there was longshore-current generation in the sloping topography nearest the shoreside. The computed results were compared with the experimental results and we observed similar characteristics for wave profiles in the same wave period case in both models. In the future, further investigations can be conducted using the presented circular wave basin model to investigate the oblique wave deformation and longshore current generation in different sloping and wave conditions. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

18 pages, 3824 KiB  
Article
An Integrated TDR Waveguide and Data Interpretation Framework for Multi-Phase Detection in Soil–Water Systems
by Songcheng Wen, Jingwei Wu and Yuan Guo
Sensors 2025, 25(15), 4683; https://doi.org/10.3390/s25154683 - 29 Jul 2025
Viewed by 220
Abstract
Time domain reflectometry (TDR) has been validated for monitoring water level evolution and riverbed scouring in the laboratory. Previous studies have also validated the feasibility of field-based single hydrological parameter monitoring using TDR. However, the current research focuses on developing separated TDR sensing [...] Read more.
Time domain reflectometry (TDR) has been validated for monitoring water level evolution and riverbed scouring in the laboratory. Previous studies have also validated the feasibility of field-based single hydrological parameter monitoring using TDR. However, the current research focuses on developing separated TDR sensing systems, and integrated measurements of multiple hydrological parameters from a single reflected waveform have not been reported. This study presents an improved helical probe sensor specifically designed for implementation in geologically hard soils, together with an improved data interpreting methodology to simultaneously determine water surface level, bed elevation, and suspended sediment concentration from a single reflection signal. Experimental comparisons were conducted in the laboratory to evaluate the measuring performance between the traditional dual-needle probe and the novel spiral probe under the same scouring conditions. The experiments confirmed the reliability and superior performance of spiral probe in accurately capturing multiple hydrological parameters. The measurement errors for the spiral probe across multiple hydrological parameters were all within ±10%, and the accuracy further improved with increased probe embedding depth in the sand medium. Across all tested parameters, the spiral probe showed enhanced measurement precision with a particularly significant improvement in suspended sediment concentration detection. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 282
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

38 pages, 16643 KiB  
Article
Numerical Investigation of Inclination Effects on a Submerged Plate as Breakwater and Wave Energy Converter Under Realistic Sea State Waves
by Vitor Eduardo Motta, Gabrielle Ücker Thum, Maycon da Silveira Paiva, Rafael Adriano Alves Camargo Gonçalves, Luiz Alberto Oliveira Rocha, Elizaldo Domingues dos Santos, Bianca Neves Machado and Liércio André Isoldi
J. Mar. Sci. Eng. 2025, 13(8), 1438; https://doi.org/10.3390/jmse13081438 - 28 Jul 2025
Viewed by 220
Abstract
This study investigates the influence of inclination on a submerged plate (SP) device acting as both a breakwater (BW) and a wave energy converter (WEC) subjected to representative regular and realistic irregular waves of a sea state across 11 inclination angles. Numerical simulations [...] Read more.
This study investigates the influence of inclination on a submerged plate (SP) device acting as both a breakwater (BW) and a wave energy converter (WEC) subjected to representative regular and realistic irregular waves of a sea state across 11 inclination angles. Numerical simulations were conducted using ANSYS Fluent. Regular waves were generated by Stokes’s second-order theory, while the WaveMIMO technique was employed to generate irregular waves. Using the volume of fluid (VOF) method to model the water–air interaction, both approaches generate waves by imposing their vertical and horizontal velocity components at the inlet of the wave flume. The SP’s performance as a BW was analyzed based on the upstream and downstream free surface elevations of the device; in turn, its performance as a WEC was determined through its axial velocity beneath the plate. The results indicate that performance varies between regular and irregular wave conditions, underscoring the importance of accurately characterizing the sea state at the intended installation site. These findings demonstrate that the inclination of the SP plays a critical role in balancing its dual functionality, with certain configurations enhancing WEC efficiency by over 50% while still offering relevant BW performance, even under realistic irregular sea conditions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

