The Role of ESG in Driving Sustainable Innovation in Water Sector: From Gaps to Governance
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Context Analysis
3.2. Content Analysis
3.2.1. ESG in the Water Sector
3.2.2. Challenges and Gaps in ESG Application
3.2.3. Sustainable Innovation
3.2.4. Corporate Strategies for Sustainable Water Management
3.2.5. Alignment with EU Taxonomy Principles
4. Discussion
5. Limitations and Recommendations for Future Research Agenda
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karimidastenaei, Z.; Avellán, T.; Sadegh, M.; Kløve, B.; Haghighi, A.T. Unconventional Water Resources: Global Opportunities and Challenges. Sci. Total Environ. 2022, 827, 154429. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A. Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Available online: https://www.mdpi.com/2071-1050/15/14/10940 (accessed on 18 May 2025).
- Chapman, D.V.; Sullivan, T. The Role of Water Quality Monitoring in the Sustainable Use of Ambient Waters. One Earth 2022, 5, 132–137. [Google Scholar] [CrossRef]
- Arora, N.K.; Mishra, I. Sustainable Development Goal 6: Global Water Security. Environ. Sustain. 2022, 5, 271–275. [Google Scholar] [CrossRef]
- Gordon, B.; Boisson, S.; Johnston, R.; Trouba, D.J.; Cumming, O. Unsafe Water, Sanitation and Hygiene: A Persistent Health Burden. Bull. World Health Organ. 2023, 101, 551–551A. [Google Scholar] [CrossRef]
- Davé, B. Sustainable Development: Role of Industrial Water Management. In Water and Sustainable Development: Opportunities for the Chemical Sciences: A Workshop Report to the Chemical Sciences Roundtable; National Academies Press (US): Washington, DC, USA, 2004. [Google Scholar]
- Ramin, E.; Faria, L.; Gargalo, C.L.; Ramin, P.; Flores-Alsina, X.; Andersen, M.M.; Gernaey, K.V. Water Innovation in Industrial Symbiosis—A Global Review. J. Environ. Manag. 2024, 349, 119578. [Google Scholar] [CrossRef] [PubMed]
- Misstear, B.; Aureli, A.; Sterckx, A.; Ruz Vargas, C.; Scheihing, K.; Kukurić, N. Chapter 9: Building and Updating the Knowledge Base. In United Nations World Water Development Report 2022; UNESCO: Paris, France, 2022; pp. 143–154. ISBN 978-92-3-100507-7. [Google Scholar]
- Water Scarcity Conditions in Europe. Available online: https://www.eea.europa.eu/en/analysis/indicators/use-of-freshwater-resources-in-europe-1 (accessed on 18 June 2025).
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Levitt, H.M. Essentials of Critical-Constructivist Grounded Theory Research; American Psychological Association: Washington, DC, USA, 2021; p. 112. ISBN 978-1-4338-3452-3. [Google Scholar]
- Vitolla, F.; Raimo, N.; Campobasso, F.; Giakoumelou, A. Risk Disclosure in Sustainability Reports: Empirical Evidence from the Energy Sector. Util. Policy 2023, 82, 101587. [Google Scholar] [CrossRef]
- Mojiri, A.; Trzcinski, A.P.; Bashir, M.J.K.; Abu Amr, S.S. Editorial: Innovative Treatment Technologies for Sustainable Water and Wastewater Management. Front. Water 2024, 6, 1388387. [Google Scholar] [CrossRef]
- Chen, W.; Xie, Y.; He, K. Environmental, Social, and Governance Performance and Corporate Innovation Novelty. Int. J. Innov. Stud. 2024, 8, 109–131. [Google Scholar] [CrossRef]
- Christensen, D.M.; Serafeim, G.; Sikochi, A. Why Is Corporate Virtue in the Eye of The Beholder? The Case of ESG Ratings. Account. Rev. 2022, 97, 147–175. [Google Scholar] [CrossRef]
- de Oliveira Neto, G.C.; da Silva, P.C.; Tucci, H.N.P.; Amorim, M. Reuse of Water and Materials as a Cleaner Production Practice in the Textile Industry Contributing to Blue Economy. Available online: https://www.sfenvironment.org/ (accessed on 1 February 2025).
