Factors Influencing Willingness to Collaborate on Water Management: Insights from Grape Farming in Samarkand, Uzbekistan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling, and Data Collection
2.2. Conceptual Framework and Hypothesis Settings
2.3. SEM Specification and Model Fit
3. Results
4. Discussion
4.1. Social Norms
4.2. Environmental Concerns
4.3. Intention to Adopt Sustainable Production Practices
4.4. Economic Barriers
4.5. Policy and Stakeholder Implications for Collaborative Water Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SEM | Structural Equation Model |
N | Norms |
EC | Environmental Concern |
IA | Intention to Adopt |
EB | Economic Barriers |
WTC | Willingness to Collaborate |
EFA | Exploratory Factor Analysis |
CFA | Confirmatory Factor Analysis |
KMO | Kaiser–Meyer–Olkin Measure of Sampling Adequacy |
CR | Composite Reliability |
AVE | Average Variance Extracted |
RMSEA | Root Mean Square Error of Approximation |
TLI | Tucker–Lewis Index |
CF | Comparative Fit Index |
IFI | Incremental Fit Index |
NFI | Normed Fit Index |
Z-score | Standard Score |
UZS | Uzbekistan Sums |
References
- Jung, M.S.; da Silva, J.A.G.; Fachinetto, J.M.; Carvalho, I.R.; Lucchese, O.R.; Basso, N.C.F.; Copetti, C.M.; da Silva, L.G. Water: A Fundamental Resource for Ensuring Sustainability. Rev. Gest. Soc. Ambient. 2023, 17, 1–17. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Malik, I.; Wistuba, M.; Sun, L.; Yang, M.; Wang, Q.; Yu, R. Water Resources Evaluation in Arid Areas Based on Agricultural Water Footprint—A Case Study on the Edge of the Taklimakan Desert. Atmosphere 2023, 14, 67. [Google Scholar] [CrossRef]
- Li, P.; Wu, J. Water Resources and Sustainable Development. Water 2024, 16, 134. [Google Scholar] [CrossRef]
- Tan, J.; Zou, X.Y. Water-Related Technological Innovations and Water Use Efficiency: International Evidence. Emerg. Mark. Financ. Trade 2023, 59, 4138–4157. [Google Scholar] [CrossRef]
- UN Water. In Proceedings of the United Nations World Water Development Report 2023: Partnerships and Cooperation for Water, Paris, France, 22–24 March 2023. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000384655 (accessed on 14 July 2024).
- Rastegaripour, F.; Tavassoli, A.; Babaeian, M.; Fernández-Gálvez, J.; Caballero-Calvo, A. Assessing the impacts of climate change on water resource management and crop patterns in Eastern Iran. Agric. Water Manag. 2024, 295, 108774. [Google Scholar] [CrossRef]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Mohammadi, B.; Heydari, M. The role of new agricultural technologies in realizing food security. In Proceedings of the 2nd International Congress on Science, engineering & New Technologies, Hamburg, Germany, 10–11 July 2024; Available online: https://www.researchgate.net/publication/379726304 (accessed on 15 July 2024).
