Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. Historical Observed Rainfall and Flow Data
2.2. Modeled Historical and Future Rainfall
2.3. HEC-HMS Model Development and Calibration
2.4. HEC-RAS Model Development and Calibration
2.5. Design Rainfall Approach
3. Results
3.1. Historical Changes in Rainfall Characteristics
3.2. Future Changes in Rainfall Characteristics
3.3. Future Rainfall from Matthew 2100 Under the Design Rainfall Approach
3.4. Future Discharge and Flooding from Matthew 2100
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
U.S. | United States |
CONUS | Contiguous U.S. |
NC | North Carolina |
ENC | Eastern NC |
EPA | U.S. Environmental Protection Agency |
USGS | U.S. Geological Survey |
NOAA | National Oceanic and Atmospheric Administration |
FRIS | Flood Risk Information System |
FEMA | Federal Emergency Management Agency |
NCDOT | NC Department of Transportation |
NCEM | NC Division of Emergency Management |
Raleigh State Univ | Weather station located at NC State University in Raleigh, NC, part of the NC State Climate Office’s ECONet. |
Raleigh AP | Primary (first order) weather station located at the Raleigh-Durham Airport in Morrisville, NC. The AP stands for airport. |
Kinston 7SE | Weather station located south-east from Kinston. |
Kinston AG Research, NC | Weather station located at Cunningham Research Station, an agricultural research station for N.C. State University. |
TCs | Tropical Cyclones |
TCFF | Freshwater flooding induced by extreme rainfall associated with TCs. |
Matthew | Hurricane Matthew |
Matthew 2100 | Future realizations of Hurricane Matthew by year 2100. |
p1, p2 | Period one, period two. |
Delta (Δ) | Change. Difference between p1 and p2. |
PIDF | Precipitation intensity–duration–frequency |
DRA | Design rainfall approach |
RP | Return period |
AMS | Annual maximum series |
L-moments | Statistics used to summarize the shape of a probability distribution. |
GEV | Generalized extreme value distribution |
RFA | Regional frequency analysis |
NSE | Nash–Sutcliffe model efficiency coefficient |
R2 | Coefficient of determination |
WSEs | Water surface elevations |
C-C relationship | Clausius–Clapeyron relationship |
HEC-HMS | Hydrologic Engineering Center–Hydrologic Modeling System |
HEC-RAS | Hydrologic Engineering Center–River Analysis System |
WRF | Weather Research and Forecasting |
DD | Dynamically downscaled |
SD | Statistically downscaled |
GCMs | Global climate models |
RCMs | Regional climate models |
CMIP5/CMIP6 | Coupled Model Intercomparison Project Phase 5/Phase 6 |
RCPs (RCP4.5, RCP8.5) | Representative Concentration Pathways (scenarios) expressed as changes in radiative forcing values (here, 4.5 and 8.5 W/m2, respectively) between 1750 and 2100. |
DD-EDDE | DD data from EPA Dynamically Downscaled Ensemble |
DD-CDX | DD data from NA CORDEX North American Coordinated Regional Downscaling Experiment |
SD-MACA | SD from Multivariate Adaptive Constructed Analogs (MACAv2-METDATA) |
SD-LOCA | Localized Constructed Analogs |
CESM-4.5/-8.5 | GCM from Community Earth System Model (CESM) version 1 (a.k.a., Community Climate System Model v4– CCSM4) under RCP4.5 and RCP 8.5 scenarios. |
GFDL-CM3-8.5 | GCM from Geophysical Fluid Dynamics Laboratory Coupled Model v3 under RCP 8.5 scenario. |
HAD-GEM2-ES-8.5 | GCM from Hadley Centre Global Environment Model v 2 under RCP 8.5 scenario. |
MPI-ESM-MR-8.5 | GCM from Max Planck Institute Earth System Model mixed resolution under RCP 8.5 scenario. |
GFDL-ESM2M-8.5 | GCM from Geophysical Fluid Dynamics Laboratory Earth System Model under RCP 8.5 scenario. |
References
- NOAA NCEI. National Centers for Environmental Information. U.S. Billion-Dollar Weather and Climate Disasters. 2025. Available online: https://www.ncei.noaa.gov/access/billions/ (accessed on 17 April 2025).
