Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,523)

Search Parameters:
Keywords = water management governance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2576 KiB  
Article
Modeling and Spatiotemporal Analysis of Actual Evapotranspiration in a Desert Steppe Based on SEBS
by Yanlin Feng, Lixia Wang, Chunwei Liu, Baozhong Zhang, Jun Wang, Pei Zhang and Ranghui Wang
Hydrology 2025, 12(8), 205; https://doi.org/10.3390/hydrology12080205 - 6 Aug 2025
Abstract
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based [...] Read more.
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based validation that significantly enhances spatiotemporal ET accuracy in the vulnerable desert steppe ecosystems. The study utilized meteorological data from several national stations and Landsat-8 imagery to process monthly remote sensing images in 2019. The Surface Energy Balance System (SEBS) model, chosen for its ability to estimate ET over large areas, was applied to derive modeled daily ET values, which were validated by a large-weighted lysimeter. It was shown that ET varied seasonally, peaking in July at 6.40 mm/day, and reaching a minimum value in winter with 1.83 mm/day in December. ET was significantly higher in southern regions compared to central and northern areas. SEBS-derived ET showed strong agreement with lysimeter measurements, with a mean relative error of 4.30%, which also consistently outperformed MOD16A2 ET products in accuracy. This spatial heterogeneity was driven by greater vegetation coverage and enhanced precipitation in the southeast. The steppe ET showed a strong positive correlation with surface temperatures and vegetation density. Moreover, the precipitation gradients and land use were primary controllers of spatial ET patterns. The process-based SEBS frameworks demonstrate dual functionality as resource-optimized computational platforms while enabling multi-scale quantification of ET spatiotemporal heterogeneity; it was therefore a reliable tool for ecohydrological assessments in an arid steppe, providing critical insights for water resource management and drought monitoring. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

18 pages, 3354 KiB  
Article
Hydrological Modeling of the Chikugo River Basin Using SWAT: Insights into Water Balance and Seasonal Variability
by Francis Jhun Macalam, Kunyang Wang, Shin-ichi Onodera, Mitsuyo Saito, Yuko Nagano, Masatoshi Yamazaki and Yu War Nang
Sustainability 2025, 17(15), 7027; https://doi.org/10.3390/su17157027 - 2 Aug 2025
Viewed by 293
Abstract
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the [...] Read more.
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the performance of the Soil and Water Assessment Tool (SWAT) in simulating streamflow, water balance, and seasonal hydrological dynamics in the Chikugo River Basin, Kyushu Island, Japan. The basin, originating from Mount Aso and draining into the Ariake Sea, is subject to frequent typhoons and intense rainfall, making it a critical case for sustainable water governance. Using the Sequential Uncertainty Fitting Version 2 (SUFI-2) approach, we calibrated the SWAT model over the period 2007–2021. Water balance analysis revealed that baseflow plays dominant roles in basin hydrology which is essential for agricultural and domestic water needs by providing a stable groundwater contribution despite increasing precipitation and varying water demand. These findings contribute to a deeper understanding of hydrological behavior in temperate catchments and offer a scientific foundation for sustainable water allocation, planning, and climate resilience strategies. Full article
Show Figures

Figure 1

24 pages, 10417 KiB  
Article
Landscape Ecological Risk Assessment of Peri-Urban Villages in the Yangtze River Delta Based on Ecosystem Service Values
by Yao Xiong, Yueling Li and Yunfeng Yang
Sustainability 2025, 17(15), 7014; https://doi.org/10.3390/su17157014 - 1 Aug 2025
Viewed by 219
Abstract
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies [...] Read more.
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies is therefore imperative. Using rural areas of Jiangning District, Nanjing as a case study, this research proposes an optimized dual-dimensional coupling assessment framework that integrates ecosystem service value (ESV) and ecological risk probability. The spatiotemporal evolution of LER in 2000, 2010, and 2020 and its key driving factors were further studied by using spatial autocorrelation analysis and geodetector methods. The results show the following: (1) From 2000 to 2020, cultivated land remained dominant, but its proportion decreased by 10.87%, while construction land increased by 26.52%, with minimal changes in other land use types. (2) The total ESV increased by CNY 1.67 × 109, with regulating services accounting for over 82%, among which water bodies contributed the most. (3) LER showed an overall increasing trend, with medium- to highest-risk areas expanding by 55.37%, lowest-risk areas increasing by 10.10%, and lower-risk areas decreasing by 65.48%. (4) Key driving factors include landscape vulnerability, vegetation coverage, and ecological land connectivity, with the influence of distance to road becoming increasingly significant. This study reveals the spatiotemporal evolution characteristics of LER in typical peri-urban villages. Based on the LERA results, combined with terrain features and ecological pressure intensity, the study area was divided into three ecological management zones: ecological conservation, ecological restoration, and ecological enhancement. Corresponding zoning strategies were proposed to guide rural ecological governance and support regional sustainable development. Full article
Show Figures

Figure 1

20 pages, 3033 KiB  
Review
Recharge Sources and Flow Pathways of Karst Groundwater in the Yuquan Mountain Spring Catchment Area, Beijing: A Synthesis Based on Isotope, Tracers, and Geophysical Evidence
by Yuejia Sun, Liheng Wang, Qian Zhang and Yanhui Dong
Water 2025, 17(15), 2292; https://doi.org/10.3390/w17152292 - 1 Aug 2025
Viewed by 240
Abstract
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its [...] Read more.
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its recharge and flow mechanisms. This study integrates published isotope data, spatial distributions of Na+ and Cl as hydrochemical tracers, groundwater age estimates, and geophysical survey results to assess the recharge sources and flow pathways within the YM Spring catchment area. The analysis identifies two major recharge zones: the Tanzhesi area, primarily recharged by direct infiltration of precipitation through exposed carbonate rocks, and the Junzhuang area, which receives mixed recharge from rainfall and Yongding River seepage. Three potential flow pathways are proposed, including shallow flow along faults and strata, and a deeper, speculative route through the Jiulongshan-Xiangyu syncline. The synthesis of multiple lines of evidence leads to a refined conceptual model that illustrates how geological structures govern recharge, flow, and discharge processes in this karst system. These findings not only enhance the understanding of subsurface hydrodynamics in complex geological settings but also provide a scientific basis for future spring restoration planning and groundwater management strategies in the regions. Full article
Show Figures

Figure 1

18 pages, 1458 KiB  
Article
Factors Influencing Willingness to Collaborate on Water Management: Insights from Grape Farming in Samarkand, Uzbekistan
by Sodikjon Avazalievich Mamasoliev, Motoi Kusadokoro, Takeshi Maru, Shavkat Hasanov and Yoshiko Kawabata
Sustainability 2025, 17(15), 6991; https://doi.org/10.3390/su17156991 - 1 Aug 2025
Viewed by 255
Abstract
Water is essential for ecological balance, environmental sustainability, and food security, particularly in arid regions where effective water management increasingly depends on farmer cooperation. The Samarkand region of Uzbekistan, known for its favorable climate and leading role in grape production, is facing rising [...] Read more.
Water is essential for ecological balance, environmental sustainability, and food security, particularly in arid regions where effective water management increasingly depends on farmer cooperation. The Samarkand region of Uzbekistan, known for its favorable climate and leading role in grape production, is facing rising drought conditions. This study explores the factors influencing grape farmers’ willingness to collaborate on water management in the districts of Ishtikhan, Payarik, and Kushrabot, which together produce 75–80% of the region’s grapes. A quantitative survey of 384 grape-producing households was conducted across 19 county citizens’ gatherings (38.7% of such gatherings), and structural equation modeling was employed to analyze a framework consisting of four dimensions: norms, environmental concerns, economic barriers, and the intention to adopt sustainable practices. The results indicate that norms and environmental concerns positively influence collaboration, suggesting a collective orientation toward sustainability. In contrast, economic barriers such as high costs and limited financial capacity significantly hinder cooperative behavior. Furthermore, a strong individual intention to adopt sustainable practices was associated with a greater likelihood of collaboration. These findings highlight the critical drivers and constraints shaping collective water use in agriculture and suggest that targeted policy measures and community-led efforts are vital for promoting sustainable water governance in drought-prone regions. Full article
Show Figures

Figure 1

36 pages, 2676 KiB  
Review
Research Activities on Acid Mine Drainage Treatment in South Africa (1998–2025): Trends, Challenges, Bibliometric Analysis and Future Directions
by Tumelo M. Mogashane, Johannes P. Maree, Lebohang Mokoena and James Tshilongo
Water 2025, 17(15), 2286; https://doi.org/10.3390/w17152286 - 31 Jul 2025
Viewed by 286
Abstract
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study [...] Read more.
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study presents a comprehensive review of research activities on AMD in South Africa from 1998 to 2025, highlighting key trends, emerging challenges and future directions. The study reveals a significant focus on passive and active treatment methods, environmental remediation and the recovery of valuable resources, such as iron, rare earth elements (REEs) and gypsum. A bibliometric analysis was conducted to identify the most influential studies and thematic research areas over the years. Bibliometric tools (Biblioshiny and VOSviewer) were used to analyse the data that was extracted from the PubMed database. The findings indicate that research production has increased significantly over time, with substantial contributions from top academics and institutions. Advanced treatment technologies, the use of artificial intelligence and circular economy strategies for resource recovery are among the new research prospects identified in this study. Despite substantial progress, persistent challenges, such as scalability, economic viability and policy implementation, remain. Furthermore, few technologies have moved beyond pilot-scale implementation, underscoring the need for greater investment in field-scale research and technology transfer. This study recommends stronger industry–academic collaboration, the development of standardised treatment protocols and enhanced government policy support to facilitate sustainable AMD management. The study emphasises the necessity of data-driven approaches, sustainable technology and interdisciplinary cooperation to address AMD’s socioeconomic and environmental effects in the ensuing decades. Full article
Show Figures

Figure 1

26 pages, 3012 KiB  
Perspective
The Palisades Fire of Los Angeles: Lessons to Be Learned
by Vytenis Babrauskas
Fire 2025, 8(8), 303; https://doi.org/10.3390/fire8080303 - 31 Jul 2025
Viewed by 237
Abstract
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which [...] Read more.
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which took place close to the 1961 fire location. Disastrous WUI fires are, unfortunately, an anticipatable occurrence in many U.S. cities. A number of issues identified earlier remained the same. Some were largely solved, while other new ones have emerged. The paper examines the Palisades Fire of January, 2025 in this context. In the intervening decades, the population of the city grew substantially. But firefighting resources did not keep pace. Very likely, the single-most-important factor in causing the 2025 disasters is that the Los Angeles Fire Department operational vehicle count shrank to 1/5 of what it was in 1961 (per capita). This is likely why critical delays were experienced in the initial attack on the Palisades Fire, leading to a runaway conflagration. Two other crucial issues were the management of vegetation and the adequacy of water supplies. On both these issues, the Palisades Fire revealed serious problems. A problem which arose after 1961 involves the unintended consequences of environmental legislation. Communities will continue to be devastated by wildfires unless adequate vegetation management is accomplished. Yet, environmental regulations are focused on maintaining the status quo, often making vegetation management difficult or ineffective. House survival during a wildfire is strongly affected by whether good vegetation management practices and good building practices (“ignition-resistant” construction features) have been implemented. The latter have not been mandatory for housing built prior to 2008, and the vast majority of houses in the area predated such building code requirements. California has also suffered from a highly counterproductive stance on insurance regulation. This has resulted in some residents not having property insurance, due to the inhospitable operating conditions for insurance firms in the state. Because of the historical precedent, the details in this paper focus on the Palisades Fire; however, many of the lessons learned apply to managing fires in all WUI areas. Policy recommendations are offered, which could help to reduce the potential for future conflagrations. Full article
Show Figures

Figure 1

27 pages, 31400 KiB  
Article
Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China
by Zhiyuan Xu, Fuyan Ke, Jiajie Yu and Haotian Zhang
Land 2025, 14(8), 1569; https://doi.org/10.3390/land14081569 - 31 Jul 2025
Viewed by 315
Abstract
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and [...] Read more.
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and grid scales. Therefore, this study selects Zhejiang Province—a representative rapidly transforming region in China—to establish a “type-process-ecological effect” analytical framework. Utilizing four-period (2005–2020) 30 m resolution land use data alongside natural and socio-economic factors, four spatial scales (city, county, township, and 5 km grid) were selected to systematically evaluate multi-scale impacts of land use transition on EEQ and their driving mechanisms. The research reveals that the spatial distribution, changing trends, and driving factors of EEQ all exhibit significant scale dependence. The county scale demonstrates the strongest spatial agglomeration and heterogeneity, making it the most appropriate core unit for EEQ management and planning. City and county scales generally show degradation trends, while township and grid scales reveal heterogeneous patterns of local improvement, reflecting micro-scale changes obscured at coarse resolutions. Expansive land transition including conversions of forest ecological land (FEL), water ecological land (WEL), and agricultural production land (APL) to industrial and mining land (IML) primarily drove EEQ degradation, whereas restorative ecological transition such as transformation of WEL and IML to grassland ecological land (GEL) significantly enhanced EEQ. Regarding driving mechanisms, natural factors (particularly NDVI and precipitation) dominate across all scales with significant interactive effects, while socio-economic factors primarily operate at macro scales. This study elucidates the scale complexity of land use transition impacts on ecological environments, providing theoretical and empirical support for developing scale-specific, typology-differentiated ecological governance and spatial planning policies. Full article
Show Figures

Figure 1

27 pages, 2565 KiB  
Review
The Role of ESG in Driving Sustainable Innovation in Water Sector: From Gaps to Governance
by Gabriel Minea, Elena Simina Lakatos, Roxana Maria Druta, Alina Moldovan, Lucian Marius Lupu and Lucian Ionel Cioca
Water 2025, 17(15), 2259; https://doi.org/10.3390/w17152259 - 29 Jul 2025
Viewed by 473
Abstract
The water sector is facing a convergence of systemic challenges generated by climate change, increasing demand, and increasingly stringent regulations, which threaten its operational and strategic sustainability. In this context, the article examines how ESG (environmental, social, governance) principles are integrated into the [...] Read more.
The water sector is facing a convergence of systemic challenges generated by climate change, increasing demand, and increasingly stringent regulations, which threaten its operational and strategic sustainability. In this context, the article examines how ESG (environmental, social, governance) principles are integrated into the governance, financing, and management of water resources, with a comparative focus on Romania and the European Union. It aims to assess the extent to which ESG practices contribute to the sustainable transformation of the water sector in the face of growing environmental and socio-economic challenges. The methodology is based on a systematic analysis of policy documents, regulatory frameworks, and ESG standards applicable to the water sector at both national (Romania) and EU levels. This study also investigates investment strategies and their alignment with the EU Taxonomy for Sustainable Activities, enabling a comparative perspective on implementation, gaps and strengths. Findings reveal that while ESG principles are increasingly recognized across Europe, their implementation remains uneven (particularly in Romania) due to unclear standards, limited funding mechanisms, and fragmented policy coordination. ESG integration shows clear potential to foster innovation, improve governance transparency, and support long-term resilience in the water sector. These results underline the need for coherent, integrated policies and stronger institutional coordination to ensure consistent ESG adoption across Member States. Policymakers should prioritize the development of clear guidelines and supportive funding instruments to accelerate sustainable outcomes. The originality of our study lies in its comparative approach, offering an in-depth analysis of ESG integration in the water sector across different governance contexts. It provides valuable insights for advancing policy coherence, investment alignment, and sustainable water resource management at both national and European levels. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

24 pages, 2710 KiB  
Article
Spatial and Economic-Based Clustering of Greek Irrigation Water Organizations: A Data-Driven Framework for Sustainable Water Pricing and Policy Reform
by Dimitrios Tsagkoudis, Eleni Zafeiriou and Konstantinos Spinthiropoulos
Water 2025, 17(15), 2242; https://doi.org/10.3390/w17152242 - 28 Jul 2025
Viewed by 338
Abstract
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective [...] Read more.
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective on irrigation water pricing and cost recovery. The findings reveal that organizations located on islands, despite high water costs due to limited rainfall and geographic isolation, tend to achieve relatively strong financial performance, indicating the presence of adaptive mechanisms that could inform broader policy strategies. In contrast, organizations managing extensive irrigable land or large volumes of water frequently show poor cost recovery, challenging assumptions about economies of scale and revealing inefficiencies in pricing or governance structures. The spatial coherence of the clusters underscores the importance of geography in shaping institutional outcomes, reaffirming that environmental and locational factors can offer greater explanatory power than algorithmic models alone. This highlights the need for water management policies that move beyond uniform national strategies and instead reflect regional climatic, infrastructural, and economic variability. The study suggests several policy directions, including targeted infrastructure investment, locally calibrated water pricing models, and performance benchmarking based on successful organizational practices. Although grounded in the Greek context, the methodology and insights are transferable to other European and Mediterranean regions facing similar water governance challenges. Recognizing the limitations of the current analysis—including gaps in data consistency and the exclusion of socio-environmental indicators—the study advocates for future research incorporating broader variables and international comparative approaches. Ultimately, it supports a hybrid policy framework that combines data-driven analysis with spatial intelligence to promote sustainability, equity, and financial viability in agricultural water management. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

20 pages, 2319 KiB  
Article
Sustainability Synergies Between Water Governance and Agrotourism Development in the Semi-Arid Climate: A Case Study of Esmeraldas Province, Ecuador
by Eliana Ivanova Cuero Espinoza, Qudus Adeyi, Mirza Junaid Ahmad, Hwa-Seok Hwang and Kyung-Sook Choi
Water 2025, 17(15), 2215; https://doi.org/10.3390/w17152215 - 24 Jul 2025
Viewed by 315
Abstract
Effective water governance is essential for sustainable development amidst water scarcity challenges in semi-arid regions like Esmeraldas Province, which has substantial agrotourism potential. Yet, fragmented governance and chronic water shortages threaten its viability. Using a mixed-method approach, this study analyzed how sustainable water [...] Read more.
Effective water governance is essential for sustainable development amidst water scarcity challenges in semi-arid regions like Esmeraldas Province, which has substantial agrotourism potential. Yet, fragmented governance and chronic water shortages threaten its viability. Using a mixed-method approach, this study analyzed how sustainable water governance can support agrotourism development in Esmeraldas Province, Ecuador. This study combined policy gaps analysis, stakeholder surveys (policymakers, farmers, community leaders, and tourism operators), and water availability using the Standardized Precipitation Evapotranspiration Index (SPEI) from 1980 to 2022. The results revealed a lack of policy regulation and water infrastructure as the major governance gaps that need more intervention. The survey respondents indicated that water is mainly used for domestic and economic activities and the conservation of natural ecosystems. The SPEI revealed a significant drought trend falling below −3, with severe drought years coinciding with many crop losses and a fall in tourism. This study highlights the interconnection between water governance and agrotourism in Esmeraldas, Ecuador, proposing a strategic framework that incorporates adaptive governance principles and inclusive participation mechanisms, emphasizing targeted capacity building to strengthen water management practices and enhance the Sustainable Development Goals for agrotourism resilience. Full article
(This article belongs to the Special Issue Water: Economic, Social and Environmental Analysis)
Show Figures

Figure 1

25 pages, 5543 KiB  
Article
Geospatial Drivers of China’s Nature Reserves: Implications for Sustainable Agricultural Development
by Shasha Ouyang and Jun Wen
Agriculture 2025, 15(15), 1596; https://doi.org/10.3390/agriculture15151596 - 24 Jul 2025
Viewed by 289
Abstract
The establishment and management of nature reserves play a crucial role in protecting biodiversity and supporting sustainable agriculture. This study focuses on 2538 nature reserves in 22 provinces, 5 autonomous regions and 4 municipalities directly under the central government in mainland China. Integrating [...] Read more.
The establishment and management of nature reserves play a crucial role in protecting biodiversity and supporting sustainable agriculture. This study focuses on 2538 nature reserves in 22 provinces, 5 autonomous regions and 4 municipalities directly under the central government in mainland China. Integrating GIS spatial statistics, imbalance index, and geodetector models, we reveal critical insights: (1) Pronounced spatial inequity is observed, where a small number of eastern provinces dominate the total reserve count, highlighting significant regional disparities in ecological resource allocation. The sparse kernel density in western regions, indicating sparse reserve coverage. The Standard Deviation Ellipse highlights directional dispersion and human-ecological conflicts in high-density zones. (2) Key sustainability indicators driving reserve distribution include: total water resources, water resources per capita, forest area. (3) The spatial distribution of China’s nature reserves, along with factors such as altitude, river distribution, and transportation infrastructure, plays a crucial role in their development. This research provides theoretical support for the scientific planning and policy-making of nature reserves in China and offers practical guidance for optimizing and adjusting sustainable agricultural development. The study emphasizes the vital functions of nature reserves in maintaining ecosystem balance, enhancing regional climate resilience, and serving as biodiversity reservoirs. This research offers strategic insights for integrating nature reserve spatial planning with sustainable agricultural development policies, providing a scientific basis for optimizing the eco-agricultural interface in China. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

18 pages, 1137 KiB  
Article
Exploring Social Water Research: Quantitative Network Analysis as Assistance for Qualitative Social Research
by Magdalena Riedl and Peter Schulz
Water 2025, 17(15), 2208; https://doi.org/10.3390/w17152208 - 24 Jul 2025
Viewed by 371
Abstract
This paper presents a meta-analysis of social research on water, offering a novel methodological contribution to the study of emerging interdisciplinary research fields. We propose and implement a mixed methods framework that integrates quantitative network analysis with qualitative research, aiming to enhance both [...] Read more.
This paper presents a meta-analysis of social research on water, offering a novel methodological contribution to the study of emerging interdisciplinary research fields. We propose and implement a mixed methods framework that integrates quantitative network analysis with qualitative research, aiming to enhance both to give access to new emerging empirical fields and enhance the analytical depth of empirical social research. Drawing on a dataset of publications from the Web of Science over four distinct time intervals, we identify thematic clusters through keyword co-occurrence networks that reveal the evolving structure and internal dynamics of the field. Our findings show a clear trend toward increasing interdisciplinarity, responsiveness to global events, and contemporary challenges such as the emergence of COVID-19 and the continued centrality of topics related to water management and evaluation. By uncovering latent structures, our approach not only maps the field’s development but also lays the foundation for targeted qualitative analysis of articles representative of identified clusters. This methodological design contributes to the broader discourse on mixed methods research in the social sciences by demonstrating how computational tools can enhance the transparency and reliability of qualitative inquiry without sacrificing its interpretive richness. Furthermore, this study opens new avenues for critically reflecting on the epistemic culture of social water research, particularly in relation to its proximity to applied science and governance-oriented perspectives. The proposed method holds potential relevance for both academic researchers and decision makers in the water sector, offering a means to systematically access dispersed knowledge and identify underrepresented subfields. Overall, the study showcases the potential of mixed methods designs for navigating and structuring complex interdisciplinary research landscapes. Full article
Show Figures

Figure A1

16 pages, 722 KiB  
Article
From Desalination to Governance: A Comparative Study of Water Reuse Strategies in Southern European Hospitality
by Eleonora Santos
Sustainability 2025, 17(15), 6725; https://doi.org/10.3390/su17156725 - 24 Jul 2025
Viewed by 315
Abstract
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater [...] Read more.
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater recycling—under environmental, institutional, and reputational constraints. A comparative qualitative case study was conducted involving three hotel groups—Vila Vita Parc, Pestana Group, and Vila Galé—selected through purposive sampling based on organizational capacity and technology adoption stage. The analysis was supported by a supplementary mini-case from Mallorca, Spain. Publicly accessible documents, including sustainability reports, media coverage, and policy frameworks, were thematically coded using organizational environmental behavior theory and the OECD Principles on Water Governance. The results demonstrated that (1) higher organizational capacity was associated with greater maturity in water reuse implementation; (2) communication transparency increased alongside technological advancement; and (3) early-stage adopters encountered stronger financial, regulatory, and operational barriers. These findings culminated in the development of the Maturity–Communication–Governance (MCG) Framework, which elucidates how internal resources, stakeholder signaling, and institutional alignment influence sustainable infrastructure uptake. This research offered policy recommendations to scale water reuse in tourism through financial incentives, regulatory simplification, and public–private partnerships. The study contributed to the literature on sustainable tourism and decentralized climate adaptation, aligning with UN Sustainable Development Goals 6.4, 12.6, and 13. Full article
Show Figures

Figure 1

23 pages, 2274 KiB  
Review
Nature-Based Solutions for Water Management in Europe: What Works, What Does Not, and What’s Next?
by Eleonora Santos
Water 2025, 17(15), 2193; https://doi.org/10.3390/w17152193 - 23 Jul 2025
Viewed by 494
Abstract
Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European [...] Read more.
Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European water management, drawing on a structured synthesis of empirical evidence from regional case studies and policy frameworks. The analysis found that while NbS are effective in reducing surface runoff, mitigating floods, and improving water quality under low- to moderate-intensity events, their performance remains uncertain under extreme climate scenarios. Key gaps identified include the lack of long-term monitoring data, limited assessment of NbS under future climate conditions, and weak integration into mainstream planning and financing systems. Existing evaluation frameworks are critiqued for treating NbS as static interventions, overlooking their ecological dynamics and temporal variability. In response, a dynamic, climate-resilient assessment model is proposed—grounded in systems thinking, backcasting, and participatory scenario planning—to evaluate NbS adaptively. Emerging innovations, such as hybrid green–grey infrastructure, adaptive governance models, and novel financing mechanisms, are highlighted as key enablers for scaling NbS. The article contributes to the scientific literature by bridging theoretical and empirical insights, offering region-specific findings and recommendations based on a comparative analysis across diverse European contexts. These findings provide conceptual and methodological tools to better design, evaluate, and scale NbS for transformative, equitable, and climate-resilient water governance. Full article
Show Figures

Figure 1

Back to TopTop