Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,330)

Search Parameters:
Keywords = water project

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1459 KiB  
Article
The Impact of a Mobile Laboratory on Water Quality Assessment in Remote Areas of Panama
by Jorge E. Olmos Guevara, Kathia Broce, Natasha A. Gómez Zanetti, Dina Henríquez, Christopher Ellis and Yazmin L. Mack-Vergara
Sustainability 2025, 17(15), 7096; https://doi.org/10.3390/su17157096 - 5 Aug 2025
Abstract
Monitoring water quality is crucial for achieving clean water and sanitation goals, particularly in remote areas. The project “Morbidity vs. Water Quality for Human Consumption in Tonosí: A Pilot Study” aimed to enhance water quality assessments in Panama using advanced analytical techniques to [...] Read more.
Monitoring water quality is crucial for achieving clean water and sanitation goals, particularly in remote areas. The project “Morbidity vs. Water Quality for Human Consumption in Tonosí: A Pilot Study” aimed to enhance water quality assessments in Panama using advanced analytical techniques to assess volatile organic compounds, heavy metals, and microbiological pathogens. To support this, the Technical Unit for Water Quality (UTECH) was established, featuring a novel mobile laboratory with cutting-edge technology for accurate testing, minimal chemical reagent use, reduced waste generation, and equipped with a solar-powered battery system. The aim of this paper is to explore the design, deployment, and impact of the UTECH. Furthermore, this study presents results from three sampling points in Tonosí, where several parameters exceeded regulatory limits, demonstrating the capabilities of the UTECH and highlighting the need for ongoing monitoring and intervention. The study also assesses the environmental, social, and economic impacts of the UTECH in alignment with the Sustainable Development Goals and national initiatives. Finally, a SWOT analysis illustrates the UTECH’s potential to improve water quality assessments in Panama while identifying areas for sustainable growth. The study showcases the successful integration of advanced mobile laboratory technologies into water quality monitoring, contributing to sustainable development in Panama and offering a replicable model for similar initiatives in other regions. Full article
22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

18 pages, 2365 KiB  
Article
Integrated Environmental–Economic Assessment of CO2 Storage in Chinese Saline Formations
by Wentao Zhao, Zhe Jiang, Tieya Jing, Jian Zhang, Zhan Yang, Xiang Li, Juan Zhou, Jingchao Zhao and Shuhui Zhang
Water 2025, 17(15), 2320; https://doi.org/10.3390/w17152320 - 4 Aug 2025
Abstract
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project [...] Read more.
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project in the Ordos Basin, eight full-chain carbon capture, utilization, and storage (CCUS) scenarios were analyzed. The results indicate that environmental and cost performance are primarily influenced by technology choices across carbon capture, transport, and storage stages. The scenario employing potassium carbonate-based capture, pipeline transport, and brine reinjection after a reverse osmosis treatment (S5) achieved the most balanced outcome. Breakeven analyses under three carbon price projection models revealed that carbon price trajectories critically affect project viability, with a steadily rising carbon price enabling earlier profitability. By decoupling CCUS from power systems and focusing on unit CO2 removal, this study provides a transparent and transferable framework to support cross-sectoral deployment. The findings offer valuable insights for policymakers aiming to design effective CCUS support mechanisms under future carbon neutrality targets. Full article
(This article belongs to the Special Issue Mine Water Treatment, Utilization and Storage Technology)
Show Figures

