The Initial Impact of a Hydroelectric Reservoir on the Floristics, Structure, and Dynamics of Adjacent Forests in the Southern Amazon
Abstract
1. Introduction
- –
- Tree mortality will be higher in low-elevation areas due to prolonged exposure to flooding and soil hypoxia.
- –
- Tree recruitment will be lower in inundated zones, whereas regeneration may be enhanced in higher-elevation areas due to shifts in moisture availability and soil composition.
- –
- The growth of surviving trees will be influenced by changes in water availability, exhibiting distinct patterns along the elevational gradient.
- –
- Quantify tree mortality, recruitment, and growth across topographic zones affected by the reservoir.
- –
- Assess the influence of reservoir-induced environmental changes on tree survival, focusing on factors such as soil moisture.
- –
- Identify species-specific responses of trees to the altered hydrological and topographic conditions.
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Monitoring of Permanent Plots
2.3. Overall Reservoir Vegetation Analysis
2.4. Vegetation Analysis Along Elevation Gradients
2.5. Vegetation Dynamics
3. Results
3.1. Overall Reservoir Vegetation
3.2. Vegetation Dynamics (Mortality vs. Recruitment)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brienen, R.J.W.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; et al. Long-term decline of the Amazon carbon sink. Nature 2015, 519, 344–348. [Google Scholar] [CrossRef]
- Marca-Zevallos, M.J.; Moulatlet, G.M.; Sousa, T.R.; Schietti, J.; Souza Coelho, L.; Ramos, J.F.; Lima Filho, D.A.; Amaral, I.L.; Matos, F.D.A.; Rincón, L.M.; et al. Local hydrological conditions influence tree diversity and composition across the Amazon Basin. Ecography 2022, 45, e06125. [Google Scholar] [CrossRef]
- EPE/LEME-CONCREMAT. Estudo de Impacto Ambiental (EIA) da usina Hidrelétrica do teles Pires; 2010. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-247/Rima%20-%20UHE%20Teles%20Pires.pdf (accessed on 14 March 2024).
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Bejarano, M.D.; Garrote, L. Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition. Renew. Sustain. Energy Rev. 2021, 142, 110833. [Google Scholar] [CrossRef]
- Atkins, E. Contesting the ‘greening’ of hydropower in the Brazilian Amazon. Political Geogr. 2020, 80, 102179. [Google Scholar] [CrossRef]
- Projeto Básico Ambiental (PBA) P.15—Programa de Monitoramento de Flora; UHE Teles Pires: Paranaíta, Brazil, 2025; Available online: https://www.uhetelespires.com.br/site/uploads/arquivos/2020/08/577-1-p15-programa-de-monitoramento-de-flora.pdf (accessed on 10 February 2025).
- Nunes, M.H.; Higuchi, P.; van den Berg, E. P Dinâmica de populações de espécies arbóreas em fragmentos de floresta aluvial no sul de Minas Gerais, Brasil. Floresta 2016, 46, 57–66. [Google Scholar] [CrossRef]
- Urquiza-Muñoz, J.D.; Marra, M.D.; Negrón-Juarez, R.I.; Tello-Espinoza, R.; Alegría-Muñoz, W.; Pacheco-Gómez, T.; Rifai, S.W.; Chambers, J.Q.; Jenkins, H.S.; Brenning, A.; et al. Recovery of forest structure following large-scale windthrows in the northern Amazon. Forests 2021, 12, 667. [Google Scholar] [CrossRef]
- Cazzolla-Gatti, R.; Reich, P.B.; Gamarra, J.G.P.; Crowther, T.; Hui, C.; Morera, A.; Bastin, J.F.; de-Miguel, S.; Nabuurs, G.J.; Svenning, J.C.; et al.; et al. The number of tree species on Earth. Proc. Natl. Acad. Sci. USA 2022, 119, e2115329119. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Bonini, I.; Rodrigues, C.; Dallacort, R.; Marimon-Junior, B.H.; Carvalho, M.A.C. Rainfall and deforestation in municipality of Colíder, southern Amazonia. Rev. Bras. Meteorol. 2014, 29, 483–493. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- IBGE. Manual Técnico da Vegetação Brasileira, 2nd ed.; IBGE: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Fidalgo, O.; Bononi, V.L.R. Técnicas de Coleta, Preservação e Herborização de Material Botânico; Instituto de Botânica: São Paulo, Brazil, 1984. [Google Scholar]
- Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; Stevens, P.F. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- Flora e Funga do Brasil. 2010; Jardim Botânico do Rio de Janeiro: Rio de Janeiro, Brazil. Available online: https://floradobrasil.jbrj.gov.br/consulta/#CondicaoTaxonCP (accessed on 18 October 2024).
