Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment and Methods
2.2.1. Obtaining the Polymer-Based Materials
2.2.2. Characterization Methods
SEM Analysis
XRD Analysis
UV-Vis Analysis
FTIR Analysis
Dielectric Tests
Determination of Resistance to Water Action
Determination of Temperature Resistance
Determination of Volume and Surface Resistivities and Dielectric Strength
Mechanical Tests
Analysis of the Degree of Water Absorption
3. Results and Discussion
3.1. Composition and Labeling of the Studied Materials
3.2. Characterization of the Studied Materials
3.2.1. SEM Analysis
3.2.2. XRD Analysis
3.2.3. FTIR Analysis
3.2.4. UV-Vis Analysis
3.2.5. Dielectric Tests
Variation in Dielectric Properties with Humidity
Determination of the Remaining Lifetime Under Humidity Conditions
Variation in Dielectric Properties with Temperature
Determination of Remaining Lifetime Under Temperature Conditions
Determination of Surface and Volume Resistivity and Dielectric Strength
- Determination of surface and volume resistivities
- 2.
- Determination of dielectric strength
3.2.6. Mechanical Properties
3.2.7. Analysis of the Degree of Water Absorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Haque, S.M.; Ardila-Rey, J.A.; Umar, Y.; Mas’ud, A.A.; Muhammad-Sukki, F.; Jume, B.H.; Rahman, H.; Bani, N.A. Application and Suitability of Polymeric Materials as Insulators in Electrical Equipment. Energies 2021, 14, 2758. [Google Scholar] [CrossRef]
- Ahmed Dabbak, S.Z.; Illias, H.A.; Ang, B.C.; Abdul Latiff, N.A.; Makmud, M.Z.H. Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation. Energies 2018, 11, 1448. [Google Scholar] [CrossRef]
- TPC Wire & Cable Corp. Why Cable Jacketing Matters? 2022. Available online: https://www.tpcwire.com/blog/7-tips-for-electrical-cable-selection-and-installation-0 (accessed on 15 May 2025).
- Sam, W. A Comprehensive Guide to Cable Jacket Materials: Types, Features, and Applications. 2024. Available online: https://www.romtronic.com/a-comprehensive-guide-to-cable-jacket-materials (accessed on 15 May 2025).
- Zero Polymers. HDPE Cable Jacketing: The Ultimate Protector and Why It Matters. 2024. Available online: https://zpolymer.com/hdpe-cable-jacketing-the-ultimate-protector (accessed on 15 May 2025).
- Teufelberger Redaelli. HDPE Cable System. Available online: https://www.teufelberger.com/en/products-services/tensile-structures/hdpe.html (accessed on 15 May 2025).
- Pestochem Group Inc. HDPE in Cables: Properties, Applications, and Manufacturing Process. Available online: https://pesto-chem.com/hdpe-in-cables-properties-applications-and-manufacturing-process (accessed on 15 May 2025).
- Ineos Olefins & Polymers USA. Typical Engineering Properties of High Density Polyethylene. Available online: https://www.ineos.com/globalassets/ineos-group/businesses/ineos-olefins-and-polymers-usa/products/technical-information--patents/new/ineos-typical-engineering-properties-of-hdpe.pdf (accessed on 15 May 2025).