- Song, J.; Jang, C.-H. Unpacking the Sustainable Development Goals (SDGs) Interlinkages: A Semantic Network Analysis of the SDGs Targets. Sustain. Dev. 2023, 31, 2784–2796. [Google Scholar] [CrossRef]
- Ashraf, D.; Rizwan, M.S.; L’Huillier, B. Environmental, Social, and Governance Integration: The Case of Microfinance Institutions. Account. Financ. 2022, 62, 837–891. [Google Scholar] [CrossRef]
- Solimene, S.; Coluccia, D.; Fontana, S.; Bernardo, A. Formal Institutions and Voluntary CSR/ESG Disclosure: The Role of Institutional Diversity and Firm Size—Solimene—Corporate Social Responsibility and Environmental Management—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/csr.3195?casa_token=Vo9x6_MsMokAAAAA%3AW4Pq8Wv4dFzP3VFlQll9WRarGSLKOLO5Avqh87MH1vSLb_0n9EMyLJFSmhDdb9d1O_AXwtRTek08lg (accessed on 18 May 2025).
- Schütze, F.; Stede, J. Full Article: The EU Sustainable Finance Taxonomy and Its Contribution to Climate Neutrality. Available online: https://www.tandfonline.com/doi/full/10.1080/20430795.2021.2006129#abstract (accessed on 18 May 2025).
- European Environment Agency Dashboards. Available online: https://www.eea.europa.eu/data-and-maps/dashboards (accessed on 20 June 2025).
- Sun, Y. The Real Effect of Innovation in Environmental, Social, and Governance (ESG) Disclosures on ESG Performance: An Integrated Reporting Perspective. J. Clean. Prod. 2024, 460, 142592. [Google Scholar] [CrossRef]
- Wang, Z.; Chu, E. Shifting Focus from End-of-Pipe Treatment to Source Control: ESG Ratings’ Impact on Corporate Green Innovation. J. Environ. Manag. 2024, 354, 120409. [Google Scholar] [CrossRef] [PubMed]
- Caputo, F.; Fasiello, R. Environmental, Social, and Governance (ESG) Reporting and Accountability in the Utilities Sector: Research Paths and Policy Directions. Util. Policy 2024, 91, 101847. [Google Scholar] [CrossRef]
- Eskantar, M.; Zopounidis, C.; Doumpos, M.; Galariotis, E.; Guesmi, K. Navigating ESG Complexity: An in-Depth Analysis of Sustainability Criteria, Frameworks, and Impact Assessment. Int. Rev. Financ. Anal. 2024, 95, 103380. [Google Scholar] [CrossRef]
- Cruz, C.A.; Matos, F. ESG Maturity: A Software Framework for the Challenges of ESG Data in Investment. Sustainability 2023, 15, 2610. [Google Scholar] [CrossRef]
- Di Simone, L.; Petracci, B.; Piva, M. Economic Sustainability, Innovation, and the ESG Factors: An Empirical Investigation. Sustainability 2022, 14, 2270. [Google Scholar] [CrossRef]
- Imperiale, F.; Pizzi, S.; Lippolis, S. Sustainability Reporting and ESG Performance in the Utilities Sector. Util. Policy 2023, 80, 101468. [Google Scholar] [CrossRef]
- Hossain, M.S.; Rahman, M.; Sarker, M.T.; Haque, M.E.; Jahid, A. A Smart IoT Based System for Monitoring and Controlling the Sub-Station Equipment. Internet Things 2019, 7, 100085. [Google Scholar] [CrossRef]
- Cash, D. ESG Ratings Agencies: The Emerging Power|SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-3-031-53696-0_16 (accessed on 2 May 2025).