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; Wiley: Hoboken, NJ, USA, 1974. [Google Scholar]
- Cientec Ambiental. Mata Nativa, version 4.03. Phytosociological Analysis and Forest Inventory Software. Cientec Ambiental: Viçosa, MG, Brazil, 2017.
- Oksanen, J.; Blanchet, F.G.; Friendly, M. Package ‘Vegan’, Version 2.9. Community Ecology Package. The Comprehensive R Archive Network: Vienna, Austria, 2013.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Colwell, R.K. Estimates, Version 8.0. Statistical Estimation of Species Richness and Shared Species from Samples. Cambridge Dictionary: Storrs, CT, USA, 2005.
- Sheil, D.; Jennings, S.; Savill, P.S. Long-term permanent plot observations of vegetation dynamics in Bundongo. J. Trop. Ecol. 2000, 16, 765–800. [Google Scholar] [CrossRef]
- Cordeiro, A.d.A.C.; Klanderud, K.; Villa, P.M.; Neri, A.V. Patterns of species richness and beta diversity of vascular plants along an elevation gradient in Brazilian páramo. J. Mt. Sci. 2023, 20, 1911–1920. [Google Scholar] [CrossRef]
- John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; et al. Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl. Acad. Sci. USA 2007, 104, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Kraft, N.J.B.; Cornwell, W.K.; Webb, C.O.; Ackerly, D.D. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 2008, 170, 271–283. [Google Scholar] [CrossRef]
- Brito, P.G.; Jovem-Azevêdo, D.; Campos, M.A.; Paiva, F.F.; Molozzi, J. Performance of richness estimators for invertebrate inventories in reservoirs. Environ. Monit. Assess. 2021, 193, 686. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.P.; Nadal, F.; Rocha, T.C. The first botanical explorations of bryophyte diversity in the Brazilian Amazon mountains: High species diversity, low endemism, and low similarity. Biodivers. Conserv. 2020, 29, 2663–2688. [Google Scholar] [CrossRef]
- Draper, F.C.; Costa, F.R.C.; Arellano, G.; Phillips, O.L.; Duque, A.; Macía, M.J.; ter Steege, H.; Asner, G.P.; Berenguer, E.; Schietti, J.; et al. Amazon tree dominance across forest strata. Nat. Ecol. Evol. 2021, 5, 757–767. [Google Scholar] [CrossRef]
- Souza, L.A.G. Biodiversity of Fabaceae in the Brazilian Amazon. In Tropical Forests—Ecology, Diversity and Conservation Status; Nova Science Publishers: New York, NY, USA, 2023. [Google Scholar]
- Ramos, S.J.; Caldeira, C.F.; Gastauer, M.; Costa, D.L.P.; Furtini Neto, A.E.; Souza, F.B.M.; Souza-Filho, P.W.M.; Siqueira, J.O. Native leguminous plants for mineland revegetation in the eastern Amazon: Seed characteristics and germination. New For. 2019, 50, 859–872. [Google Scholar] [CrossRef]
- Oliveira-Feitosa, Y.; Piedade, M.T.F.; Wittmann, F.; Quaresma, A.C.; Resende, A.F.; Assis, R.F.; Schöngart, J. Legume tree dominance in Central Amazonian floodplain forests. Wetlands 2022, 42, 44. [Google Scholar] [CrossRef]
- Cunha, H.F.V.; Andersen, K.M.; Lugli, L.F.; Santana, F.D.; Aleixo, I.F.; Moraes, A.M.; Garcia, S.; Di Ponzio, R.; Mendoza, O.; Brum, B.; et al. Direct evidence for phosphorus limitation on Amazon forest productivity. Nature 2022, 608, 558–562. [Google Scholar] [CrossRef]
- de Souza-Amorim, D.; Brown, B.V.; Boscolo, D.; Ale-Rocha, R.; Alvarez-Garcia, D.M.; Balbi, M.I.P.A.; de Marco Barbosa, A.; Capellari, R.S.; Carvalho, C.J.B.; Couri, M.S.; et al. Vertical stratification of insect abundance and species richness in Amazonian tropical forest. Sci. Rep. 2022, 12, 1734. [Google Scholar] [CrossRef]