- Ainali, N.M.; Bikiaris, D.N.; Lambropoulou, D.A. Aging Effects on Low- and High-Density Polyethylene, Polypropylene and Polystyrene under UV Irradiation: An Insight into Decomposition Mechanism by Py-GC/MS for Microplastic Analysis. J. Anal. Appl. Pyrolysis 2021, 158, 105207. [Google Scholar] [CrossRef]
- Ni, Q.; Yu, F.; Chen, J.; Xu, L.; Liu, Z.; Liu, D.; Jia, H. Environmental Aging Effects on the Thermal Oxidative Degradation and Mechanical Failure of HDPE. J. Macromol. Sci. Part B 2025, 1–15. [Google Scholar] [CrossRef]
- Czarnecka-Komorowska, D.; Chandra, S.; Kopeć, B.; Borowski, J.; Garbacz, T. Investigating the Effect of Photo-Oxidative Degradation on the Ageing Resistance of the Car Mudflaps Manufactured with Post-Production High-Density Polyethylene Wastes. Adv. Sci. Technol. Res. J. 2022, 16, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Di Maro, M.; Duraccio, D.; Malucelli, G.; Faga, M.G. High Density Polyethylene Composites Containing Alumina-Toughened Zirconia Particles: Mechanical and Tribological Behavior. Compos. Part B Eng. 2021, 217, 108892. [Google Scholar] [CrossRef]
- Thabet, A.; Al Mufadi, F.A. Investigation into Dielectric Degradation and Thermal Stability in Distinct Design Patterns of Polymeric Nanocomposites. Trans. Electr. Electron. Mater. 2025, 26, 356–365. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Liu, L.; Yang, F.; Zhang, Y. Evaluation of Cooling Property of High Density Polyethylene (HDPE)/Titanium Dioxide (TiO2) Composites after Accelerated Ultraviolet (UV) Irradiation. Sol. Energ. Mater. Sol. Cells 2015, 143, 120–127. [Google Scholar] [CrossRef]
- Benabid, F.; Kharchi, N.; Zouai, F.; Mourad, A.-H.I.; Benachour, D. Impact of Co-Mixing Technique and Surface Modification of ZnO Nanoparticles Using Stearic Acid on Their Dispersion into HDPE to Produce HDPE/ZnO Nanocomposites. Polym. Polym. Compos. 2019, 27, 389–399. [Google Scholar] [CrossRef]
- Alsayed, Z.; Awad, R.; Badawi, M.S. Thermo-Mechanical Properties of High Density Polyethylene with Zinc Oxide as a Filler. Iran. Polym. J. 2020, 29, 309–320. [Google Scholar] [CrossRef]
- Anu, M.A.; Pillai, S.S. Structure, Thermal, Optical and Dielectric Properties of SnO2 Nanoparticles-Filled HDPE Polymer. Solid State Commun. 2022, 341, 114577. [Google Scholar] [CrossRef]
- Nabiyev, A.A.; Olejniczak, A.; Islamov, A.K.; Pawlukojc, A.; Ivankov, O.I.; Balasoiu, M.; Zhigunov, A.; Nuriyev, M.A.; Guliyev, F.M.; Soloviov, D.V.; et al. Composite Films of HDPE with SiO2 and ZrO2 Nanoparticles: The Structure and Interfacial Effects. Nanomaterials 2021, 11, 2673. [Google Scholar] [CrossRef] [PubMed]
- Said, A.; Abd-Allah, M.A.; Nawar, A.G.; Elsayed, A.E.; Kamel, S. Enhancing the Electrical and Physical Nature of High-Voltage XLPE Cable Dielectric Using Different Nanoparticles. J. Mater. Sci. Mater. Electron. 2022, 33, 7435–7443. [Google Scholar] [CrossRef]
- Pleşa, I.; Noţingher, P.V.; Stancu, C.; Wiesbrock, F.; Schlögl, S. Polyethylene Nanocomposites for Power Cable Insulations. Polymers 2018, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gao, W.; Chu, P.; Zhang, Z.; Zhang, G. Trap-Modulated Carrier Transport Tailors the Dielectric Properties of Alumina/Epoxy Nanocomposites. J. Mater. Sci. Mater. Electron. 2018, 29, 1964–1974. [Google Scholar] [CrossRef]
- Gao, W.; Li, Y.; Zhao, J.; Zhang, Z.; Tang, W. Influence of Surface Modification of Zinc Oxide on Physical Properties of High Density Polyethylene. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130000. [Google Scholar] [CrossRef]
- Nasrat, L.; Dardeer, M.; Sayed, N. Zinc Oxide Filler Effect on Dissipation Factor of High-Density Polyethylene. South Asian Res. J. Eng. Technol. 2024, 6, 67–74. [Google Scholar] [CrossRef]
- Lungu, M.-V.; Vasile, E.; Lucaci, M.; Pătroi, D.; Mihăilescu, N.; Grigore, F.; Marinescu, V.; Brătulescu, A.; Mitrea, S.; Sobetkii, A.; et al. Investigation of Optical, Structural, Morphological and Antimicrobial Properties of Carboxymethyl Cellulose Capped Ag-ZnO Nanocomposites Prepared by Chemical and Mechanical Methods. Mater. Charact. 2016, 120, 69–81. [Google Scholar] [CrossRef]
- Lungu, M.V. Effects of Dopants and Processing Parameters on the Properties of ZnO-V2O5-Based Varistors Prepared by Powder Metallurgy: A Review. Materials 2023, 16, 3725. [Google Scholar] [CrossRef] [PubMed]