- Kunkel, K.E.; Champion, S.M. An assessment of rainfall from Hurricanes Harvey and Florence relative to other extremely wet storms in the United States. Geophys. Res. Lett. 2019, 46, 13500–13506. [Google Scholar] [CrossRef]
- Rappaport, E.N. Loss of Life in the United States Associated with Recent Atlantic Tropical Cyclones. Bull. Am. Meteorol. Soc. 2000, 81, 2065–2074. [Google Scholar] [CrossRef]
- Rappaport, E.N. Fatalities in the United States from Atlantic Tropical Cyclones: New Data and Interpretation. Bull. Am. Meteorol. Soc. 2014, 95, 341–346. [Google Scholar] [CrossRef]
- Luke, A.; Sanders, B.F.; Goodrich, K.A.; Feldman, D.L.; Boudreau, D.; Eguiarte, A.; Serrano, K.; Reyes, A.; Schubert, J.E.; AghaKouchak, A.; et al. Going beyond the flood insurance rate map: Insights from flood hazard map co-production. Nat. Hazards Earth Syst. Sci. 2018, 18, 1097–1120. [Google Scholar] [CrossRef]
- Khan, S.J.; Deere, D.; Leusch, F.D.; Humpage, A.; Jenkins, M.; Cunliffe, D. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles? Water Res. 2015, 85, 124–136. [Google Scholar] [CrossRef]
- Schaffer-Smith, D.; Myint, S.W.; Muenich, R.L.; Tong, D.; DeMeester, J.E. Repeated Hurricanes Reveal Risks and Opportunities for Social-Ecological Resilience to Flooding and Water Quality Problems. Environ. Sci. Technol. 2020, 54, 7194–7204. [Google Scholar] [CrossRef]
- Paerl, H.W.; Crosswell, J.R.; Van Dam, B.; Hall, N.S.; Rossignol, K.L.; Osburn, C.L.; Hounshell, A.G.; Sloup, R.S.; Harding, L.W. Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: Implications for biogeochemical cycling and water quality in a stormier world. Biogeochemistry 2018, 141, 307–332. [Google Scholar] [CrossRef]
- Osburn, C.L.; Rudolph, J.C.; Paerl, H.W.; Hounshell, A.G.; Van Dam, B.R. Lingering Carbon Cycle Effects of Hurricane Matthew in North Carolina’s Coastal Waters. Geophys. Res. Lett. 2019, 46, 2654–2661. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Sobel, A.H.; Camargo, S.J.; Hall, T.M.; Lee, C.-Y.; Tippett, M.K.; Wing, A.A. Human influence on tropical cyclone intensity. Science 2016, 353, 242–246. [Google Scholar] [CrossRef]
- Stone, M.H.; Cohen, S. Assessing the influence of an extended hurricane season on inland flooding potential in the Southeast United States. Nat. Hazards Earth Syst. Sci. Discuss. 2017, 17, 439–447. [Google Scholar] [CrossRef]
- Zhang, G.; Murakami, H.; Knutson, T.R.; Mizuta, R.; Yoshida, K. Tropical cyclone motion in a changing climate. Sci. Adv. 2020, 6, eaaz7610. [Google Scholar] [CrossRef]
- Bhatia, K.; Vecchi, G.; Murakami, H.; Underwood, S.; Kossin, J. Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. J. Clim. 2018, 31, 8281–8303. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Santoso, A.; McPhaden, M.J.; Wu, L.; Jin, F.-F.; Timmermann, A.; Collins, M.; Vecchi, G.; Lengaigne, M.; et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 2015, 5, 132–137. [Google Scholar] [CrossRef]
- Steptoe, H.; Jones, S.E.O.; Fox, H. Correlations between extreme atmospheric hazards and global teleconnections: Implications for multihazard resilience. Rev. Geophys. 2018, 56, 50–78. [Google Scholar] [CrossRef]
- Wright, D.B.; Bosma, C.D.; Lopez-Cantu, T.U.S. Hydrologic Design Standards Insufficient Due to Large Increases in Frequency of Rainfall Extremes. Geophys. Res. Lett. 2019, 46, 8144–8153. [Google Scholar] [CrossRef]
- Markolf, S.A.; Chester, M.V.; Helmrich, A.M.; Shannon, K. Re-imagining design storm criteria for the challenges of the 21st century. Cities 2021, 109, 102981. [Google Scholar] [CrossRef]
- NCSCO. North Carolina State Climate Office. Hurricane Statistics. North Carolina Tropical Cyclone Statistics (1851–2021). 2021. Available online: https://products.climate.ncsu.edu/weather/hurricanes/statistics/ (accessed on 27 June 2022).