Figure 1

15 pages, 4207 KiB  
Article
Impact Analysis of Inter-Basin Water Transfer on Water Shortage Risk in the Baiyangdian Area
by Yuhang Shi, Lixin Zhang and Jinping Zhang
Water 2025, 17(15), 2311; https://doi.org/10.3390/w17152311 - 4 Aug 2025
Abstract
This study quantitatively assesses the risk of water shortage (WSR) in the Baiyangdian area due to the Inter-Basin Water Transfer (IBWT) project, focusing on the impact of water transfer on regional water security. The actual evapotranspiration (ETa) is calculated, and the correlation simulation [...] Read more.
This study quantitatively assesses the risk of water shortage (WSR) in the Baiyangdian area due to the Inter-Basin Water Transfer (IBWT) project, focusing on the impact of water transfer on regional water security. The actual evapotranspiration (ETa) is calculated, and the correlation simulation using Archimedes’ Copula function is implemented in Python 3.7.1, with optimization using the sum of squares of deviations (OLS) and the AIC criterion. The joint distribution model between ETa and three water supply scenarios is constructed. Key findings include (1) ETa increased by 27.3% after water transfer, far exceeding the slight increase in water supply before the transfer; (2) various Archimedean Copulas effectively capture the dependence and joint probability distribution between water supply and ETa; (3) water shortage risk increased after water transfer, with rainfall and upstream water unable to alleviate the problem in Baiyangdian; and (4) cross-basin water transfer reduced risk, with a reduction of 8.90% in the total probability of three key water resource scheduling combinations. This study establishes a Copula-based framework for water shortage risk assessment, providing a scientific basis for water allocation strategies in ecologically sensitive areas affected by human activities. Full article
Show Figures

Figure 1

23 pages, 4960 KiB  
Article
Land Use Patterns and Small Investment Project Preferences in Participatory Budgeting: Insights from a City in Poland
by Katarzyna Groszek, Marek Furmankiewicz, Magdalena Kalisiak-Mędelska and Magdalena Błasik
Land 2025, 14(8), 1588; https://doi.org/10.3390/land14081588 (registering DOI) - 3 Aug 2025
Viewed by 14
Abstract
This article presents a spatial analysis of projects selected by city residents and implemented in five successive editions (2015–2019) of the participatory budgeting in Częstochowa, Poland. The study examines the relationship between the type of hard projects (small investments in public infrastructure and [...] Read more.
This article presents a spatial analysis of projects selected by city residents and implemented in five successive editions (2015–2019) of the participatory budgeting in Częstochowa, Poland. The study examines the relationship between the type of hard projects (small investments in public infrastructure and landscaping) and the pre-existing characteristics of the land use of each district. Kernel density estimation and Spearman correlation analysis were used. The highest spatial density occurred in projects related to the modernization of roads and sidewalks, recreation, and greenery, indicating a relatively high number of proposals within or near residential areas. Key correlations included the following: (1) greenery projects were more common in districts lacking green areas; (2) recreational infrastructure was more frequently chosen in areas with significant water features; (3) street furniture projects were mostly selected in districts with sparse development, scattered buildings, and postindustrial sites; (4) educational infrastructure was often chosen in low-density, but developing districts. The selected projects often reflect local deficits in specific land use or public infrastructure, but also stress the predestination of the recreational use of waterside areas. Full article
(This article belongs to the Special Issue Participatory Land Planning: Theory, Methods, and Case Studies)
Show Figures

Figure 1

44 pages, 6212 KiB  
Article
A Hybrid Deep Reinforcement Learning Architecture for Optimizing Concrete Mix Design Through Precision Strength Prediction
by Ali Mirzaei and Amir Aghsami
Math. Comput. Appl. 2025, 30(4), 83; https://doi.org/10.3390/mca30040083 (registering DOI) - 3 Aug 2025
Viewed by 32
Abstract
Concrete mix design plays a pivotal role in ensuring the mechanical performance, durability, and sustainability of construction projects. However, the nonlinear interactions among the mix components challenge traditional approaches in predicting compressive strength and optimizing proportions. This study presents a two-stage hybrid framework [...] Read more.
Concrete mix design plays a pivotal role in ensuring the mechanical performance, durability, and sustainability of construction projects. However, the nonlinear interactions among the mix components challenge traditional approaches in predicting compressive strength and optimizing proportions. This study presents a two-stage hybrid framework that integrates deep learning with reinforcement learning to overcome these limitations. First, a Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM) model was developed to capture spatial–temporal patterns from a dataset of 1030 historical concrete samples. The extracted features were enhanced using an eXtreme Gradient Boosting (XGBoost) meta-model to improve generalizability and noise resistance. Then, a Dueling Double Deep Q-Network (Dueling DDQN) agent was used to iteratively identify optimal mix ratios that maximize the predicted compressive strength. The proposed framework outperformed ten benchmark models, achieving an MAE of 2.97, RMSE of 4.08, and R2 of 0.94. Feature attribution methods—including SHapley Additive exPlanations (SHAP), Elasticity-Based Feature Importance (EFI), and Permutation Feature Importance (PFI)—highlighted the dominant influence of cement content and curing age, as well as revealing non-intuitive effects such as the compensatory role of superplasticizers in low-water mixtures. These findings demonstrate the potential of the proposed approach to support intelligent concrete mix design and real-time optimization in smart construction environments. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