- Greijer, H.; Mirotta, N.; Treossi, E.; Valorosi, F.; Schütt, F.; Siebert, L.; Mishra, Y.K.; Adelung, R.; Palermo, V.; Hillborg, H. Tuneable Conductivity at Extreme Electric Fields in ZnO Tetrapod-Silicone Composites for High-Voltage Power Cable Insulation. Sci. Rep. 2022, 12, 6035. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Lei, Q.; Wang, X.; Wang, Y. Investigation of Electrical Properties of LDPE/ZnO Nanocomposite Dielectrics. IEEE Trans. Dielect. Electr. Insul. 2012, 19, 763–769. [Google Scholar] [CrossRef]
- Chen, S.; Peng, Z.; Wang, X.; Cheng, X. The Effect of nano-ZnO on Corona Aging and Photo Aging in Low-density Polyethylene. IEEJ Trans. Electr. Electron. Eng. 2011, 6, 7–13. [Google Scholar] [CrossRef]
- Alshipli, M.; Altaim, T.A.; Aladailah, M.W.; Oglat, A.A.; Alsenany, S.A.; Tashlykov, O.L.; Abdelaliem, S.M.F.; Marashdeh, M.W.; Banat, R.; Pyltsova, D.O.; et al. High-Density Polyethylene with ZnO and TiO2 Nanoparticle Filler: Computational and Experimental Studies of Radiation-Protective Characteristics of Polymers. J. Radiat. Res. Appl. Sci. 2023, 16, 100720. [Google Scholar] [CrossRef]
- Khan, M.; Sahai, R.S.N. Analysis of Accelerated Weathering and Mechanical Properties of HDPE Polymer Composites with Carbon Black and Zinc Oxide Nanoparticles for Floating Solar Power Plants. JREE 2024, 11, 21–34. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Maniadi, A.; Papadakis, V.; Moutsopoulou, A. The Impact of Zinc Oxide Micro-Powder Filler on the Physical and Mechanical Response of High-Density Polyethylene Composites in Material Extrusion 3D Printing. J. Compos. Sci. 2022, 6, 315. [Google Scholar] [CrossRef]
- Elsadd, M.A.; Elsad, R.A.; Huwayz, M.A.; Mansour, S.A.; Zaky, M.S.; Elkalashy, N.I.; Izzularab, M.A. Improving the Distribution System Capability by Incorporating ZnO Nanoparticles into High-Density Polyethylene Cable Materials. Sci. Rep. 2024, 14, 25834. [Google Scholar] [CrossRef] [PubMed]
- Caramitu, A.R.; Lungu, M.V.; Ciobanu, R.C.; Ion, I.; Marin, M.; Marinescu, V.; Pintea, J.; Aradoaei, S.; Schreiner, O.D. Recycled Polypropylene/Strontium Ferrite Polymer Composite Materials with Electromagnetic Shielding Properties. Polymers 2024, 16, 1129. [Google Scholar] [CrossRef] [PubMed]
- Cecon, V.S.; Da Silva, P.F.; Vorst, K.L.; Curtzwiler, G.W. The Effect of Post-Consumer Recycled Polyethylene (PCRPE) on the Properties of Polyethylene Blends of Different Densities. Polym. Degrad. Stab. 2021, 190, 109627. [Google Scholar] [CrossRef]
- Zhang, J.; Hirschberg, V.; Rodrigue, D. Blending Recycled High-Density Polyethylene HDPE (rHDPE) with Virgin (vHDPE) as an Effective Approach to Improve the Mechanical Properties. Recycling 2022, 8, 2. [Google Scholar] [CrossRef]
- Jones, H.; McClements, J.; Ray, D.; Hindle, C.S.; Kalloudis, M.; Koutsos, V. Thermomechanical Properties of Virgin and Recycled Polypropylene—High-Density Polyethylene Blends. Polymers 2023, 15, 4200. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Khan, K.H.; Parvez, M.M.H.; Irizarry, N.; Uddin, M.N. Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications. Processes 2025, 13, 994. [Google Scholar] [CrossRef]
- Wang, F.; Xie, Z.; Liang, J.; Fang, B.; Piao, Y.; Hao, M.; Wang, Z. Tourmaline-Modified FeMnTiOx Catalysts for Improved Low-Temperature NH3-SCR Performance. Environ. Sci. Technol. 2019, 53, 6989–6996. [Google Scholar] [CrossRef] [PubMed]
- Smaranda, I.; Nila, A.; Ganea, P.; Daescu, M.; Zgura, I.; Ciobanu, R.C.; Trandabat, A.; Baibarac, M. The Influence of the Ceramic Nanoparticles on the Thermoplastic Polymers Matrix: Their Structural, Optical, and Conductive Properties. Polymers 2021, 13, 2773. [Google Scholar] [CrossRef] [PubMed]
- Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Hudec, I. Progress in Polymers and Polymer Composites Used as Efficient Materials for Emi Shielding. Nanoscale Adv. 2021, 3, 123–172. [Google Scholar] [CrossRef] [PubMed]
- Bîrleanu, E.; Mihăilă, I.; Topală, I.; Borcia, C.; Borcia, G. Adhesion Properties and Stability of Non-Polar Polymers Treated by Air Atmospheric-Pressure Plasma. Polymers 2023, 15, 2443. [Google Scholar] [CrossRef] [PubMed]
- ISO 1133-1:2022 Plastics; Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics Part 1: Standard Method. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 1183-2:2019 Plastics; Methods for Determining the Density of Non-Cellular Plastics. Part 2: Density Gradient Column Method. International Organization for Standardization: Geneva, Switzerland, 2019.
