An Integrated TDR Waveguide and Data Interpretation Framework for Multi-Phase Detection in Soil–Water Systems
Abstract
1. Introduction
2. TDR Principle and Data Interpretation Methodology
2.1. Basic Principle of TDR Systems
2.2. Data Interpretation for Interface Detection
2.3. Data Interpretation for SSC Characterization
3. Experimental System with Probe Fabrication
3.1. Experimental Setup and Materials
3.2. Design of Innovative TDR Probe
3.3. Probe Calibration and Validation
4. Results and Discussion
4.1. Temperature Effect on Hydrological Measurements
4.2. Detections on Water and Sand Bed Elevation
4.3. Detections on Suspended Sediment Concentration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Furtak, K.; Wolińska, A. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture—A review. CATENA 2023, 231, 107378. [Google Scholar] [CrossRef]
- Valenzuela, Y.B.; Rosas, R.S.; Mazari, M.; Risse, M.; Rodriguez-Nikl, T. Resilience of Road Infrastructure in Response to Extreme Weather Events. In Proceedings of the International Conference on Sustainable Infrastructure 2017, New York, NY, USA, 26–28 October 2017; pp. 349–360. [Google Scholar]
- Xu, W.; Chen, S.; Ji, H.; Hu, T.; Zhong, X.; Li, P. Dynamics of Sandy Shorelines and Their Response to Wave Climate Change in the East of Hainan Island, China. J. Mar. Sci. Eng. 2024, 12, 1921. [Google Scholar] [CrossRef]
- Lin, J.; He, Y.; Mao, H.; Yang, H.; Wu, G. Application of Delaunay adaptive mesh refinement in flood risk assessment of multi-bridge system with short distance. Appl. Water Sci. 2024, 14, 145. [Google Scholar] [CrossRef]
- Shao, W.; He, L.; Shi, D.; Li, L. Seismic Vulnerability Assessment of Deteriorating Pile Foundations in Marine Environments. Geotech. Geol. Eng. 2023, 41, 2467–2479. [Google Scholar] [CrossRef]
- Joe, R.J.; Pitchaimani, V.S.; Mirra, T.V.N.S.; Karuppannan, S. Shoreline dynamics and anthropogenic influences on coastal erosion: A multi-temporal analysis for sustainable shoreline management along a southwest coastal district of India. Environ. Sustain. Indic. 2025, 27, 100744. [Google Scholar] [CrossRef]
- de Falco, F.; Mele, R. The monitoring of bridges for scour by sonar and sedimetri. NDT & E Int. 2002, 35, 117–123. [Google Scholar]
- Cavallo, C.; Nones, M.; Papa, M.N.; Gargiulo, M.; Ruello, G. Monitoring the morphological evolution of a reach of the Italian Po River using multispectral satellite imagery and stage data. Geocarto Int. 2021, 37, 8579–8601. [Google Scholar] [CrossRef]
- Rominger, J.T.; Lightbody, A.F.; Nepf, H.M. Effects of Added Vegetation on Sand Bar Stability and Stream Hydrodynamics. J. Hydraul. Eng. 2010, 136, 994–1002. [Google Scholar] [CrossRef]
- Hajdukiewicz, H.; Wyżga, B. Aerial photo-based analysis of the hydromorphological changes of a mountain river over the last six decades: The Czarny Dunajec, Polish Carpathians. Sci. Total Environ. 2019, 648, 1598–1613. [Google Scholar] [CrossRef]
- Baranwal, A.; Das, B.S. Scouring around bridge pier: A comprehensive review of countermeasure techniques. Eng. Res. Express 2024, 6, 022103. [Google Scholar] [CrossRef]
- Clark, K.E.; Hilton, R.G.; West, A.J.; Caceres, A.R.; Gröcke, D.R.; Marthews, T.R.; Ferguson, R.I.; Asner, G.P.; New, M.; Malhi, Y. Erosion of organic carbon from the Andes and its effects on ecosystem carbon dioxide balance. J. Geophys. Res. Biogeosci. 2017, 122, 449–469. [Google Scholar] [CrossRef]