- Tan, Y.; Zhu, Z. The Effect of ESG Rating Events on Corporate Green Innovation in China: The Mediating Role of Financial Constraints and Managers’ Environmental Awareness. Technol. Soc. 2022, 68, 101906. [Google Scholar] [CrossRef]
- Kew, J.; Krosinsky, C. Dynamics Emerge on ESG and Sustainable Investment in China. In Modern China: Financial Cooperation for Solving Sustainability Challenges; Krosinsky, C., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 129–131. ISBN 978-3-030-39204-8. [Google Scholar]
- Zhang, C.-Y.; Oki, T. Water Pricing Reform for Sustainable Water Resources Management in China’s Agricultural Sector. Agric. Water Manag. 2023, 275, 108045. [Google Scholar] [CrossRef]
- Al-Addous, M.; Bdour, M.; Alnaief, M.; Rabaiah, S.; Schweimanns, N. Water Resources in Jordan: A Review of Current Challenges and Future Opportunities. Water 2023, 15, 3729. [Google Scholar] [CrossRef]
- Gurín, M. Exploring Resistance in Family Policy Transfer: A Comparative Analysis of the Czech Republic and South Korea. Int. J. Sociol. Soc. Policy 2024, 44, 776–791. [Google Scholar] [CrossRef]
- Maslyukova, E.; Volchik, V.; Strielkowski, W. Reindustrialization, Innovative Sustainable Economic Development, and Societal Values: A Cluster Analysis Approach. Economies 2024, 12, 331. [Google Scholar] [CrossRef]
- Zou, F.; Huang, L.; Ghaemi Asl, M.; Delnavaz, M.; Tiwari, S. Natural Resources and Green Economic Recovery in Responsible Investments: Role of ESG in Context of Islamic Sustainable Investments. Resour. Policy 2023, 86, 104195. [Google Scholar] [CrossRef]
- Helfaya, A.; Morris, R.; Aboud, A. Investigating the Factors That Determine the ESG Disclosure Practices in Europe. Available online: https://www.mdpi.com/2071-1050/15/6/5508 (accessed on 18 May 2025).
- Szalkowska, K.; Zubrowska-Sudol, M. Opportunities for Water Reuse Implementation in Metropolitan Areas in a Complex Approach with an LCA Analysis, Taking Warsaw, Poland as an Example. Sustainability 2023, 15, 1190. [Google Scholar] [CrossRef]
- H-Hargitai, R.; Somogyi, V. Impact of Water as Raw Material on Material Circularity—A Case Study from the Hungarian Food Sector. Heliyon 2023, 9, e17587. [Google Scholar] [CrossRef]
- Brahmi, M.; Bruno, B.; Dhayal, K.S.; Esposito, L.; Parziale, A. From Manure to Megawatts: Navigating the Sustainable Innovation Solution through Biogas Production from Livestock Waste for Harnessing Green Energy for Green Economy. Heliyon 2024, 10, e34504. [Google Scholar] [CrossRef]
- Tőzsér, D.; Lakner, Z.; Sudibyo, N.A.; Boros, A. Disclosure Compliance with Different ESG Reporting Guidelines: The Sustainability Ranking of Selected European and Hungarian Banks in the Socio-Economic Crisis Period. Adm. Sci. 2024, 14, 58. [Google Scholar] [CrossRef]
- Caithamlová, M.; Kročová, Š.; Mariňáková, J. Operation of Water Supply Systems in the Czech Republic—Risk Analysis. Appl. Sci. 2024, 14, 1572. [Google Scholar] [CrossRef]
- Baratta, A.; Cardamone, M.; Greco, O.; Longo, F.; Nicoletti, L.; Padovano, A.; Sammarco, C.; Solina, V. Assessing the ESG Impacts of Italy’s Transition to Industry 4.0. Procedia Comput. Sci. 2025, 253, 3268–3275. [Google Scholar] [CrossRef]
- D’Amore, G.; Landriani, L.; Lepore, L.; Testa, M. A Multi-Criteria Model for Measuring the Sustainability Orientation of Italian Water Utilities. Util. Policy 2024, 89, 101754. [Google Scholar] [CrossRef]
- Bonetti, L.; Lai, A.; Stacchezzini, R. Stakeholder Engagement in the Public Utility Sector: Evidence from Italian ESG Reports. Util. Policy 2023, 84, 101649. [Google Scholar] [CrossRef]
- France’s Recovery and Resilience Plan—European Commission. Available online: https://commission.europa.eu/business-economy-euro/economic-recovery/recovery-and-resilience-facility/country-pages/frances-recovery-and-resilience-plan_en (accessed on 6 July 2025).