- Aradoaei, M.; Ciobanu, R.C.; Schreiner, C.; Ursan, A.G.; Hitruc, E.G.; Aflori, M. Thermoplastic Electromagnetic Shielding Materials from the Integral Recycling of Waste from Electronic Equipment. Polymers 2023, 15, 3859. [Google Scholar] [CrossRef] [PubMed]
- Freymond, C.; Guinault, A.; Charbuillet, C.; Fayolle, B. Reprocessing of Polymer Blends from WEEE: A Methodology for Predicting Embrittlement. Polym. Test. 2022, 106, 107458. [Google Scholar] [CrossRef]
- Toastar, S. Mechanical and Thermal Properties of Recycled WEEE Plastic Blends; Department of Chemistry and Chemical Engineering, Chalmers University of Technology: Gothenburg, Sweden, 2016. [Google Scholar]
- Stenvall, E. Electronic Waste Plastics Characterisation and Recycling by Melt-Processing: A Study of the Melt-Processing of ABS, HIPS and PP Ternary Blends in Relation to Plastics Composition and Metal Contamination Analyses from Waste Electrical and Electronic Equipment with the Objective of Facilitating Recycling; Chalmers Tekniska Hogskola: Gothenburg, Sweden, 2013. [Google Scholar]
- Caramitu, A.; Mitrea, S.; Marinescu, V.; Ursan, G.-A.; Aradoaie, M.; Lingvay, I. Dielectric Behavior and Morphostructural Characteristics of some HDPE Composites/Metal Nanopowders. Mater. Plast. 2019, 56, 103–109. [Google Scholar] [CrossRef]
- Caramitu, A.R.; Lungu, M.V.; Ciobanu, R.C.; Aradoaei, M.; Lungulescu, E.-M.; Marinescu, V. Comparative Analysis of Dielectric Behavior under Temperature and UV Radiation Exposure of Insulating Paints for Electrical Equipment Protection—The Necessity of a New Standard? Coatings 2024, 14, 1194. [Google Scholar] [CrossRef]
- Caramitu, A.R.; Ciobanu, R.C.; Aradoaei, M.; Lungu, M.V.; Nicula, N.O.; Lungulescu, E.M. Endurance to Multiple Factors of Water-Based Electrically Conductive Paints with Metallic Microparticles. Coatings 2024, 14, 1016. [Google Scholar] [CrossRef]
- IEC 62631-3-1:2023 RLV; Dielectric and Resistive Properties of Solid Insulating Materials—Part 3-1: Determination of Resistive Properties (DC Methods)—Volume Resistance and Volume Resistivity—General Method. International Electrotechnical Commission: Geneva, Switzerland, 2013.
- IEC 60243-1:2013; Electric Strength of Insulating Materials—Test Methods—Part 1: Tests at Power Frequencies. International Electrotechnical Commission: Geneva, Switzerland, 2013.
- ISO 14577-1:2015; Metallic Materials—Instrumented Indentation Test for Hardness and Materials parameters, Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2015.
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- ISO 62:2008 Plastics; Determination of Water Absorption. International Organization for Standardization: Geneva, Switzerland, 2008.