- Massei, N.; Dupont, J.; Mahler, B.; Laignel, B.; Fournier, M.; Valdes, D.; Ogier, S. Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. J. Hydrol. 2006, 329, 244–257. [Google Scholar] [CrossRef]
- Lee, C.-S.; Lee, Y.-C.; Chiang, H.-M. Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons. Sci. Total Environ. 2016, 557, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Chiang, L.-C.; Wang, Y.-C.; Liao, C.-J. Spatiotemporal Variation of Sediment Export from Multiple Taiwan Watersheds. Int. J. Environ. Res. Public Health 2019, 16, 1610. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.R.; Huang, M.Y.-F.; Huang, A.Y.-L. Regional soil erosion in response to land use and increased typhoon frequency and intensity, Taiwan. Quat. Res. 2014, 81, 15–20. [Google Scholar] [CrossRef]
- Miyata, S.; Fujita, M. Laboratory based continuous bedload monitoring in a model retention basin: Application of time domain reflectometry. Earth Surf. Process. Landforms 2018, 43, 2022–2030. [Google Scholar] [CrossRef]
- Ruffell, S.C.; Talling, P.J.; Baker, M.L.; Pope, E.L.; Heijnen, M.S.; Jacinto, R.S.; Cartigny, M.J.; Simmons, S.M.; Clare, M.A.; Heerema, C.J.; et al. Time-lapse surveys reveal patterns and processes of erosion by exceptionally powerful turbidity currents that flush submarine canyons: A case study of the Congo Canyon. Geomorphology 2024, 463, 109350. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J. Modeling of soil erosion and sediment transport in the East River Basin in southern China. Sci. Total Environ. 2012, 441, 159–168. [Google Scholar] [CrossRef]
- Piqué, G.; Batalla, R.; López, R.; Sabater, S. The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees). Geomorphology 2017, 293, 211–226. [Google Scholar] [CrossRef]
- Lewis, J. Turbidity-Controlled Suspended Sediment Sampling for Runoff-Event Load Estimation. Water Resour. Res. 1996, 32, 2299–2310. [Google Scholar] [CrossRef]
- Chung, C.-C.; Lin, C.-P.; Wu, I.-L.; Chen, P.-H.; Tsay, T.-K. New TDR waveguides and data reduction method for monitoring of stream and drainage stage. J. Hydrol. 2013, 505, 346–351. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Miyata, S.; Mizugaki, S.; Naito, S.; Fujita, M. Application of time domain reflectometry to high suspended sediment concentration measurements: Laboratory validation and preliminary field observations in a steep mountain stream. J. Hydrol. 2020, 585, 124747. [Google Scholar] [CrossRef]
- Chung, C.-C.; Lin, C.-P. High concentration suspended sediment measurements using time domain reflectometry. J. Hydrol. 2011, 401, 134–144. [Google Scholar] [CrossRef]
- Xing, L.; Gao, L.; Ma, Z.; Lao, L.; Wei, W.; Han, W.; Wang, B.; Gao, M.; Xing, D.; Ge, X. A permittivity-conductivity joint model for hydrate saturation quantification in clayey sediments based on measurements of time domain reflectometry. Geoenergy Sci. Eng. 2024, 237, 212798. [Google Scholar] [CrossRef]
- Gao, Q.; Yu, X. Design and evaluation of a high sensitivity spiral TDR scour sensor. Smart Mater. Struct. 2015, 24, 085005. [Google Scholar] [CrossRef]
- Yu, X.B. Development and evaluation of an automation algorithm for a time-domain reflectometry bridge scour monitoring system. Can. Geotech. J. 2011, 48, 26–35. [Google Scholar] [CrossRef]