14 pages, 11645 KiB  
Article
Changes of Ecosystem Service Value in the Water Source Area of the West Route of the South–North Water Diversion Project
by Zhimin Du, Bo Li, Bingfei Yan, Fei Xing, Shuhu Xiao, Xiaohe Xu, Yakun Yuan and Yongzhi Liu
Water 2025, 17(15), 2305; https://doi.org/10.3390/w17152305 - 3 Aug 2025
Viewed by 68
Abstract
To ensure water source security and sustainability of the national major strategic project “South-to-North Water Diversion”, this study aims to evaluate the spatio-temporal evolution characteristics of the ecosystem service value (ESV) in its water source area from 2002 to 2022. This study reveals [...] Read more.
To ensure water source security and sustainability of the national major strategic project “South-to-North Water Diversion”, this study aims to evaluate the spatio-temporal evolution characteristics of the ecosystem service value (ESV) in its water source area from 2002 to 2022. This study reveals its changing trends and main influencing factors, and thereby provides scientific support for the ecological protection and management of the water source area. Quantitative assessment of the ESV of the region was carried out using the Equivalence Factor Method (EFM), aiming to provide scientific support for ecological protection and resource management decision-making. In the past 20 years, the ESV has shown an upward trend year by year, increasing by 96%. The regions with the highest ESV were Garzê Prefecture and Aba Prefecture, which increased by 130.3% and 60.6%, respectively. The ESV of Xinlong county, Danba county, Rangtang county, and Daofu county increased 4.8 times, 1.5 times, 12.5 times, and 8.9 times, respectively. In the last two decades, arable land has decreased by 91%, while the proportions of bare land and water have decreased by 84% and 91%, respectively. Grassland had the largest proportion. Forests and grasslands, vital for climate regulation, water cycle management, and biodiversity conservation, have expanded by 74% and 43%, respectively. It can be seen from Moran’s I index values that the dataset as a whole showed a slight positive spatial autocorrelation, which increased from −0.041396 to 0.046377. This study reveals the changing trends in ESV and the main influencing factors, and thereby provides scientific support for the ecological protection and management of the water source area. Full article
(This article belongs to the Special Issue Watershed Ecohydrology and Water Quality Modeling)
Show Figures

Figure 1

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 - 2 Aug 2025
Viewed by 167
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

17 pages, 587 KiB  
Review
Exploring the Potential of Biochar in Enhancing U.S. Agriculture
by Saman Janaranjana Herath Bandara
Reg. Sci. Environ. Econ. 2025, 2(3), 23; https://doi.org/10.3390/rsee2030023 - 1 Aug 2025
Viewed by 141
Abstract
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and [...] Read more.
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and sector-specific applications. This narrative review synthesizes two decades of literature to examine biochar’s applications, production methods, and market dynamics, with a focus on its economic and environmental role within the United States. The review identifies biochar’s multifunctional benefits: enhancing soil fertility and crop productivity, sequestering carbon, reducing greenhouse gas emissions, and improving water quality. Recent empirical studies also highlight biochar’s economic feasibility across global contexts, with yield increases of up to 294% and net returns exceeding USD 5000 per hectare in optimized systems. Economically, the global biochar market grew from USD 156.4 million in 2021 to USD 610.3 million in 2023, with U.S. production reaching ~50,000 metric tons annually and a market value of USD 203.4 million in 2022. Forecasts project U.S. market growth at a CAGR of 11.3%, reaching USD 478.5 million by 2030. California leads domestic adoption due to favorable policy and biomass availability. However, barriers such as inconsistent quality standards, limited awareness, high costs, and policy gaps constrain growth. This study goes beyond the existing literature by integrating market analysis, SWOT assessment, cost–benefit findings, and production technologies to highlight strategies for scaling biochar adoption. It concludes that with supportive legislation, investment in research, and enhanced supply chain transparency, biochar could become a pivotal tool for sustainable development in the U.S. agricultural and environmental sectors. Full article
Show Figures