- Wypych, G. The Effect of Fillers on the Mechanical Properties of Filled Materials. In Handbook of Fillers; Elsevier: Amsterdam, The Netherlands, 2021; pp. 525–608. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y.; Hui, D. Influences of Nanoparticles Aggregation/Agglomeration on the Interfacial/Interphase and Tensile Properties of Nanocomposites. Compos. Part B Eng. 2017, 122, 41–46. [Google Scholar] [CrossRef]
- Prasad, S.G.; Lal, C.; Sahu, K.R.; Saha, A.; De, U. Spectroscopic Investigation of Degradation Reaction Mechanism in γ-Rays Irradiation of HDPE. Biointerface Res. Appl. Chem. 2020, 11, 9405–9419. [Google Scholar] [CrossRef]
- Lungulescu, E.-M.; Setnescu, R.; Ilie, S.; Taborelli, M. On the Use of Oxidation Induction Time as a Kinetic Parameter for Condition Monitoring and Lifetime Evaluation under Ionizing Radiation Environments. Polymers 2022, 14, 2357. [Google Scholar] [CrossRef] [PubMed]
- Celik, M.; Nakano, H.; Uchida, K.; Isobe, A.; Arakawa, H. Comparative Evaluation of the Carbonyl Index of Microplastics around the Japan Coast. Mar. Pollut. Bull. 2023, 190, 114818. [Google Scholar] [CrossRef] [PubMed]
- Lungulescu, M.; Zaharescu, T.; Podina, C. Thermal and Radiation Stability of Polyolefins Modified with Silica Nanoparticles. J. Opt. Adv. Mater. 2014, 16, 719–725. [Google Scholar]
- Grigoriadou, I.; Paraskevopoulos, K.M.; Chrissafis, K.; Pavlidou, E.; Stamkopoulos, T.-G.; Bikiaris, D. Effect of Different Nanoparticles on HDPE UV Stability. Polym. Degrad. Stab. 2011, 96, 151–163. [Google Scholar] [CrossRef]
- Najafi, N.; Abedi Koupai, J.; Karevan, M.; Mostajeran, M. High-density Polyethylene/Zinc Oxide Nanocomposite with Antibacterial and Radiation Properties to Reduce Evaporation from Free Surface Waters. Polym. Compos. 2022, 43, 7616–7632. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Oprea, O.-C.; Trusca, R.-D.; Ficai, A.; Stelescu, M.D.; Sonmez, M.; Nituica, M.; Mustatea, G.; Holban, A.M. Antimicrobial Packaging for Plum Tomatoes Based on ZnO Modified Low-Density Polyethylene. IJMS 2024, 25, 6073. [Google Scholar] [CrossRef] [PubMed]
- Tatar, C.; Kök, M.; Doğru, M.; Coşkun, M.; Özen Öner, E. Detailed Physical Property Investigation Study on ZnO NPs Containing Waste PS-PLA Smart Polymeric Composites: Crystal Structure, Thermal, Optical Properties and Radiation Shielding Behavior. Macromol. Res. 2025. [Google Scholar] [CrossRef]
- Kömmling, A.; Chatzigiannakis, E.; Beckmann, J.; Wachtendorf, V.; Von Der Ehe, K.; Braun, U.; Jaunich, M.; Schade, U.; Wolff, D. Discoloration Effects of High-Dose γ -Irradiation and Long-Term Thermal Aging of (U)HMW-PE. Int. J. Polym. Sci. 2017, 2017, 1362491. [Google Scholar] [CrossRef]
- Ciobanu, R.C.; Aradoaei, M.; Caramitu, A.R.; Ion, I.; Schreiner, C.M.; Tsakiris, V.; Marinescu, V.; Hitruc, E.G.; Aflori, M. Special Packaging Materials from Recycled PET and Metallic Nano-Powders. Polymers 2023, 15, 3161. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadeh, R.; Ortega-Ramos, J.; Haque, Z.; Botte, G.G. Electrochemical Oxidation and Functionalization of Low-Density Polyethylene. ChemElectroChem 2023, 10, e202300021. [Google Scholar] [CrossRef]
- Caramitu, A.R.; Ion, I.; Marin, M.; Bors, A.M.; Ciobanu, R.C.; Schreiner, C.; Aradoaei, M. Characterization of Some Functional Polymeric Composites in a Synergistic Regime of Protection at Electromagnetic Shielding and Electrostatic Transfer. Mater. Plast. 2024, 61, 75–89. [Google Scholar] [CrossRef]
- Caramitu, A.R.; Mitrea, S.; Stancu, N.; Butoi, N.; Luchian, A.-M. Device for Determining the State of Degradation and Method for Evaluating the Life Time of Paint Layers. RO Patent No. 133364 B1, 30 August 2023. [Google Scholar]
- Li, J.; Mou, W.; Zhu, J.; Hu, C. Design of HDPE -Based Nanocomposite with Excellent Thermal-oxidative Aging Resistance, Mechanical Properties and Electrical Insulation Properties: Dispersing nano-ZnO Assisted by Natural Rubber Latex. J. Appl. Polym. Sci. 2023, 140, e54420. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.; Gu, Z.; Wei, Y.; Li, G.; Hao, C.; Lei, Q. Effect of Boron Nitride Concentration and Morphology on Dielectric and Breakdown Properties of Cross-Linked Polyethylene/Boron Nitride Nanocomposites. Adv. Eng. Mater. 2021, 23, 2100008. [Google Scholar] [CrossRef]
- Park, Y.-J.; Sim, J.-Y.; Lim, K.-J.; Nam, J.-H.; Park, W.-G. Electrical Conduction of a XLPE Nanocomposite. J. Korean Phys. Soc. 2014, 65, 248–252. [Google Scholar] [CrossRef]
- Gao, J.; Ju, H.; Yao, Z.; Zhang, G.; Jiang, Q.; Guo, H. Effect of Zinc Oxide Nanoparticle Size on the Dielectric Properties of Polypropylene-based Nanocomposites. Polym. Eng. Sci. 2023, 63, 2204–2217. [Google Scholar] [CrossRef]
- Mansour, S.A.; Elsad, R.A.; Izzularab, M.A. Dielectric Investigation of High Density Polyethylene Loaded by ZnO Nanoparticles Synthesized by Sol–Gel Route. J. Sol-Gel Sci. Technol. 2016, 80, 333–341. [Google Scholar] [CrossRef]
- Rohani, R.; Dzulkharnien, N.S.F.; Harun, N.H.; Ilias, I.A. Green Approaches, Potentials, and Applications of Zinc Oxide Nanoparticles in Surface Coatings and Films. Bioinorg. Chem. Appl. 2022, 2022, 3077747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shen, J.; Guo, X.; Wang, K.; Jia, J.; Zhao, J.; Zhang, J. Comprehensive Investigation into the Impact of Degradation of Recycled Polyethylene and Recycled Polypropylene on the Thermo-Mechanical Characteristics and Thermal Stability of Blends. Molecules 2024, 29, 4499. [Google Scholar] [CrossRef] [PubMed]
- Rihan, M.; Ahmed, Z.; Nasrat, L.S. Advancing High-Voltage Polymeric Insulators: A Comprehensive Review on the Impact of Nanotechnology on Material Properties. SVU-Int. J. Eng. Sci. Appl. 2025, 6, 93–105. [Google Scholar] [CrossRef]
- Kadhim, B.J.; Mahdi, A.H.; Al-Mutairi, N.H. Mechanical and Thermal Properties of PP/HDPE Blends Reinforced with ZnO Nanoparticles for Industrial Applications. Int. J. Nanoelectron. Mater. 2024, 17, 479–486. [Google Scholar] [CrossRef]
- Kesler, D.; Ariyawansa, B.P.; Rathnayake, H. Mechanical Properties and Synergistic Interfacial Interactions of ZnO Nanorod-Reinforced Polyamide–Imide Composites. Polymers 2023, 15, 1522. [Google Scholar] [CrossRef] [PubMed]
Samples | Component Concentration | ||
---|---|---|---|
HDPE (wt.%) | HDPEr (wt.%) | ZnO NPs (wt.%) | |
M1 | 50 | 50 | 0 |
M2 | 48 | 47 | 5 |
M3 | 45 | 45 | 10 |
M4 | 43 | 42 | 15 |
Samples | Aging Conditions | ||
MxW (x = 1, … 4) | 840 h in water (100% humidity) | ||
MxTT (x = 1, … 4) | 840 h of thermal treatment at 100 °C |
Samples | Crystallographic Phase | Lattice Parameters | Crystallite Size D (nm) | |
---|---|---|---|---|
a (Å) | c (Å) | |||
M2 | ZnO | 3.249 | 5.204 | 144.6 |
M3 | ZnO | 3.249 | 5.205 | 138.7 |
M4 | ZnO | 3.248 | 5.203 | 132.4 |
Maximum Absorbance | Samples | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M1W | M2W | M3W | M4W | M1TT | M2TT | M3TT | M4TT | |
λmax (nm) | 244 | 352 | 357 | 346 | 245 | 356 | 356 | 354 | 279 | 348 | 355 | 361 |
Abs (a.u.) | 0.321 | 0.982 | 1.211 | 1.231 | 0.372 | 1.125 | 1.184 | 1.209 | 0.769 | 1.120 | 1.139 | 1.168 |
Frequency (kHz)/Samples | 0.1 | 1 | 10 | 100 | 1000 | 0.1 | 1 | 10 | 100 | 1000 |
---|---|---|---|---|---|---|---|---|---|---|
tg δ × 10−3 | σ × 10−10 | |||||||||
M1 | 3.06 | 2.46 | 3.59 | 3.85 | 9.66 | 0.52 | 4.20 | 62.66 | 390.27 | 16,351.66 |
M2 | 4.61 | 4.01 | 4.31 | 3.85 | 11.21 | 0.79 | 7.02 | 62.66 | 666.43 | 19,468.31 |
M3 | 5.33 | 4.73 | 4.31 | 4.57 | 11.93 | 0.98 | 8.43 | 76.52 | 803.92 | 20,949.06 |
M4 | 6.54 | 5.94 | 5.52 | 5.78 | 13.14 | 1.20 | 10.72 | 99.06 | 803.92 | 23,171.24 |
Immersion Time (h) | Electrical Resistivity (Ω × m) of M1 | Critical Resistivity (Ω × m) of M1 | Electrical Resistivity (Ω × m) of M2 | Critical Resistivity (Ω × m) of M2 | Electrical Resistivity (Ω × m) of M3 | Critical Resistivity (Ω × m) of M3 | Electrical Resistivity (Ω × m) of M4 | Critical Resistivity (Ω × m) of M4 |
---|---|---|---|---|---|---|---|---|
0 | 6.12 × 105 | 1.83 × 105 | 5.11 × 105 | 1.53 × 105 | 4.76 × 105 | 1.43 × 105 | 4.31 × 105 | 1.29 × 105 |
168 | 5.87 × 105 | 1.83 × 105 | 5.69 × 105 | 1.53 × 105 | 4.58 × 105 | 1.43 × 105 | 3.89 × 105 | 1.29 × 105 |
336 | 5.76 × 105 | 1.83 × 105 | 5.67 × 105 | 1.53 × 105 | 4.68 × 105 | 1.43 × 105 | 3.86 × 105 | 1.29 × 105 |
504 | 4.88 × 105 | 1.83 × 105 | 4.89 × 105 | 1.53 × 105 | 4.27 × 105 | 1.43 × 105 | 3.77 × 105 | 1.29 × 105 |
672 | 5.49 × 105 | 1.83 × 105 | 5.33 × 105 | 1.53 × 105 | 4.14 × 105 | 1.43 × 105 | 3.48 × 105 | 1.29 × 105 |
840 | 4.75 × 105 | 1.83 × 105 | 4.49 × 105 | 1.53 × 105 | 3.98 × 105 | 1.43 × 105 | 3.46 × 105 | 1.29 × 105 |
Samples | Equation | Intercept = y | a | b | x = Lifetime (h) | Remaining Lifetime (h) |
---|---|---|---|---|---|---|
M1 | y =−150.41x + 611107 | 183,467.64 | −150.41 | 611,107 | 2843 | 2003 |
M2 | y =−84.961x + 555326 | 153,395.10 | −84.96 | 555,326 | 4731 | 3891 |
M3 | y =−90.065x + 471894 | 142,811.71 | −90.07 | 471,894 | 3654 | 2814 |
M4 | y =−96.22x + 420010 | 129,282.65 | −96.22 | 420,010 | 3021 | 2181 |
Aging Time (h) | Electrical Resistivity (Ω × m) of M1 | Critical Resistivity (Ω × m) of M1 | Electrical Resistivity (Ω × m) of M2 | Critical Resistivity (Ω × m) of M2 | Electrical Resistivity (Ω × m) of M3 | Critical Resistivity (Ω × m) of M3 | Electrical Resistivity (Ω × m) of M4 | Critical Resistivity (Ω × m) of M4 |
---|---|---|---|---|---|---|---|---|
0 | 6.15 × 105 | 1.85 × 105 | 5.19 × 105 | 1.56 × 105 | 4.78 × 105 | 1.44 × 105 | 4.33 × 105 | 1.30 × 105 |
168 | 5.81 × 105 | 1.85 × 105 | 5.78 × 105 | 1.56 × 105 | 5.24 × 105 | 1.44 × 105 | 4.99 × 105 | 1.30 × 105 |
336 | 5.48 × 105 | 1.85 × 105 | 5.39 × 105 | 1.56 × 105 | 4.80 × 105 | 1.44 × 105 | 4.48 × 105 | 1.30 × 105 |
504 | 5.13 × 105 | 1.85 × 105 | 5.03 × 105 | 1.56 × 105 | 4.29 × 105 | 1.44 × 105 | 4.13 × 105 | 1.30 × 105 |
672 | 4.64 × 105 | 1.85 × 105 | 4.70 × 105 | 1.56 × 105 | 4.07 × 105 | 1.44 × 105 | 3.73 × 105 | 1.30 × 105 |