16 pages, 2677 KiB  
Article
The Initial Impact of a Hydroelectric Reservoir on the Floristics, Structure, and Dynamics of Adjacent Forests in the Southern Amazon
by Jesulino Alves da Rocha-Filho, Marco Antônio Camillo de Carvalho, Fabiana Ferreira Cabral Gomes, José Hypolito Piva, Beatriz Schwantes Marimon, Oscar Mitsuo Yamashita and Ben Hur Marimon-Junior
Forests 2025, 16(8), 1236; https://doi.org/10.3390/f16081236 - 27 Jul 2025
Viewed by 185
Abstract
This study assesses whether the rise in water level—following three years of reservoir filling at the Teles Pires Hydroelectric Plant (135.6 km2 water surface) in Southern Amazonia—has affected the floristic composition, structure, and dynamics of adjacent forests. We established 62 permanent plots [...] Read more.
This study assesses whether the rise in water level—following three years of reservoir filling at the Teles Pires Hydroelectric Plant (135.6 km2 water surface) in Southern Amazonia—has affected the floristic composition, structure, and dynamics of adjacent forests. We established 62 permanent plots (2000 m2 each) across a topographic gradient from the reservoir margin and conducted annual tree inventories for individuals with DBH ≥ 10 cm from 2014 to 2017. A total of 6322 individuals were recorded, representing 322 species, 210 genera, and 61 families. Fabaceae was the most abundant family, and the ten species with the highest importance value index (IVI) before reservoir filling remained dominant afterward. The forests exhibited high species richness and were characterized by a few common and many rare species. Mortality rates were highest within 10 m of elevation from the maximum reservoir level, indicating possible hydrological impacts, although no abnormal dieback or sharp shifts in floristic structure were observed. These results suggest limited short-term effects on species composition, but subtle changes in vegetation dynamics underscore the importance of long-term monitoring. Full article
Show Figures

Figure 1

24 pages, 6552 KiB  
Article
Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling
by Anna M. Jalowska, Daniel E. Line, Tanya L. Spero, J. Jack Kurki-Fox, Barbara A. Doll, Jared H. Bowden and Geneva M. E. Gray
Water 2025, 17(15), 2228; https://doi.org/10.3390/w17152228 - 26 Jul 2025
Viewed by 390
Abstract
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study [...] Read more.
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

26 pages, 4992 KiB  
Article
Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications
by Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Ioana Ion, Eduard Marius Lungulescu, Gabriela Beatrice Sbarcea, Virgil Emanuel Marinescu, Sebastian Aradoaei, Mihaela Aradoaei and Raducu Machidon
Polymers 2025, 17(14), 1987; https://doi.org/10.3390/polym17141987 - 20 Jul 2025
Viewed by 387
Abstract
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. [...] Read more.
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. Disc-shaped samples (Ø30 ± 0.1 mm × 2 ± 0.1 mm) were evaluated in unaged and aged states (840 h at 100% humidity and 100 °C) using scanning electron microscopy, X-ray diffraction, ultraviolet–visible and Fourier-transform infrared spectroscopy, water absorption, thermal resistance, and mechanical and dielectric testing. Among all composites, M2 showed the best performance, with the highest aging resistance (estimated lifetime of 3891 h in humidity and 2361 h in heat). It also exhibited superior mechanical properties, with the highest indentation hardness, Vickers hardness, and elastic modulus before (0.042 GPa, 3.846 HV, and 0.732 GPa) and after aging under humidity (0.042 GPa, 3.932 HV, 0.706 GPa) and elevated temperature (0.085 GPa, 7.818 HV, 1.871 GPa). Although ZnO NPs slightly reduced electrical resistivity, M2 showed the most stable dielectric properties. In its unaged state, M2 had 22%, 30%, and 3% lower surface resistivity, volume resistivity, and dielectric strength, respectively, than M1 polymer. M2 was identified as the optimal formulation, combining mechanical strength, dielectric stability, and resistance to moisture and heat. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