Figure 1

23 pages, 4456 KiB  
Article
Assessing Climate Change Impacts on Groundwater Recharge and Storage Using MODFLOW in the Akhangaran River Alluvial Aquifer, Eastern Uzbekistan
by Azam Kadirkhodjaev, Dmitriy Andreev, Botir Akramov, Botirjon Abdullaev, Zilola Abdujalilova, Zulkhumar Umarova, Dilfuza Nazipova, Izzatullo Ruzimov, Shakhriyor Toshev, Erkin Anorboev, Nodirjon Rakhimov, Farrukh Mamirov, Inessa Gracheva and Samrit Luoma
Water 2025, 17(15), 2291; https://doi.org/10.3390/w17152291 - 1 Aug 2025
Viewed by 280
Abstract
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly [...] Read more.
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly understood. This study employed a three-dimensional MODFLOW-based groundwater flow model to assess climate change impacts on water budget components under the SSP5-8.5 scenario for 2020–2099. Model calibration yielded RMSE values between 0.25 and 0.51 m, indicating satisfactory performance. Simulations revealed that lateral inflows from upstream and side-valley alluvial deposits contribute over 84% of total inflow, while direct recharge from precipitation (averaging 120 mm/year, 24.7% of annual rainfall) and riverbed leakage together account for only 11.4%. Recharge occurs predominantly from November to April, with no recharge from June to August. Under future scenarios, winter recharge may increase by up to 22.7%, while summer recharge could decline by up to 100%. Groundwater storage is projected to decrease by 7.3% to 58.3% compared to 2010–2020, indicating the aquifer’s vulnerability to prolonged dry periods. These findings emphasize the urgent need for adaptive water management strategies and long-term monitoring to ensure sustainable groundwater use under changing climate conditions. Full article
(This article belongs to the Special Issue Climate Change Uncertainties in Integrated Water Resources Management)
Show Figures

Figure 1

20 pages, 16348 KiB  
Article
The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques
by Pedro Vicente Vaca-Cárdenas, Eduardo Antonio Muñoz-Jácome, Maritza Lucia Vaca-Cárdenas, Diego Francisco Cushquicullma-Colcha and José Guerrero-Casado
Earth 2025, 6(3), 86; https://doi.org/10.3390/earth6030086 (registering DOI) - 1 Aug 2025
Viewed by 197
Abstract
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in [...] Read more.
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in January 2024, its thickness (from 2.5 m to 0.71 m), and its volume (from 2638.85 m3 to 457.18 m3), before its complete deglaciation in February 2024; this rapid melting and its small size classify it as a glacierette. Multivariate analyses (PCA and biclustering) were performed to correlate climatic variables (temperature, solar radiation, precipitation, relative humidity, vapor pressure, and wind) with glacier surface and thickness. The PCA explained 70.26% of the total variance, with Axis 1 (28.01%) associated with extreme thermal conditions (temperatures up to 8.18 °C and radiation up to 16.14 kJ m−2 day−1), which probably drove its disappearance. Likewise, Axis 2 (21.56%) was related to favorable hydric conditions (precipitation between 39 and 94 mm) during the initial phase of glacier monitoring. Biclustering identified three groups of variables: Group 1 (temperature, solar radiation, and vapor pressure) contributed most to deglaciation; Group 2 (precipitation, humidity) apparently benefited initial stability; and Group 3 (wind) played a secondary role. These results, validated through in situ measurements, provide scientific evidence of the disappearance of the Carihuairazo volcano glacier by February 2024. They also corroborate earlier projections that anticipated its extinction by the middle of this decade. The early disappearance of this glacier highlights the vulnerability of small tropical Andean glaciers and underscores the urgent need for water security strategies focused on management, adaptation, and resilience. Full article
Show Figures

Figure 1

14 pages, 2052 KiB  
Article
Study on the Shear Strength and Durability of Ionic Soil Stabilizer-Modified Soft Soil in Acid Alkali Environments
by Zhifeng Ren, Shijie Lin, Siyu Liu, Bo Li, Jiankun Liu, Liang Chen, Lideng Fan, Ziling Xie and Lingjie Wu
Eng 2025, 6(8), 178; https://doi.org/10.3390/eng6080178 - 1 Aug 2025
Viewed by 164
Abstract
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. [...] Read more.
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. Ionic soil stabilizers (ISSs), which operate through electrochemical mechanisms, offer a promising alternative. However, their long-term performance—particularly under environmental stressors such as acid/alkali exposure and cyclic wetting–drying—remains insufficiently explored. This study evaluates the strength and durability of ISS-modified soil through a comprehensive experimental program, including direct shear tests, permeability tests, and cyclic wetting–drying experiments under neutral, acidic (pH = 4), and alkaline (pH = 10) environments. The results demonstrate that ISS treatment increases soil cohesion by up to 75.24% and internal friction angle by 9.50%, particularly under lower moisture conditions (24%). Permeability decreased by 88.4% following stabilization, resulting in only a 10–15% strength loss after water infiltration, compared to 40–50% in untreated soils. Under three cycles of wetting–drying, ISS-treated soils retained high shear strength, especially under acidic conditions, where degradation was minimal. In contrast, alkaline conditions caused a cohesion reduction of approximately 26.53%. These findings confirm the efficacy of ISSs in significantly improving both the mechanical performance and environmental durability of soft soils, offering a sustainable and effective solution for soil stabilization in chemically aggressive environments. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

23 pages, 2122 KiB  
Article
Climate Change of Near-Surface Temperature in South Africa Based on Weather Station Data, ERA5 Reanalysis, and CMIP6 Models
by Ilya Serykh, Svetlana Krasheninnikova, Tatiana Gorbunova, Roman Gorbunov, Joseph Akpan, Oluyomi Ajayi, Maliga Reddy, Paul Musonge, Felix Mora-Camino and Oludolapo Akanni Olanrewaju
Climate 2025, 13(8), 161; https://doi.org/10.3390/cli13080161 - 1 Aug 2025
Viewed by 182
Abstract
This study investigates changes in Near-Surface Air Temperature (NSAT) over the South African region using weather station data, reanalysis products, and Coupled Model Intercomparison Project Phase 6 (CMIP6) model outputs. It is shown that, based on ERA5 reanalysis, the average NSAT increase in [...] Read more.
This study investigates changes in Near-Surface Air Temperature (NSAT) over the South African region using weather station data, reanalysis products, and Coupled Model Intercomparison Project Phase 6 (CMIP6) model outputs. It is shown that, based on ERA5 reanalysis, the average NSAT increase in the region (45–10° S, 0–50° E) for the period 1940–2023 was 0.11 ± 0.04 °C. Weak multi-decadal changes in NSAT were observed from 1940 to the mid-1970s, followed by a rapid warming trend starting in the mid-1970s. Weather station data generally confirm these results, although they exhibit considerable inter-station variability. An ensemble of 33 CMIP6 models also reproduces these multi-decadal NSAT change characteristics. Specifically, the average model-simulated NSAT values for the region increased by 0.63 ± 0.12 °C between the periods 1940–1969 and 1994–2023. Based on the results of the comparison between weather station observations, reanalysis, and models, we utilize projections of NSAT changes from the analyzed ensemble of 33 CMIP6 models until the end of the 21st century under various Shared Socioeconomic Pathway (SSP) scenarios. These projections indicate that the average NSAT of the South African region will increase between 1994–2023 and 2070–2099 by 0.92 ± 0.36 °C under the SSP1-2.6 scenario, by 1.73 ± 0.44 °C under SSP2-4.5, by 2.52 ± 0.50 °C under SSP3-7.0, and by 3.17 ± 0.68 °C under SSP5-8.5. Between 1994–2023 and 2025–2054, the increase in average NSAT for the studied region, considering inter-model spread, will be 0.49–1.15 °C, depending on the SSP scenario. Furthermore, climate warming in South Africa, both in the next 30 years and by the end of the 21st century, is projected to occur according to all 33 CMIP6 models under all considered SSP scenarios. The main spatial feature of this warming is a more significant increase in NSAT over the landmass of the studied region compared to its surrounding waters, due to the stabilizing role of the ocean. Full article
Show Figures

Figure 1

25 pages, 1640 KiB  
Article
Human Rights-Based Approach to Community Development: Insights from a Public–Private Development Model in Kenya
by David Odhiambo Chiawo, Peggy Mutheu Ngila, Jane Wangui Mugo, Mumbi Maria Wachira, Linet Mukami Njuki, Veronica Muniu, Victor Anyura, Titus Kuria, Jackson Obare and Mercy Koini
World 2025, 6(3), 104; https://doi.org/10.3390/world6030104 - 1 Aug 2025
Viewed by 215
Abstract
The right to development, an inherent human right for all, emphasizes that all individuals and communities have the right to participate in, contribute to, and benefit from development that ensures the full realization of human rights. In Kenya, where a significant portion of [...] Read more.
The right to development, an inherent human right for all, emphasizes that all individuals and communities have the right to participate in, contribute to, and benefit from development that ensures the full realization of human rights. In Kenya, where a significant portion of the population faces poverty and vulnerability to climate change, access to rights-based needs such as clean water, healthcare, and education still remains a critical challenge. This study explored the implementation of a Human Rights-Based approach to community development through a Public–Private Development Partnership model (PPDP), with a focus on alleviating poverty and improving access to rights-based services at the community level in Narok and Nakuru counties. The research aimed to identify critical success factors for scaling the PPDP model and explore its effects on socio-economic empowerment. The study employed a mixed-methods approach for data collection, using questionnaires to obtain quantitative data, focus group discussions, and key informant interviews with community members, local leaders, and stakeholders to gather qualitative data. We cleaned and analyzed all our data in R (version 4.4.3) and used the chi-square to establish the significance of differences between areas where the PPDP model was implemented and control areas where it was not. Results reveal that communities with the PPDP model experienced statistically significant improvements in employment, income levels, and access to rights-based services compared to control areas. The outcomes underscore the potential of the PPDP model to address inclusive and sustainable development. This study therefore proposes a scalable pathway beginning with access to rights-based needs, followed by improved service delivery, and culminating in economic empowerment. These findings offer valuable insights for governments, development practitioners, investment agencies, and researchers seeking community-driven developments in similar socio-economic contexts across Africa. For the first time, it can be adopted in the design and implementation of development projects in rural and local communities across Africa bringing into focus the need to integrate rights-based needs at the core of the project. Full article
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
Climate-Induced Water Management Challenges for Cabbage and Carrot in Southern Poland
by Stanisław Rolbiecki, Barbara Jagosz, Roman Rolbiecki and Renata Kuśmierek-Tomaszewska
Sustainability 2025, 17(15), 6975; https://doi.org/10.3390/su17156975 - 31 Jul 2025
Viewed by 239
Abstract
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios [...] Read more.
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios RCP 4.5 and RCP 8.5 for the period 2031–2100. The analysis was conducted for Kraków and Rzeszów Counties in southern Poland using projected monthly temperature and precipitation data from the Klimada 2.0 portal. Potential evapotranspiration (ETp) during the growing season (May–October) was estimated using Treder’s empirical model and the crop coefficient method adapted for Polish conditions. The reference period for comparison was 1951–2020. The results reveal a significant upward trend in water demand for both crops, with the highest increases under the RCP 8.5 scenario–seasonal ETp values reaching up to 517 mm for cabbage and 497 mm for carrot. Rainfall deficits are projected to intensify, especially during July and August, with greater shortages in Rzeszów County compared to Kraków County. Irrigation demand varies depending on soil type and drought severity, becoming critical in medium and very dry years. These findings underscore the necessity of adapting irrigation strategies and water resource management to ensure sustainable vegetable production under changing climate conditions. The data provide valuable guidance for farmers, advisors, and policymakers in planning effective irrigation infrastructure and optimizing water-use efficiency in southern Poland. Full article
Show Figures

Figure 1

Back to TopTop