- Condé, T.M.; Tonini, H. Phytosociology of a Dense Ombrophilous Forest in Roraima, Brazil. Acta Amaz. 2013, 43, 247–260. [Google Scholar] [CrossRef]
- ter Steege, H.; Pitman, N.C.A.; Sabatier, D.; Baraloto, C.; Salomão, R.P.; Guevara, J.E.; Phillips, O.L.; Castilho, C.V.; Magnusson, W.E.; Molino, J.F.; et al. Hyperdominance in the Amazonian Tree Flora. Science 2013, 342, 325–342. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Ruivo, M.D.; Costa, A.C. Floristic composition and diversity under water stress in Amazonian forests. CERNE 2020, 26, 403–412. [Google Scholar] [CrossRef]
- Barros, K.O.; Magni, G.; Souza, G.F.L.; Abegg, M.A.; Palladino, F.; Silva, S.S.; Rodrigues, R.C.L.B.; Sato, T.K.; Hittinger, C.T.; Rosa, C.A. The Brazilian Amazonian rainforest harbors a high diversity of yeasts associated with rotting wood, including many candidates for new yeast species. Yeast 2023, 40, 84–101. [Google Scholar] [CrossRef]
- Olivares, I.; Svenning, J.C.; van Bodegom, P.M.; Balslev, H. Effects of warming and drought on the Vegetation and Plant Diversity in the Amazon Basin. Bot. Rev. 2015, 81, 42–69. [Google Scholar] [CrossRef]
- Wittmann, F.; Piedade, M.T.F.; Schöngart, J.; Demarchi, L.O.; Quaresma, A.C.; Junk, W.G. A Review of the Ecological and biogeographic differences of Amazonian floodplain forests. Water 2022, 14, 3360. [Google Scholar] [CrossRef]
- Brandão, D.O.; Barata, L.E.S.; Nobre, C.A. The Effects of Environmental Changes on Plant Species and Forest Dependent Communities in the Amazon Region. Forests 2022, 13, 466. [Google Scholar] [CrossRef]
- Hawes, J.E.; Vieira, I.C.G.; Magnago, L.F.S.; Berenguer, E.; Ferreira, J.; Aragão, L.E.O.C.; Cardoso, A.; Lees, A.C.; Lennox, G.D.; Tobias, J.A.; et al. Large-scale assessment of plant dispersal mode and seeds traits across human-modified Amazonian forests. J. Ecol. 2020, 108, 1373–1385. [Google Scholar] [CrossRef]
- Baker, T.R.; Phillips, O.L.; Malhi, Y.; Almeida, S.; Arroyo, L.; Di Fiore, A.; Erwin, T.; Higuchi, N.; Killeen, T.J.; Laurance, S.G.; et al. Increasing biomass in Amazonian forest plots. Phil. Trans. R. Soc. Lond. B 2004, 359, 353. [Google Scholar] [CrossRef] [PubMed]
- Colpini, C.; Silva, V.S.M.; Soares, T.S.; Assunção, J.V.L.; Chiaranda, R. Efeito da exploração na riqueza florística e diversidade em uma floresta ecotonal da região norte mato-grossense. Floresta 2011, 41, 295–304. [Google Scholar] [CrossRef]
- Carvalho, J.O.B. Structure and Dynamics of a Logged over Brazilian Amazonian Rainforest. Ph.D. Thesis, University of Oxford, Oxford, UK, 1992. [Google Scholar]
- Vatraz, S. Forest Dynamics Eight Years After Timber Harvest in Paragominas. Master’s Thesis, UFRA, Belém, Brazil, 2012. [Google Scholar]
- Chadwick, O.A.; Derry, L.A.; Vitousek, P.M.; Huebert, B.J.; Hedin, L.O. Changing sources of nutrients during four million years of ecosystem development. Nature 2003, 397, 491–497. [Google Scholar] [CrossRef]
- Schwinning, S.; Ehleringer, J.R. Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. J. Ecol. 2001, 89, 464–480. [Google Scholar] [CrossRef]
- Oliveira, W.L. Structure and Dynamics of Forests Along the Gradient of a Hydroelectric Reservoir in the Amazon. Ph.D. Thesis, University of Brasília, Brasília, Brazil, 2016. [Google Scholar]
- Moser, P. Tree Community Dynamics Near a Major Hydroelectric Reservoir in Southwestern Amazonia. Ph.D. Thesis, University of Brasília, Brasília, Brazil, 2018. [Google Scholar]
- Davidson, E.A.; Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef]