840 | 4.38 × 105 | 1.85 × 105 | 4.41 × 105 | 1.56 × 105 | 3.88 × 105 | 1.44 × 105 | 3.51 × 105 | 1.30 × 105 |
Samples | Equation | Intercept = y | a | b | x = Lifetime (h) | Remaining Lifetime (h) |
---|---|---|---|---|---|---|
M1 | y = −215.8x + 617,219 | 184,614.16 | −215.80 | 617,219 | 2005 | 1165 |
M2 | y = −126.74x + 561,333 | 155,605.96 | −126.74 | 561,333 | 3201 | 2361 |
M3 | y = −145.03x + 512,173 | 143,531.69 | −145.03 | 512,173 | 2542 | 1702 |
M4 | y = −139.91x + 478,415 | 129,874.73 | −139.91 | 478,415 | 2491 | 1651 |
Samples | Mean HIT ± SD (GPa) | Mean Vickers Hardness HV | Mean EIT ± SD (GPa) |
---|---|---|---|
M1 | 0.035 ± 0.003 | 3.254 ± 0.290 | 0.625 ± 0.048 |
M2 | 0.042 ± 0.004 | 3.846 ± 0.388 | 0.732 ± 0.030 |
M3 | 0.038 ± 0.002 | 3.558 ± 0.187 | 0.696 ± 0.035 |
M4 | 0.037 ± 0.001 | 3.385 ± 0.114 | 0.698 ± 0.029 |
M1W | 0.040 ± 0.002 | 3.670 ± 0.164 | 0.669 ± 0.030 |
M2W | 0.042 ± 0.006 | 3.932 ± 0.542 | 0.706 ± 0.023 |
M3W | 0.041 ± 0.005 | 3.797 ± 0.430 | 0.694 ± 0.065 |
M4W | 0.040 ± 0.002 | 3.675 ± 0.190 | 0.691 ± 0.029 |
M1TT | 0.072 ± 0.005 | 6.694 ± 0.504 | 1.411 ± 0.245 |
M2TT | 0.085 ± 0.005 | 7.918 ± 0.475 | 1.871 ± 0.152 |
M3TT | 0.082 ± 0.004 | 7.623 ± 0.337 | 1.785 ± 0.026 |
M4TT | 0.079 ± 0.010 | 7.278 ± 0.899 | 1.730 ± 0.084 |
Mechanical Property | Increase Compared to M1 (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M2 | M3 | M4 | M1W | M2W | M3W | M4W | M1TT | M2TT | M3TT | M4TT | |
HIT (GPa) | 16.67 | 7.89 | 5.41 | 12.50 | 16.67 | 14.63 | 12.50 | 51.39 | 58.82 | 57.32 | 55.70 |
Vickers hardness (HV) | 14.62 | 10.20 | 10.46 | 6.58 | 11.47 | 9.94 | 9.55 | 55.71 | 66.60 | 64.99 | 63.87 |
EIT (GPa) | 15.39 | 8.54 | 3.87 | 11.34 | 17.24 | 14.30 | 11.46 | 51.39 | 58.90 | 57.31 | 55.29 |
Samples/ Exposure Time | Water Absorption | ||||
---|---|---|---|---|---|
168 h | 336 h | 504 h | 672 h | 840 h | |
M1 | 0.22 | 0.21 | 0.21 | 0.21 | 0.21 |
M2 | 0.16 | 0.12 | 0.16 | 0.16 | 0.19 |
M3 | 0.34 | 0.24 | 0.27 | 0.27 | 0.30 |
M4 | 0.33 | 0.36 | 0.35 | 0.35 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caramitu, A.R.; Lungu, M.V.; Ciobanu, R.C.; Ion, I.; Lungulescu, E.M.; Sbarcea, G.B.; Marinescu, V.E.; Aradoaei, S.; Aradoaei, M.; Machidon, R. Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications. Polymers 2025, 17, 1987. https://doi.org/10.3390/polym17141987
Caramitu AR, Lungu MV, Ciobanu RC, Ion I, Lungulescu EM, Sbarcea GB, Marinescu VE, Aradoaei S, Aradoaei M, Machidon R. Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications. Polymers. 2025; 17(14):1987. https://doi.org/10.3390/polym17141987
Chicago/Turabian StyleCaramitu, Alina Ruxandra, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Ioana Ion, Eduard Marius Lungulescu, Gabriela Beatrice Sbarcea, Virgil Emanuel Marinescu, Sebastian Aradoaei, Mihaela Aradoaei, and Raducu Machidon. 2025. "Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications" Polymers 17, no. 14: 1987. https://doi.org/10.3390/polym17141987
APA StyleCaramitu, A. R., Lungu, M. V., Ciobanu, R. C., Ion, I., Lungulescu, E. M., Sbarcea, G. B., Marinescu, V. E., Aradoaei, S., Aradoaei, M., & Machidon, R. (2025). Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications. Polymers, 17(14), 1987. https://doi.org/10.3390/polym17141987