- Kunkel, K.E.; Easterling, D.R.; Ballinger, A.; Bililign, S.; Champion, S.M.; Corbett, D.R.; Dello, K.D.; Dissen, J.; Lackmann, G.M.; Luettich, R.A.; et al. North Carolina Climate Science Report. N. Carol. Inst. Clim. Stud. 2020, 233, 236. [Google Scholar]
- Simpson, R.H.; Riehl, H. The Hurricane and Its Impact; Louisiana State University Press: Baton Rouge, Louisiana, 1981. [Google Scholar]
- Stewart, S.R. Hurricane Matthew (AL142016). 2017. Available online: https://www.nhc.noaa.gov/data/tcr/index.php?season=2016&basin=atl (accessed on 25 February 2020).
- Feaster, T.D.; Weaver, J.C.; Gotvald, A.J.; Kolb, K.R. Preliminary Peak Stage and Streamflow Data at Selected U.S. Geological Survey Streamgaging Stations in North and South Carolina for Flooding Following Hurricane Florence, September 2018; Open-File Report 2018-1172; US Geological Survey: Reston, VA, USA, 2018; 36p.
- Available online: https://waterdata.usgs.gov/nwis/uv?site_no=02089000&legacy=1 (accessed on 25 February 2020).
- Available online: https://waterdata.usgs.gov/nwis/uv?site_no=02089500&legacy=1 (accessed on 25 February 2020).
- NCDOT NCEM (North Carolina Department of Transportation and North Carolina Division of Emergency Management). Neuse River Basin Flood Analysis and Mitigation Strategies Study. NC Department of Transportation. 2018. Available online: https://www.rebuild.nc.gov/documents/files/neuse-mitigation-report/open (accessed on 18 March 2019).
- Watt, E.; Marsalek, J. Critical review of the evolution of the design storm event concept. Can. J. Civ. Eng. 2013, 40, 105–113. [Google Scholar] [CrossRef]
- Feldman, A.D. Hydrologic Modeling System HEC-HMS: Technical Reference Manual; US Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2000.
- Brunner, G.W. HEC-RAS River Analysis System: Hydraulic Reference Manual; US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center: Davis, CA, USA, 2010.
- Jalowska, A.M.; Spero, T.L.; Bowden, J.H. Projecting changes in extreme rainfall from three tropical cyclones using the design-rainfall approach. npj Clim. Atmos. Sci. 2021, 4, 23. [Google Scholar] [CrossRef]
- Sanderson, B.M.; Wehner, M.; Knutti, R. Skill and independence weighting for multi-model assessments. Geosci. Model Dev. 2017, 10, 2379–2395. [Google Scholar] [CrossRef]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The Community Climate System Model Version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Hinton, T.; Jones, C.D.; Liddicoat, S.; Martin, G.; O’Connor, F.; Rae, J.; et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Griffies, S.M.; Winton, M.; Donner, L.; Horowitz, L.; Downes, S.; Farneti, R.; Gnanadesikan, A.; Hurlin, W.; Lee, H.; Liang, Z.; et al. The GFDL CM3 Coupled Climate Model: Characteristics of the ocean and sea ice simulations. J. Clim. 2011, 24, 3520–3544. [Google Scholar] [CrossRef]
- Dunne, J.P.; John, J.G.; Adcroft, A.J.; Griffies, S.M.; Hallberg, R.W.; Shevliakova, E.; Stouffer, R.J.; Cooke, W.; Dunne, K.A.; Harrison, M.J.; et al. GFDL’s ESM2 Global Coupled Climate—Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. J. Clim. 2012, 25, 6646–6665. [Google Scholar] [CrossRef]
- Dunne, J.P.; John, J.G.; Shevliakova, E.; Stouffer, R.J.; Krasting, J.P.; Malyshev, S.L.; Milly, P.C.D.; Sentman, L.T.; Adcroft, A.J.; Cooke, W.; et al. GFDL’s ESM2 Global Coupled Climate—Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics. J. Clim. 2013, 26, 2247–2267. [Google Scholar] [CrossRef]
- Sheffield, J.; Barrett, A.P.; Colle, B.; Nelun Fernando, D.; Fu, R.; Geil, K.L.; Hu, Q.; Kinter, J.; Kumar, S.; Langenbrunner, B.; et al. North American Climate in CMIP5 Experiments. Part I: Evaluation of Historical Simulations of Continental and Regional Climatology. J. Clim. 2013, 26, 9209–9245. [Google Scholar] [CrossRef]
- Brekke, L.D.; Kiang, J.E.; Olsen, J.R.; Pulwarty, R.S.; Raff, D.A.; Turnipseed, D.P.; Webb, R.S.; White, K.D. Climate change and water resources management—A federal perspective. U.S. Geol. Surv. Circ. 2009, 1331, 65. [Google Scholar]
- Wootten, A.M.; Dixon, K.W.; Adams-Smith, D.J.; McPherson, A. Statistically downscaled precipitation sensitivity to gridded observation data and downscaling technique. Int. J. Clim. 2021, 41, 980–1001. [Google Scholar] [CrossRef]
- NOAA NRCC. Northeast Regional Climate Centers. South Central Applied Climate Information System (SC-ACIS) Version 2. 2022. Available online: http://scacis.rcc-acis.org/ (accessed on 16 March 2022).
- WMO (World Meteorological Organization). Technical Regulations. Volume I—General Meteorological Standards and Recommended Practices. Geneva: World Meteorological Organization. 2015. Available online: https://library.wmo.int/records/item/35722-technical-regulations-volume-i-general-meteorological-standards-and-recommended-practices?offset=3 (accessed on 15 March 2025).
- Bonnin, G.M.; Martin, D.; Lin, B.; Parzybok, T.; Yekta, M.; Riley, D. NOAA Atlas 14, Precipitation Frequency Atlas of the United States; Version 3.0; NOAA, National Weather Service: Silver Spring, MD, USA, 2006; Volume 2.
- FRIS. North Carolina Flood Risk Information System. The North Carolina Floodplain Mapping Program. Available online: https://fris.nc.gov/ (accessed on 16 March 2019).
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Clarke, L.E. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations: Report (Vol. 2); Sub-Report 2.1a of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research; US Climate Change Science Program: Washington, DC, USA, 2007. Available online: https://globalchange.mit.edu/publication/14399 (accessed on 1 May 2022).