- Sohail, M.; Khan, S.; Akbar, A.; Hedvicakova, M.; Haider, S.A. Sustainable Development through Green Finance—An Exploratory Investigation in the Financial Industry of France. J. Infrastruct. Policy Dev. 2024, 8, 4668. [Google Scholar] [CrossRef]
- Country (or Area)|SDG 6 Data. Available online: https://www.sdg6data.org/en/country-or-area/Romania#anchor_6.1.1 (accessed on 18 June 2025).
- Cojoianu, T.; Murafa, C.; Proșcanu, M.; Strat, V.A.; Subasu, I. Romania’s Roadmap to a Greener Financial System: An Analysis of Environmental, Social and Governance Reporting on the Bucharest Exchange Trading Index. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4440516 (accessed on 2 May 2025).
- Cristea, M.; Noja, G.G.; Drăcea, R.M.; Iacobuță-Mihăiță, A.-O.; Dorożyński, T. ESG Investment Strategies and the Financial Performance of European Agricultural Companies: A New Modelling Approach. J. Bus. Econ. Manag. 2024, 25, 1283–1307. [Google Scholar] [CrossRef]
- Dobre, C.; Baba, C.M.; Anton, C.E.; Zamfirache, A.; Aldea, D. Sustainability Reporting and Environmental Responsibility: The Case of Romania. Adm. Sci. 2025, 15, 103. [Google Scholar] [CrossRef]
- Caruso, E. The Gender Gap in Participatory Processes: Exploring the River Agreement as a Tool for Investigation. In Inclusive Cities and Regions Territories Inclusifs; INU Edizioni srl: Rome, Italy, 2024; ISBN 978-88-7603-254-7. [Google Scholar]
- Bucurean, R.-C.; Bucurean (Roiban), R.-N. ESG Reporting in Romania—A Challenge of Ensuring a Greener Financial System. In Exploring ESG Challenges and Opportunities: Navigating Towards a Better Future; Emerald Publishing Limited: Leeds, UK, 2024; Volume 116, pp. 113–125. ISBN 978-1-83549-911-5. [Google Scholar]
- ESDN: Romania. Available online: https://www.esdn.eu/country-profiles/detail?tx_countryprofile_countryprofile%5Baction%5D=show&tx_countryprofile_countryprofile%5Bcontroller%5D=Country&tx_countryprofile_countryprofile%5Bcountry%5D=23&cHash=16646567f4a0bcb4238f9b312843a36b (accessed on 18 June 2025).
- Moss, T.; Bouleau, G.; Albiac, J.; Slavikova, L. The EU Water Framework Directive Twenty Years on: Introducing the Special Issue. Water Altern. 2020, 13, 446–457. [Google Scholar]
- National Management Plans—Administrația Națională Apele Române 2023. Available online: https://rowater.ro/activitatea-institutiei/departamente/managementul-european-integrat-resurse-de-apa/planurile-de-management-ale-bazinelor-hidrografice/ (accessed on 18 June 2025).
- Romania’s Climate Action Strategy|Think Tank|European Parliament. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2025)772860 (accessed on 19 June 2025).
- EurEau Annual Report 2024. Available online: https://www.eureau.org/resources/publications/annual-reviews/8339-eureau-annual-report-2024 (accessed on 19 June 2025).
- Romania—Toward Low Carbon and Climate Resilient Economy: Water Sector Analysis. Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/en/245961467993195553 (accessed on 19 June 2025).
- Water Law (No. 107 of 1996)|FAOLEX. Available online: https://www.fao.org/faolex/results/details/es/c/LEX-FAOC013302/ (accessed on 19 June 2025).
- Drinking Water—European Commission. Available online: https://environment.ec.europa.eu/topics/water/drinking-water_en (accessed on 19 June 2025).
- Water Framework Directive—European Commission. Available online: https://environment.ec.europa.eu/topics/water/water-framework-directive_en (accessed on 19 June 2025).
- Corporate Sustainability Reporting—European Commission. Available online: https://finance.ec.europa.eu/capital-markets-union-and-financial-markets/company-reporting-and-auditing/company-reporting/corporate-sustainability-reporting_en (accessed on 19 June 2025).