- Toledo, J.J.; Magnusson, W.E.; Castilho, C.V.; Nascimento, H.E.M. Tree mode of death in Central Amazonia: Effects of soil and topography on tree mortality associated with storm disturbances. For. Ecol. Manag. 2012, 263, 253–261. [Google Scholar] [CrossRef]
- Yamada, T.; Hosaka, T.; Okuda, T.; Kassim, A.R. Effects of 50 years of selective logging on demography of trees in a Malaysian lowland forest. For. Ecol. Manag. 2013, 310, 531–538. [Google Scholar] [CrossRef]
- Darrigo, M.R.; Venticinque, E.M.; Santos, F.A.M. Effects of reduced impact logging on forest regeneration in the central Amazonia. For. Ecol. Manag. 2016, 360, 52–59. [Google Scholar] [CrossRef]
- Chazdon, R.L. Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 2003, 6, 51–71. [Google Scholar] [CrossRef]
- Thompson, J.; Brokaw, N.; Zimmerman, J.K.; Waide, J.B.; Everham, E.D., III; Lodge, D.J.; Taylor, C.M.; García-Montiel, D.; Fluet, M. Land use history, environment, and tree composition in a tropical forest. Ecol. Appl. 2002, 12, 1344–1363. [Google Scholar] [CrossRef]
- Phillips, O.L.; Baker, T.R.; Arroyo, L.; Higuchi, N.; Killeen, T.J.; Laurance, W.F.; Lewis, S.L.; Lloyd, J.; Malhi, Y.; Monteagudo, A.; et al. Pattern and process in Amazon tree turnover, 1976–2001. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 381–407. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Lavery, T.; Scheele, B.C. Why we need to invest in large-scale, long-term monitoring programs in landscape ecology and conservation biology. Curr. Landsc. Ecol. Rep. 2022, 7, 137–146. [Google Scholar] [CrossRef]
Environments | DC | NT | S | NM | NR | Annual Periodic Increment (API) | |||
---|---|---|---|---|---|---|---|---|---|
NM/ha | NR/ha | TM | TR | ||||||
LB_100 | 4.1 | 1669 | 196 | 212 | 86 | 22.1 | 9.0 | 5.8 | 2.0 |
IS_100 | 0.7 | 693 | 129 | 96 | 34 | 22.9 | 8.1 | 6.3 | 1.9 |
MB_100 | 4.6 | 673 | 149 | 77 | 41 | 21.4 | 11.4 | 4.2 | 2.3 |
MB > 100 | 39.8 | 2368 | 240 | 163 | 146 | 11.8 | 10.6 | 2.5 | 2.3 |
DS | 36.9 | 919 | 187 | 59 | 54 | 9.5 | 8.7 | 2.3 | 2.1 |
Total | 10.4 | 6322 | 322 | 607 | 361 | 16.3 | 9.7 | 3.9 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha-Filho, J.A.d.; Carvalho, M.A.C.d.; Gomes, F.F.C.; Piva, J.H.; Marimon, B.S.; Yamashita, O.M.; Marimon-Junior, B.H. The Initial Impact of a Hydroelectric Reservoir on the Floristics, Structure, and Dynamics of Adjacent Forests in the Southern Amazon. Forests 2025, 16, 1236. https://doi.org/10.3390/f16081236
Rocha-Filho JAd, Carvalho MACd, Gomes FFC, Piva JH, Marimon BS, Yamashita OM, Marimon-Junior BH. The Initial Impact of a Hydroelectric Reservoir on the Floristics, Structure, and Dynamics of Adjacent Forests in the Southern Amazon. Forests. 2025; 16(8):1236. https://doi.org/10.3390/f16081236
Chicago/Turabian StyleRocha-Filho, Jesulino Alves da, Marco Antônio Camillo de Carvalho, Fabiana Ferreira Cabral Gomes, José Hypolito Piva, Beatriz Schwantes Marimon, Oscar Mitsuo Yamashita, and Ben Hur Marimon-Junior. 2025. "The Initial Impact of a Hydroelectric Reservoir on the Floristics, Structure, and Dynamics of Adjacent Forests in the Southern Amazon" Forests 16, no. 8: 1236. https://doi.org/10.3390/f16081236
APA StyleRocha-Filho, J. A. d., Carvalho, M. A. C. d., Gomes, F. F. C., Piva, J. H., Marimon, B. S., Yamashita, O. M., & Marimon-Junior, B. H. (2025). The Initial Impact of a Hydroelectric Reservoir on the Floristics, Structure, and Dynamics of Adjacent Forests in the Southern Amazon. Forests, 16(8), 1236. https://doi.org/10.3390/f16081236