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP8.5–A scenario of comparatively high greenhouse gas emissions. Clim. Change 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Spero, T.L.; Bowden, J.B.; Mallard, M.S.; Nolte, C.G.; Willison, J.; Jalowska, A.M.; Talgo, K.D.; Reynolds, L.J.; Brehme, K. EPA Dynamically Downscaled Ensemble (EDDE): Datasets for Adaptation and Resilience Planning for Environmental Endpoints. Bull. Am. Meteorol. Soc. 2025, submitted. [CrossRef]
- EPA. EPA Dynamically Downscaled Ensemble (EDDE); U.S. EPA Office of Research and Development: Washington, DC, USA, 2024; Version 1. [CrossRef]
- Mearns, L.O.; McGinnis, S.; Daniel, K.; Raymond, A.; Biner, S.; Bukovsky, M.; Chang, H.-I.; Christensen, O.; Herzmann, D.; Jiao, Y.; et al. The NA-CORDEX Dataset; Version 1.0; NCAR Climate Data Gateway: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Nolte, C.G.; Spero, T.L.; Bowden, J.H.; Sarofim, M.C.; Martinich, J.; Mallard, M.S. Regional temperature-ozone relationships across the U.S. under multiple climate and emissions scenarios. J. Air Waste Manag. Assoc. 2021, 71, 1251–1264. [Google Scholar] [CrossRef]
- Otte, T.L.; Nolte, C.G.; Otte, M.J.; Bowden, J.H. Does nudging squelch the extremes in regional climate modeling? J. Clim. 2012, 25, 7046–7066. [Google Scholar] [CrossRef]
- Bowden, J.H.; Otte, T.L.; Nolte, C.G.; Otte, M.J. Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J. Clim. 2012, 25, 2805–2823. [Google Scholar] [CrossRef]
- Alapaty, K.; Herwehe, J.A.; Otte, T.L.; Nolte, C.G.; Bullock, O.R.; Mallard, M.S.; Kain, J.S.; Dudhia, J. Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef]
- Bowden, J.H.; Nolte, C.G.; Otte, T.L. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology. Clim. Dyn. 2013, 40, 1903–1920. [Google Scholar] [CrossRef]
- Herwehe, J.A.; Alapaty, K.; Spero, T.L.; Nolte, C.G. Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions. J. Geophys. Res. Atmos. 2014, 119, 5317–5330. [Google Scholar] [CrossRef]
- Mallard, M.S.; Nolte, C.G.; Bullock, O.R.; Spero, T.L.; Gula, J. Using a coupled lake model with WRF for dynamical downscaling. J. Geophys. Res. Atmos. 2014, 119, 7193–7208. [Google Scholar] [CrossRef]
- Spero, T.L.; Nolte, C.G.; Bowden, J.H.; Mallard, M.S.; Herwehe, J.A. The impact of incongruous lake temperatures on regional climate extremes downscaled from the CMIP5 archive using the WRF model. J. Clim. 2016, 29, 839–853. [Google Scholar] [CrossRef]
- Nolte, C.G.; Dolwick, P.D.; Fann, N.; Horowitz, L.W.; Naik, V.; Pinder, R.W.; Spero, T.L.; Winner, D.A.; Ziska, L.H. Air Quality. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume II, pp. 503–529. [Google Scholar]
- Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical downscaling using Localized Constructed Analogs (LOCA). J. Hydrometeorol. 2014, 15, 2558–2585. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Maurer, E.P.; Abatzoglou, J.T.; Hegewisch, K.C. Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeorol. 2015, 16, 2421–2442. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Brown, T.J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 2012, 32, 772–780. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- USACE. HEC-RAS 2D User’s Manual; U.S. Army Corps of Engineers Hydrologic Engineering Center: Davis, CA, USA, 2022.
- NCEM. QL2/QL1 LiDAR Collection; North Carolina Emergency Management: Raleigh, NC, USA, 2018.
- Jin, S.; Homer, C.; Dewitz, J.; Danielson, P.; Howard, D. National Land Cover Database (NLCD) 2016 Products; U.S. Geological Survey data release: Sioux Falls, SD, USA, 2019.
- McCuen, R.H. Hydrologic Analysis and Design; Prentice-Hall: Englewood Cliffs, NJ, USA, 1998.
- USGS. USGS Flood Event Viewer. Event: 2016 Matthew; U.S. Geological Survey: Reston, VA, USA, 2022. Available online: https://stn.wim.usgs.gov/FEV/#2016Matthew (accessed on 15 February 2021).
- Jalowska, A.M.; Spero, T.L. Developing Precipitation Intensity-Duration-Frequency (PIDF) curves from dynamically downscaled WRF model fields to examine extreme precipitation events in three Eastern U.S. metropolitan areas. J. Geophys. Res. Atmos. 2019, 124, 13895–13913. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Hosking, J.R.M. Regional Frequency Analysis Using L-Moments, R package, Version 3.3; 2019. Available online: https://cran.r-project.org/web/packages/lmomRFA/ (accessed on 15 February 2021).
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. The Third National Climate Assessment Ch. 2: Our Changing Climate. Climate Change Impacts in the United States; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 16–67.
- Hayhoe, K.; Wuebbles, D.J.; Easterling, D.R.; Fahey, D.W.; Doherty, S.; Kossin, J.P.; Sweet, W.V.; Vose, R.S.; Wehner, M.F. Fourth National Climate Assessment, Volume II. Our Changing Climate. In Impacts, Risks, and Adaptation in the United States; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; pp. 72–144. [Google Scholar]
- Gao, Y.; Leung, L.; Zhao, C.; Hagos, S. Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res. Atmos. 2017, 122, 2714–2733. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.G.; Goldenberg, S.; Quirino, T.; Zhang, X.; Marks, F.; Yeh, K.; Atlas, R.; Tallapragada, V. Toward Improving High-Resolution Numerical Hurricane Forecasting: Influence of Model Horizontal Grid Resolution, Initialization, and Physics. Wea. Forecast. 2012, 27, 647–666. [Google Scholar] [CrossRef]
- Mallard, M.S.; Lackmann, G.M.; Aiyyer, A.; Hill, K. Atlantic hurricanes and climate change. Part I: Experimental design and isolation of thermodynamic effects. J. Clim. 2013, 26, 4876–4893. [Google Scholar] [CrossRef]
- Bender, M.A.; Marchok, T.; Tuleya, R.E.; Ginis, I.; Tallapragada, V.; Lord, S.J. Hurricane model development at GFDL: A collaborative success story from a historical perspective. Bull. Am. Meteorol. Soc. 2019, 100, 1725–1736. [Google Scholar] [CrossRef]
- Dixon, K.W.; Lanzante, J.R.; Nath, M.J.; Hayhoe, K.; Stoner, A.; Radhakrishnan, A.; Balaji, V.; Gaitán, C.F. Evaluating the stationarity assumption in statistically downscaled climate projections: Is past performance an indicator of future results? Clim. Change 2016, 135, 395–408. [Google Scholar] [CrossRef]
- Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction for Climate Research; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Hertig, E.; Paxian, A.; Vogt, G.; Seubert, S.; Paeth, H.; Jacobeit, J. Statistical and dynamical downscaling assessments of precipitation extremes in the Mediterranean area. Meteorol. Z. 2012, 21, 61–77. [Google Scholar] [CrossRef]
- Boer, G. Climate change and the regulation of the surface moisture and energy budgets. Clim. Dyn. 1993, 8, 225–239. [Google Scholar] [CrossRef]
- Skliris, N.; Zika, J.D.; Nurser, G.; Josey, S.A.; Marsh, R. Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci. Rep. 2016, 6, 38752. [Google Scholar] [CrossRef]
- Molnar, P.; Fatichi, S.; Gaál, L.; Szolgay, J.; Burlando, P. Storm type effects on super Clausius—Clapeyron scaling of intense rainstorm properties with air temperature. Hydrol. Earth Syst. Sci. 2015, 19, 1753–1766. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Karl, T.R.; Brooks, H.; Kossin, J.; Lawrimore, J.H.; Arndt, D.; Bosart, L.; Changnon, D.; Cutter, S.L.; Doesken, N.; et al. Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Am. Meteor. 2013, 94, 499–514. [Google Scholar] [CrossRef]
- Trapp, R.J.; Diffenbaugh, N.S.; Brooks, H.E.; Baldwin, M.E.; Robinson, E.D.; Pal, J.S. Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA 2007, 104, 19719–19723. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Clim. Dyn. 2020, 55, 383–408. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S.J.; Chan, J.C.; Emanuel, K.; Ho, C.H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Am. Meteor. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Chand, S.S.; Walsh, K.J.; Camargo, S.J.; Kossin, J.P.; Tory, K.J.; Wehner, M.F.; Chan, J.C.; Klotzbach, P.J.; Dowdy, A.J.; Bell, S.S.; et al. Declining tropical cyclone frequency under global warming. Nat. Clim. Chang. 2022, 12, 655–661. [Google Scholar] [CrossRef]