- Mishra, P.; Bore, T.; Jiang, Y.; Scheuermann, A.; Li, L. Dielectric spectroscopy measurements on kaolin suspensions for sediment concentration monitoring. Measurement 2018, 121, 160–169. [Google Scholar] [CrossRef]
- Starr, G.C.; Barak, P.; Lowery, B.; Avila-Segura, M. Soil Particle Concentrations and Size Analysis Using a Dielectric Method. Soil Sci. Soc. Am. J. 2000, 64, 858–866. [Google Scholar] [CrossRef]
- Tidwell, V.C.; Brainard, J.R. Laboratory evaluation of time domain reflectometry for continuous monitoring of stream stage, channel profile, and aqueous conductivity. Water Resour. Res. 2005, 41, W04001. [Google Scholar] [CrossRef]
- Fellner-Feldegg, H. Measurement of dielectrics in the time domain. J. Phys. Chem. 1969, 73, 616–623. [Google Scholar] [CrossRef]
- Černý, R. Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review. Measurement 2009, 42, 329–336. [Google Scholar] [CrossRef]
- Liu, W.; Hunsperger, R.G.; Chajes, M.J.; Folliard, K.J.; Kunz, E. Corrosion Detection of Steel Cables using Time Domain Reflectometry. J. Mater. Civ. Eng. 2002, 14, 217–223. [Google Scholar] [CrossRef]
- Friel, R.; Or, D. Frequency analysis of time-domain reflectometry (TDR) with application to dielectric spectroscopy of soil constituents. Geophysics 1999, 64, 707–718. [Google Scholar] [CrossRef]
- Naito, S.; Hoshi, M.; Mashimo, S. In VivoDielectric Analysis of Free Water Content of Biomaterials by Time Domain Reflectometry. Anal. Biochem. 1997, 251, 163–172. [Google Scholar] [CrossRef]
- Cataldo, A.; Vallone, M.; Tarricone, L.; Attivissimo, F. An evaluation of performance limits in continuous TDR monitoring of permittivity and levels of liquid materials. Measurement 2008, 41, 719–730. [Google Scholar] [CrossRef]
- Robinson, D.A. Measurement of the Solid Dielectric Permittivity of Clay Minerals and Granular Samples Using a Time Domain Reflectometry Immersion Method. Vadose Zone J. 2004, 3, 705–713. [Google Scholar] [CrossRef]
- Pepin, S.; Livingston, N.J.; Hook, W.R. Temperature-Dependent Measurement Errors in Time Domain Reflectometry Determinations of Soil Water. Soil Sci. Soc. Am. J. 1995, 59, 38–43. [Google Scholar] [CrossRef]
- Gao, Q.; Wu, G.; Yu, X. Design, analyses, and evaluation of a spiral TDR sensor with high spatial resolution. Smart Struct. Syst. 2015, 16, 683–699. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, S.; Wu, J.; Guo, Y. An Integrated TDR Waveguide and Data Interpretation Framework for Multi-Phase Detection in Soil–Water Systems. Sensors 2025, 25, 4683. https://doi.org/10.3390/s25154683
Wen S, Wu J, Guo Y. An Integrated TDR Waveguide and Data Interpretation Framework for Multi-Phase Detection in Soil–Water Systems. Sensors. 2025; 25(15):4683. https://doi.org/10.3390/s25154683
Chicago/Turabian StyleWen, Songcheng, Jingwei Wu, and Yuan Guo. 2025. "An Integrated TDR Waveguide and Data Interpretation Framework for Multi-Phase Detection in Soil–Water Systems" Sensors 25, no. 15: 4683. https://doi.org/10.3390/s25154683
APA StyleWen, S., Wu, J., & Guo, Y. (2025). An Integrated TDR Waveguide and Data Interpretation Framework for Multi-Phase Detection in Soil–Water Systems. Sensors, 25(15), 4683. https://doi.org/10.3390/s25154683