7 pages, 4461 KiB  
Data Descriptor
Dataset on Environmental Parameters and Greenhouse Gases in Port and Harbor Seawaters of Jeju Island, Korea
by Jae-Hyun Lim, Ju-Hyoung Kim, Hyo-Ryeon Kim, Seo-Young Kim and Il-Nam Kim
Data 2025, 10(7), 118; https://doi.org/10.3390/data10070118 - 19 Jul 2025
Viewed by 322
Abstract
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, [...] Read more.
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, pH, total alkalinity, and dissolved inorganic carbon. Concentrations and air–sea fluxes of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) were also quantified. All measurements were conducted following standardized analytical protocols, and certified reference materials and duplicate analyses were used to ensure data accuracy. Consequently, the dataset revealed that elevated nutrient accumulation in port and harbor waters and GHG concentrations tended to be higher at sites with stronger land-based influence. During August 2021, most sites functioned as sources of N2O, CH4, and CO2 to the atmosphere. This integrated dataset offers valuable insights into the influence of anthropogenic and hydrological factors on coastal GHG dynamics and provides a foundation for future studies across diverse semi-enclosed marine systems. Full article
Show Figures

Figure 1

27 pages, 3973 KiB  
Article
Modeling the Distribution and Richness of Mammalian Species in the Nyerere National Park, Tanzania
by Goodluck Massawe, Enrique Casas, Wilfred Marealle, Richard Lyamuya, Tiwonge I. Mzumara, Willard Mbewe and Manuel Arbelo
Remote Sens. 2025, 17(14), 2504; https://doi.org/10.3390/rs17142504 - 18 Jul 2025
Viewed by 1052
Abstract
Understanding the geographic distribution of mammal species is essential for informed conservation planning, maintaining local ecosystem stability, and addressing research gaps, particularly in data-deficient regions. This study investigated the distribution and richness of 20 mammal species within Nyerere National Park (NNP), a large [...] Read more.
Understanding the geographic distribution of mammal species is essential for informed conservation planning, maintaining local ecosystem stability, and addressing research gaps, particularly in data-deficient regions. This study investigated the distribution and richness of 20 mammal species within Nyerere National Park (NNP), a large and understudied protected area in Southern Tanzania. We applied species distribution models (SDMs) using presence data collected through ground surveys between 2022 and 2024, combined with environmental variables derived from remote sensing, including land surface temperature, vegetation indices, soil moisture, elevation, and proximity to water sources and human infrastructure. Models were constructed using the Maximum Entropy (MaxEnt) algorithm, and performance was evaluated using the Area Under the Curve (AUC) metric, yielding high accuracy ranging from 0.81 to 0.97. Temperature (32.3%) and vegetation indices (23.4%) emerged as the most influential predictors of species distributions, followed by elevation (21.7%) and proximity to water (14.5%). Species richness, estimated using a stacked SDM approach, was highest in the northern and riparian zones of the park, identifying potential biodiversity hotspots. This study presents the first fine-scale SDMs for mammal species in Nyerere National Park, offering a valuable ecological baseline to support conservation planning and promote sustainable ecotourism development in Tanzania’s southern protected areas. Full article
Show Figures

Graphical abstract

14 pages, 3236 KiB  
Article
Climate Change for Lakes in the Coterminous United States in Relation to Lake Warming from 1981 to 2023
by Roger W. Bachmann
Water 2025, 17(14), 2138; https://doi.org/10.3390/w17142138 - 18 Jul 2025
Viewed by 256
Abstract
The goal of this study was to look at changes in mean air temperatures, minimum air temperatures, maximum air temperatures, dew points, and precipitation over each of 1033 lakes in the coterminous United States over the summer months in the years 1981–2024. Near-surface [...] Read more.
The goal of this study was to look at changes in mean air temperatures, minimum air temperatures, maximum air temperatures, dew points, and precipitation over each of 1033 lakes in the coterminous United States over the summer months in the years 1981–2024. Near-surface water temperatures in the same lakes were calculated with equations using 8-day mean daily air temperatures, latitude, elevation, and the year of sampling. Over the past 43 years, there have been changes in air temperatures over many lakes of the United States with generally increasing trends for minimum air temperatures and mean air temperatures during the months of June through September. The greatest increases have been in daily minimum air temperatures followed by the mean daily air temperatures. Maximum daily air temperatures did not show a statistically significant increase for the summer season but did show a significant increase for the month of September. Along with the changes in the climate, the near-surface water temperatures of the lakes of the United States on average showed increases of 0.33 °C decade−1 for the four summer months and increases for each of the summer months. Full article
Show Figures