- Rendfrey, T.S.; Bukovsky, M.S.; McCrary, R.R.; Fuentes-Franco, R. An Assessment of Tropical Cyclones in North American CORDEX WRF Simulations. Weather Clim. Extremes 2021, 34, 100382. [Google Scholar] [CrossRef]
- Pendergrass, A.G. Changing Degree of Convective Organization as a Mechanism for Dynamic Changes in Extreme Precipitation. Curr. Clim. Change Rep. 2020, 6, 47–54. [Google Scholar] [CrossRef]
- Diro, G.T.; Giorgi, F.; Fuentes-Franco, R.; Walsh, K.J.E.; Giuliani, G.; Coppola, E. Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain. Clim. Change 2014, 125, 79–94. [Google Scholar] [CrossRef]
- van der Wiel, K.; Wanders, N.; Selten, F.M.; Bierkens, M.F.P. Added value of large ensemble simulations for assessing extreme river discharge in a 2 °C warmer world. Geophys. Res. Lett. 2019, 46, 2093–2102. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; Whitfield, P.H.; Burn, D.H.; Hannaford, J.; Renard, B.; Stahl, K.; Fleig, A.K.; Madsen, H.; Mediero, L.; Korhonen, J.; et al. Climate-driven variability in the occurrence of major floods across North America and Europe. J. Hydrol. 2017, 552, 704–717. [Google Scholar] [CrossRef]
- Ivancic, T.J.; Shaw, S.B. Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Clim. Change 2015, 133, 681–693. [Google Scholar] [CrossRef]
Name | GCM | RCP | DD Ensemble and Horizontal Grid Spacing | Used in HEC-HMS | Years | SD Equivalent Source and Grid Spacing |
---|---|---|---|---|---|---|
“CESM-4.5” | Community Earth System Model version 1 (a.k.a., the fourth version of the Community Climate System Model–CCSM4) [32] | 4.5 | DD-EDDE 36 km | Yes | 1975–2005 2025–2099 | NA |
“CESM-8.5” | 8.5 | Yes | MACA 4 km LOCA 7 km | |||
“GFDL-CM3-8.5” | Geophysical Fluid Dynamics Laboratory Coupled Model [35] | 8.5 | DD-EDDE 36 km | Yes | 1995–2005 2025–2099 | LOCA 7 km |
“HAD-GEM2-ES-8.5” | Hadley Centre Global Environment Model version 2 [33] | 8.5 | DD-CDX 25 km | No | 1950–2005 2006–2099 | MACA 4 km LOCA 7 km |
“MPI-ESM-MR-8.5” | Max Planck Institute Earth System Model mixed resolution [34] | 8.5 | No | LOCA 7 km | ||
“GFDL-ESM2M-8.5” | GFDL Earth System Model [36,37] | 8.5 | No | MACA 4 km LOCA 7 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalowska, A.M.; Line, D.E.; Spero, T.L.; Kurki-Fox, J.J.; Doll, B.A.; Bowden, J.H.; Gray, G.M.E. Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling. Water 2025, 17, 2228. https://doi.org/10.3390/w17152228
Jalowska AM, Line DE, Spero TL, Kurki-Fox JJ, Doll BA, Bowden JH, Gray GME. Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling. Water. 2025; 17(15):2228. https://doi.org/10.3390/w17152228
Chicago/Turabian StyleJalowska, Anna M., Daniel E. Line, Tanya L. Spero, J. Jack Kurki-Fox, Barbara A. Doll, Jared H. Bowden, and Geneva M. E. Gray. 2025. "Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling" Water 17, no. 15: 2228. https://doi.org/10.3390/w17152228
APA StyleJalowska, A. M., Line, D. E., Spero, T. L., Kurki-Fox, J. J., Doll, B. A., Bowden, J. H., & Gray, G. M. E. (2025). Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling. Water, 17(15), 2228. https://doi.org/10.3390/w17152228