- Hoogesteger, J.; Wester, P. Regulating groundwater use: The challenges of policy implementation in Guanajuato, Central Mexico. Environ. Sci. Policy 2017, 77, 107–113. [Google Scholar] [CrossRef]
- Amblard, L.; Guiffant, N.; Bussière, C. The Drivers of Farmers’ Participation in Collaborative Water Management: A French Perspective. Int. J. Commons 2023, 17, 411–430. [Google Scholar] [CrossRef]
- Azadi, Y.; Yaghoubi, J.; Gholizadeh, H.; Gholamrezai, S.; Rahimi-Feyzabad, F. Social barriers to water scarcity adaptation: A grounded theory exploration in arid, semi-arid regions. Agric. Water Manag. 2023, 309, 109338. [Google Scholar] [CrossRef]
- Nazari, S.; Ahmadi, A.; Rad, S.K.; Ebrahimi, B. Application of non-cooperative dynamic game theory for groundwater conflict resolution. J. Environ. Manag. 2019, 270, 110889. [Google Scholar] [CrossRef]
- Turner, M.D. Political ecology and the moral dimensions of ‘resource conflicts’: The case of farmer–herder conflicts in the Sahel. Polit. Geogr. 2004, 23, 863–889. [Google Scholar] [CrossRef]
- Peña-Ramos, J.A.; Bagus, P.; Fursova, D. Water conflicts in Central Asia: Some recommendations on the non-conflictual use of water. Sustainability 2021, 13, 3479. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Fang, G.; Li, Z.; Liu, Y. The growing water crisis in Central Asia and the driving forces behind it. J. Clean. Prod. 2022, 378, 134574. [Google Scholar] [CrossRef]
- Ronny, B.; Kamshat, T. The Future of Water Management in Central Asia. Water 2020, 12, 2241. [Google Scholar] [CrossRef]
- Pronti, A.; Auci, S.; Berbel, J. Water conservation and saving technologies for irrigation. A structured literature review of econometric studies on the determinants of adoption. Agric. Water Manag. 2022, 299, 108838. [Google Scholar] [CrossRef]
- Kai, W. Groundwater utilization as adaptive capacity to public water supply shortages: Case Study of Two Cities in Khorezm, Uzbekistan. In Urban Groundwater Management and Sustainability; Tellam, J.H., Rivett, M.O., Israfilov, R.G., Herringshaw, L.G., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 74, pp. 479–491. [Google Scholar]
- Veldwisch, G.J. Changing patterns of water distribution under the influence of land reforms and simultaneous WUA establishment. Irrig. Drain. Syst. 2007, 21, 265–276. [Google Scholar] [CrossRef]
- Spoor, M. The Aral Sea Basin crisis: Transition and environment in former Soviet Central Asia. Dev. Change 1998, 29, 409–435. [Google Scholar] [CrossRef]
- Schoeller-schletter, A.; Cooperation, I.L.; Martius, C.; Bobojonov, I.; Rudenko, I. Studies on the Agricultural and Food Sector in Central and Eastern Europe. In Continuity and Change: Land and Water Use Reforms in Rural Uzbekistan. Socio-Economic and Legal Analyses for the Region Khorezm; Leibniz Institute of Agricultural Development in Central and Eastern Europe: Halle, Germany, 2008; Available online: https://www.econstor.eu/bitstream/10419/45954/1/560543212.pdf (accessed on 24 July 2025).
- Asfaw, E.B.; Khakimov, O.; Askarov, Z. Sustainable development goals, COVID-19 and the government’s response. In New Uzbekistan: The Third Renaissance, 1st ed.; Mirkasimov, B., Pomfret, R., Eds.; Routledge: London, UK, 2024; p. 306. [Google Scholar] [CrossRef]
- The Ministry of Ecology Environmental Protection and Climate Change of Uzbekistan. National Report on the State of the Environment, Republic of Uzbekistan; The Ministry of Ecology Environmental Protection and Climate Change of Uzbekistan: Tashkent, Uzbekistan, 2024; Available online: https://unece.org/sites/default/files/2024-02/Non-technical%20Illustrative%20Summary%20of%20UZB%20NSoER.pdf (accessed on 9 September 2024).
- Jenkins, M.; Block, D.E. A Review of Methods for Data-Driven Irrigation in Modern Agricultural Systems. Agronomy 2024, 14, 1355. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Golabvand, S.; Afereydouni, M. Sustainable water management in wheat farming: Insights from diverse water environments. Agric. Water Manag. 2024, 306, 109161. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.P.; Zhang, Y.F.; Huang, G.H. Mathematical modeling for planning water-food-ecology-energy nexus system under uncertainty: A case study of the Aral Sea Basin. J. Clean. Prod. 2021, 308, 127368. [Google Scholar] [CrossRef]
- Asian Development Bank Institute. Connecting Central Asia with Economic Centers; Asian Development Bank Institute: Tokyo, Japan, 2014; Available online: https://www.adb.org/publications/connecting-central-asia-economic-centers (accessed on 13 December 2024).
- Hamidov, A.; Kasymov, U.; Djumaboev, K.; Paul, C. Rebound Effects in Irrigated Agriculture in Uzbekistan: A Stakeholder-Based Assessment. Sustainability 2022, 14, 8375. [Google Scholar] [CrossRef]
- Mamasoliev, S.; Kawabata, Y.; Chitose, A.; Yamada, M. Impact of grape production on improved family income in Uzbekistan: Case study of small-scale grape producers in the Samarkand region, Republic of Uzbekistan. J. Arid Land Stud. 2022, 32, 267–272. [Google Scholar] [CrossRef]
- Ostrom, E. Collective action and the evolution of social norms. J. Econ. Perspect. 2000, 14, 137–158. [Google Scholar] [CrossRef]
- Hornidge, A.-K.; Oberkircher, L.; Tischbein, B.; Schorcht, G.; Bhaduri, A.; Manschadi, A.M. Reconceptualizing water management in Khorezm, Uzbekistan. Nat. Resour. Forum 2011, 35, 251–268. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Knieper, C.; Lukat, E.; Meergans, F.; Schoderer, M.; Schütze, N.; Schweigatz, D.; Dombrowsky, I.; Lenschow, A.; Stein, U.; et al. Enhancing the capacity of water governance to deal with complex management challenges: A framework of analysis. Environ. Sci. Policy 2020, 107, 23–35. [Google Scholar] [CrossRef]
- Bhujel, R.R.; Joshi, H.G. Understanding farmers’ intention to adopt sustainable agriculture in Sikkim: The role of environmental consciousness and attitude. Cogent Food Agric. 2023, 9, 2261212. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Grubbs, F.E. Procedures for Detecting Outlying Observations in Samples. Technometrics 1969, 11, 1–21. [Google Scholar] [CrossRef]
- Iglewicz, B.; Hoaglin, D.C. The ASQC Basic References in Quality Control: Statistical Techniques. In How to Detect and Handle Outliers; Mykytka, E.F., Ed.; ASQC Quality Press: Milwaukee, WI, USA, 1993; Volume 16. Available online: https://hwbdocs.env.nm.gov/Los%20Alamos%20National%20Labs/TA%2054/11587.pdf (accessed on 9 August 2024).
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Bartlett, M.S. A Note on the Multiplying Factors for Various χ2 Approximations. J. R. Stat. Soc. Ser. B 1954, 16, 296–298. [Google Scholar] [CrossRef]
- Kaiser, H.F. An Index of Factorial Simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Browne, M.W.; Cudeck, R. Alternative ways of assessing model fit. In Testing Structural Equation Models; Bollen, K.A., Long, J.S., Eds.; Sage: Los Angeles, CA, USA, 1993; pp. 136–162. [Google Scholar]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994; Available online: http://lib.ugent.be/catalog/rug01:000331515 (accessed on 10 August 2024).
- Gignac, G.E. Psychometrics and the Measurement of Emotional Intelligence. In Assessing Emotional Intelligence. The Springer Series on Human Exceptionality; Parker, J.D.A., Saklofske, D.H., Stough, C., Eds.; Springer: Boston, MA, USA, 2009; pp. 9–40. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall: New York, NY, USA, 2010. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 1st ed.; Multivariate Applications Book Series; Erlbaum: Mahwah, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Frey, B.B. (Ed.) The SAGE Encyclopedia of Research Design, 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2022. [Google Scholar] [CrossRef]
- Fahdi, G.; Azdem, D.; Lamchaimech, A.; Benrhanem, M.; Mabrouki, J.; El Hajjaji, S. Analysis of the Impact of Climate Change on Water Resources: Case of the Tensift Basin (Morocco). Water Conserv. Manag. 2024, 8, 461–465. [Google Scholar] [CrossRef]
- Abadi, B.; Kelboro, G. Farmers’ contributions to achieving water sustainability: A meta-analytic path analysis of predicting water conservation behavior. Sustainability 2022, 14, 279. [Google Scholar] [CrossRef]
- Li, F.-F.; Lu, H.-L.; Wang, G.-Q.; Qui, J. Long-Term Capturability of Atmospheric Water on a Global Scale. Water Resour. Res. 2024, 60, e2023WR034757. [Google Scholar] [CrossRef]
- Fedele, G.; Donatti, C.I.; Harvey, C.A.; Hannah, L.; Hole, D.G. Transformative adaptation to climate change for sustainable social-ecological systems. Environ. Sci. Policy 2019, 101, 116–125. [Google Scholar] [CrossRef]
- Rogers, E.M. Innovativeness and adopter categories. In Diffusion of Innovations, 3rd ed.; The Free Press: New York, NY, USA; A Division of Macmillan Publishing Co., Inc.: New York, NY, USA, 1983; pp. 241–268. Available online: https://teddykw2.wordpress.com/wp-content/uploads/2012/07/everett-m-rogers-diffusion-of-innovations.pdf (accessed on 24 July 2025).
- Baidauletova, G.; Yessimzhanova, S.; Beisenova, M.; Yesbolova, A.; Taizhanov, L. Modern Problems of Water Resources and Ways To Solve Them: The Case of Kazakhstan. Water Conserv. Manag. 2024, 8, 104–109. [Google Scholar] [CrossRef]
- Smidt, S.J.; Haacker, E.M.; Kendall, A.D.; Deines, J.M.; Pei, L.; Cotterman, K.A.; Li, H.; Liu, X.; Basso, B.; Hyndman, D.W. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer. Sci. Total Environ. 2016, 566–567, 988–1001. [Google Scholar] [CrossRef]
Variables | Unit | Mean | SD | Max | Min |
---|---|---|---|---|---|
Experience in Agriculture | year | 28.10 | 9.28 | 50 | 6 |
Family members | person | 6.41 | 1.83 | 15 | 2 |
Total Land | hectare | 0.69 | 0.40 | 3.09 | 0.15 |
Vineyard Land | hectare | 0.55 | 0.36 | 3.03 | 0.10 |
Total Income | USD, thousand | 6.55 | 2.74 | 18.58 | 0.80 |
Income from Grape Farming | USD, thousand | 3.62 | 2.39 | 15.11 | 0.40 |
Variable | Code | Statements |
---|---|---|
Willingness to collaboration | WTC1 | I am willing to collaborate with other grape farmers in our region to collectively manage water resources for mutual economic benefits. |
WTC2 | I believe that collaborating with other grape farmers in water usage can lead to improved economic outcomes. | |
WTC3 | I consider water usage collaboration to be important in our territory. | |
Environmental concerns | EC1 | I have noticed changes in local climate patterns that have impacted grape farming operations. |
EC2 | I believe that climate change poses a significant threat to grape farming. | |
EC3 | I am inclined to cooperate with other grape farmers in water use due to the possible impacts of climate change. | |
Intention to adopt | IA1 | I implement sustainable agricultural practices on my grape farm to conserve water resources. |
IA2 | I am open to adopting new agricultural practices that can enhance water efficiency in grape farming. | |
IA3 | I believe that sustainable agriculture practices can improve the overall profitability of grape farming. | |
Economic barriers | EB1 | Concerns about the equitable distribution of economic benefits are a significant barrier to collaboration in water usage. |
EB2 | Collaborating on the economic aspects of water usage may lead to financial disputes among farmers. | |
EB3 | Water costs significantly impact the profitability of my grape farming operations. | |
EB4 | I am willing to share financial resources or investments with other grape farmers to improve water infrastructure. | |
Norms | N1 | My fellow grape farming peers encourage and support collaborative water usage practices. |
N2 | There is a general expectation among grape farmers in my community to engage in collaborative water management. | |
N3 | Local agricultural organizations or authorities actively promote and support collaborative water usage among grape farmers. | |
N4 | I am aware of government policies or regulations that encourage collaboration in water usage among grape farmers. |
Latent Variables | Mean | SD | EFA | CFA | AVE | Composite Reliability | Cronbach’s Alpha |
---|---|---|---|---|---|---|---|
Willingness To Collaborate (WTC) | 0.77 | 0.91 | 0.90 | ||||
WTC1 | 3.81 | 1.29 | 0.86 | 0.93 | |||
WTC2 | 3.86 | 1.25 | 0.83 | 0.84 | |||
WTC3 | 3.82 | 1.04 | 0.82 | 0.84 | |||
Environmental Concerns (EC) | 0.62 | 0.83 | 0.83 | ||||
EC1 | 4.20 | 0.95 | 0.83 | 0.83 | |||
EC2 | 4.24 | 0.91 | 0.86 | 0.86 | |||
EC3 | 4.10 | 1.00 | 0.68 | 0.68 | |||
Intention To Adopt (IA) | 0.49 | 0.74 | 0.73 | ||||
IA1 | 3.77 | 1.02 | 0.63 | 0.62 | |||
IA2 | 4.22 | 0.92 | 0.80 | 0.81 | |||
IA3 | 4.17 | 0.92 | 0.66 | 0.67 | |||
Economic Barriers (EB) | 0.52 | 0.81 | 0.82 | ||||
EB1 | 3.80 | 0.88 | 0.80 | 0.83 | |||
EB2 | 3.83 | 0.88 | 0.77 | 0.78 | |||
EB3 | 3.63 | 1.06 | 0.71 | 0.69 | |||
EB4 | 3.89 | 0.98 | 0.62 | 0.60 | |||
Norms (N) | 0.51 | 0.81 | 0.81 | ||||
N1 | 3.55 | 1.22 | 0.74 | 0.84 | |||
N2 | 3.37 | 1.32 | 0.74 | 0.80 | |||
N3 | 3.30 | 1.29 | 0.64 | 0.62 | |||
N4 | 3.76 | 1.22 | 0.65 | 0.55 |
Fit Indices | The Measurement Model | The Structural Model | Recommended Values | Source |
---|---|---|---|---|
ChiSq/df | 1.891 | 1.891 | <3 | [46] |
RMSEA | 0.048 | 0.048 | <0.08 | [47] |
TLI | 0.95 | 0.95 | >0.9 | [48] |
IFI | 0.96 | 0.96 | >0.9 | [46] |
CFI | 0.96 | 0.99 | >0.9 | [47] |
NFI | 0.92 | 0.92 | >0.9 | [48] |
Path | Value | Std. Err. | p | Result |
---|---|---|---|---|
N → WTC | 0.534 | 0.072 | 0.000 | H1 Supported |
EC → WTC | 0.153 | 0.061 | 0.013 | H2 Supported |
IA → WTC | 0.179 | 0.066 | 0.007 | H3 Supported |
EB → WTC | −0.222 | 0.064 | 0.000 | H4 Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamasoliev, S.A.; Kusadokoro, M.; Maru, T.; Hasanov, S.; Kawabata, Y. Factors Influencing Willingness to Collaborate on Water Management: Insights from Grape Farming in Samarkand, Uzbekistan. Sustainability 2025, 17, 6991. https://doi.org/10.3390/su17156991
Mamasoliev SA, Kusadokoro M, Maru T, Hasanov S, Kawabata Y. Factors Influencing Willingness to Collaborate on Water Management: Insights from Grape Farming in Samarkand, Uzbekistan. Sustainability. 2025; 17(15):6991. https://doi.org/10.3390/su17156991
Chicago/Turabian StyleMamasoliev, Sodikjon Avazalievich, Motoi Kusadokoro, Takeshi Maru, Shavkat Hasanov, and Yoshiko Kawabata. 2025. "Factors Influencing Willingness to Collaborate on Water Management: Insights from Grape Farming in Samarkand, Uzbekistan" Sustainability 17, no. 15: 6991. https://doi.org/10.3390/su17156991
APA StyleMamasoliev, S. A., Kusadokoro, M., Maru, T., Hasanov, S., & Kawabata, Y. (2025). Factors Influencing Willingness to Collaborate on Water Management: Insights from Grape Farming in Samarkand, Uzbekistan. Sustainability, 17(15), 6991. https://doi.org/10.3390/su17156991