Figure 1

13 pages, 2340 KiB  
Article
The Microscopic Mechanism of High Temperature Resistant Core-Shell Nano-Blocking Agent: Molecular Dynamics Simulations
by Zhenghong Du, Jiaqi Xv, Jintang Wang, Juyuan Zhang, Ke Zhao, Qi Wang, Qian Zheng, Jianlong Wang, Jian Li and Bo Liao
Polymers 2025, 17(14), 1969; https://doi.org/10.3390/polym17141969 - 17 Jul 2025
Viewed by 326
Abstract
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and [...] Read more.
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and adapting to extreme wellbore environments. In response to the technical demands of nanoparticle-based plugging in shale reservoirs, this study systematically investigated the microscopic interaction mechanisms of nano-plugging agent shell polymers (Ployk) with various reservoir minerals under different temperature and salinity conditions using molecular simulation methods. Key parameters, including interfacial interaction energy, mean square displacement, and system density distribution, were calculated to thoroughly analyze the effects of temperature and salinity variations on adsorption stability and structural evolution. The results indicate that nano-plugging agent shell polymers exhibit pronounced mineral selectivity in their adsorption behavior, with particularly strong adsorption performance on SiO2 surfaces. Both elevated temperature and increased salinity were found to reduce the interaction strength between the shell polymers and mineral surfaces and significantly alter the spatial distribution and structural ordering of water molecules near the interface. These findings not only elucidate the fundamental interfacial mechanisms of nano-plugging agents in shale reservoirs but also provide theoretical guidance for the precise design of advanced nano-plugging agent materials, laying a scientific foundation for improving the engineering application performance of shale oil and gas wellbore-plugging technologies. Full article
Show Figures

Figure 1

25 pages, 4639 KiB  
Article
Investigation of the Mechanical and Physical Properties of Acidic Pumice Aggregate-Reinforced Lightweight Concrete Under High-Temperature Exposure
by Belkis Elyigit and Cevdet Emin Ekinci
Buildings 2025, 15(14), 2505; https://doi.org/10.3390/buildings15142505 - 17 Jul 2025
Viewed by 322
Abstract
This study examines the mechanical and physical performance of lightweight concretes incorporating acidic pumice aggregate, with a particular focus on their behavior under thermal exposure. Pumice sourced from the Bitlis-Tatvan region was used as a partial replacement for limestone aggregate at volumetric substitution [...] Read more.
This study examines the mechanical and physical performance of lightweight concretes incorporating acidic pumice aggregate, with a particular focus on their behavior under thermal exposure. Pumice sourced from the Bitlis-Tatvan region was used as a partial replacement for limestone aggregate at volumetric substitution levels of 50%, 60%, and 70% (designated LC50, LC60, and LC70, respectively), alongside a conventional control mix (NC). Experimental investigations included flexural and compressive strength tests, capillary water absorption measurements, and mass loss assessments at elevated temperatures (100 °C, 200 °C, and 300 °C). The results indicate that increasing pumice content leads to a significant reduction in mechanical strength, as evidenced by a strong negative correlation (e.g., −0.994 for compressive strength), and results in increased water absorption due to the higher porosity of pumice. Thermal exposure caused more pronounced weight loss in pumice-rich mixtures, primarily attributable to moisture evaporation and the formation of surface voids, particularly in LC60 and LC70 specimens. Although the incorporation of pumice effectively reduces the unit weight of concrete, it compromises both strength and durability, highlighting a critical trade-off between weight reduction and structural performance. Future studies are recommended to quantitatively assess the relationship between compressive and flexural strengths to address current limitations. Additionally, advanced microstructural analyses (e.g., SEM, XRD), fire resistance evaluations at higher temperatures, and the development of hybrid mixes incorporating supplementary cementitious materials (SCMs) should be further explored. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop