Tropical Forests, Water Cycle, Global Cycles of Greenhouse Gases and Climate Change

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Forest Ecology and Management".

Deadline for manuscript submissions: closed (25 October 2024) | Viewed by 1211

Special Issue Editors


E-Mail Website
Guest Editor
Faculdade de Engenharia Florestal, Universidade Federal de Mato Grosso, Cuiaba, Brazil
Interests: forest biomass; wind disturbance; wildfires; greenhouse gases; land use chances; vegetation index

E-Mail Website
Guest Editor
Max Planck Institute for Biogeochemistry, Jena, Germany
Interests: forest inventory; remote sensing; GIS data; climate variables; forest dynamics; climate change

Special Issue Information

Dear Colleagues,

The consequences of climate change on human societies and terrestrial ecosystems are mainly experienced through changes to the global water cycle. As a result of global climate change, it is urgent to understand how tropical forests will be affected by more frequent and intense climatic extremes. Improvements in data to be used on climate models since the Fifth Assessment Report (AR5-IPCC) are related to inherent climatic model limitations (e.g., atmospheric convection, cloud–aerosol interactions, and land surface processes). Efforts to better understand how tropical forests interact with climate and water cycle (e.g., tropical forests process a lot of energy and water but are often poorly represented by climate models) and the role of tropical forests in the global cycles of greenhouse gases are urgently needed. Considering the increase in frequency and intensity of natural disturbance regimes and anthropogenic disturbances such as timber extraction, fire, extreme droughts, and the uncertainty on how climate change will affect tropical forests. In this Special Issue, we encourage and welcome studies that improve our understanding of the ecology of tropical forests to hydro-climatic extremes in both data-driven and dynamic vegetation models.

Potential topics include, but are not limited to:

  • Land use and land use changes;
  • Carbon dioxide, methane, and nitrous oxide;
  • Vulnerability of tree species along drought gradients;
  • Wildfires;
  • Windthrows;
  • Hydro-climatic extremes;
  • Remote sensing data applied to climatic models;
  • Tropical forest meteorology.

Prof. Dr. Gabriel Henrique Pires de Mello Ribeiro
Dr. Daniel Magnabosco Marra
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • climate correlation
  • greenhouse gases cycle
  • burned area
  • wind disturbance
  • land surface processes
  • hydroclimatic extremes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2677 KiB  
Article
The Initial Impact of a Hydroelectric Reservoir on the Floristics, Structure, and Dynamics of Adjacent Forests in the Southern Amazon
by Jesulino Alves da Rocha-Filho, Marco Antônio Camillo de Carvalho, Fabiana Ferreira Cabral Gomes, José Hypolito Piva, Beatriz Schwantes Marimon, Oscar Mitsuo Yamashita and Ben Hur Marimon-Junior
Forests 2025, 16(8), 1236; https://doi.org/10.3390/f16081236 - 27 Jul 2025
Viewed by 240
Abstract
This study assesses whether the rise in water level—following three years of reservoir filling at the Teles Pires Hydroelectric Plant (135.6 km2 water surface) in Southern Amazonia—has affected the floristic composition, structure, and dynamics of adjacent forests. We established 62 permanent plots [...] Read more.
This study assesses whether the rise in water level—following three years of reservoir filling at the Teles Pires Hydroelectric Plant (135.6 km2 water surface) in Southern Amazonia—has affected the floristic composition, structure, and dynamics of adjacent forests. We established 62 permanent plots (2000 m2 each) across a topographic gradient from the reservoir margin and conducted annual tree inventories for individuals with DBH ≥ 10 cm from 2014 to 2017. A total of 6322 individuals were recorded, representing 322 species, 210 genera, and 61 families. Fabaceae was the most abundant family, and the ten species with the highest importance value index (IVI) before reservoir filling remained dominant afterward. The forests exhibited high species richness and were characterized by a few common and many rare species. Mortality rates were highest within 10 m of elevation from the maximum reservoir level, indicating possible hydrological impacts, although no abnormal dieback or sharp shifts in floristic structure were observed. These results suggest limited short-term effects on species composition, but subtle changes in vegetation dynamics underscore the importance of long-term monitoring. Full article
Show Figures

Figure 1

20 pages, 8029 KiB  
Article
Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon
by Loriene Gomes da Rocha, Ben Hur Marimon Junior, Amauri de Castro Barradas, Marco Antônio Camillo de Carvalho, Célia Regina Araújo Soares, Beatriz Schwantes Marimon, Gabriel H. P. de Mello Ribeiro, Edmar A. de Oliveira, Fernando Elias, Carmino Emidio Júnior, Dennis Rodrigues da Silva, Marcos Leandro Garcia, Jesulino Alves da Rocha Filho, Marcelo Zortea, Edmar Santos Moreira, Samiele Camargo de Oliveira Domingues, Eraldo A. T. Matricardi, David Galbraith, Ted R. Feldpausch, Imma Oliveras and Oliver L. Phillipsadd Show full author list remove Hide full author list
Forests 2025, 16(8), 1218; https://doi.org/10.3390/f16081218 - 24 Jul 2025
Viewed by 439
Abstract
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 [...] Read more.
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 cm across three distinct vegetation types in this threatened region: Amazonian successional forest (SF), transitional forest (TF), and ombrophilous forest (OF). Two anthropogenic fires affected all three vegetation types in consecutive years. We hypothesized that SF would be the least impacted due to its more open structure and the presence of fire-adapted savanna (Cerrado) species. As expected, SF experienced the lowest tree mortality rate (9.1%). However, both TF and OF were heavily affected, with mortality rates of 28.0% and 29.7%, respectively. Despite SF’s apparent fire resilience, all vegetation types experienced a significant net loss of species and individuals. These results indicate a fire-induced degradation stage in both TF and OF, characterized by reduced species diversity and structural integrity. Our findings suggest that recurrent fires may trigger irreversible vegetation shifts and broader ecosystem tipping points across the Amazonian frontier. Full article
Show Figures

Figure 1

Back to TopTop