- Special Report 09/2018: Public Private Partnerships in the EU: Widespread Shortcomings and Limited Benefits. Available online: http://www.eca.europa.eu/en/Pages/Report.aspx?did=45153&TermStoreId=8935807f-8495-4a93-a302-f4b76776d8ea&TermSetId=49e662c4-f172-43ae-8a5e-7276133de92c&TermId=5f6589a2-5a2e-4ae8-8cc6-e05bf544b71f (accessed on 19 June 2025).
- Li, R.; Alomari, S.; Stanton, R.; Wasson, M.C.; Islamoglu, T.; Farha, O.K.; Holsen, T.M.; Thagard, S.M.; Trivedi, D.J.; Wriedt, M. Efficient Removal of Per- and Polyfluoroalkyl Substances from Water with Zirconium-Based Metal–Organic Frameworks. Chem. Mater. 2021, 33, 3276–3285. [Google Scholar] [CrossRef]
- Lee, T.H.; Oh, J.Y.; Jang, J.K.; Moghadam, F.; Roh, J.S.; Yoo, S.Y.; Kim, Y.J.; Choi, T.H.; Lin, H.; Kim, H.W.; et al. Elucidating the Role of Embedded Metal–Organic Frameworks in Water and Ion Transport Properties in Polymer Nanocomposite Membranes. Chem. Mater. 2020, 32, 10165–10175. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, G. Materials Innovation for Global Water Sustainability. ACS Mater. Lett. 2022, 4, 713–714. [Google Scholar] [CrossRef]
- Huang, J.; Ma, L. Substantive Green Innovation or Symbolic Green Innovation: The Impact of Fintech on Corporate Green Innovation. Financ. Res. Lett. 2024, 63, 105265. [Google Scholar] [CrossRef]
- Wei, Y.; Tao, X.; Zhu, J.; Ma, Y.; Yang, S.; Ayub, A. Examining the Relationship between International Digital Trade, Green Technology Innovation and Environmental Sustainability in Top Emerging Economics. Heliyon 2024, 10, e28210. [Google Scholar] [CrossRef] [PubMed]
- Al Astal, A.Y.M.; Alzoraiki, M.; Ateeq, A.; Milhem, M.; Ateeq, R.A.; Santhanamery, T. Enhancing ESG Implementation Through Effective Management Control Systems. In Business Sustainability with Artificial Intelligence (AI): Challenges and Opportunities: Volume 2; AlDhaen, E., Braganza, A., Hamdan, A., Chen, W., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 647–656. ISBN 978-3-031-71318-7. [Google Scholar]
- Efthymiou, L.; Kulshrestha, A.; Kulshrestha, S. A Study on Sustainability and ESG in the Service Sector in India: Benefits, Challenges, and Future Implications. Adm. Sci. 2023, 13, 165. [Google Scholar] [CrossRef]
- Panteleev, V.P.; Derun, I.A.; Romashchenko, M.I.; Polishchuk, V.V. The Role of Esg Business Reporting in Water Management. Land Reclam. Water Manag. 2024, 66–75. [Google Scholar] [CrossRef]
- Li, Y.; He, N.; Li, H.; Zhang, Y. Sustainability Assessment of Urban Water Public-Private Partnership Projects with Environmental, Social, and Governance (ESG) Criteria. JAWRA J. Am. Water Resour. Assoc. 2024, 60, 1209–1227. [Google Scholar] [CrossRef]
- Kakogiannis, N.C. Chapter 2: Barriers and Limitations to Effective Measurement of Business Sustainability. In The Elgar Companion to Energy and Sustainability; Edward Elgar Publishing: Cheltenham, UK, 2024; ISBN 978-1-0353-0749-4. [Google Scholar]
- Tarczynska-Luniewska, M.; Maciukaite-Zviniene, S.; Nareswari, N.; Ciptomulyono, U. Analysing the Complexity of ESG Integration in Emerging Economies: An Examination of Key Challenges. In Exploring ESG Challenges and Opportunities: Navigating Towards a Better Future; Emerald Publishing Limited: Leeds, UK, 2024; Volume 116, pp. 41–60. ISBN 978-1-83549-911-5. [Google Scholar]
- Annual Reviews. Available online: https://www.eureau.org/resources/publications/annual-reviews?category_children=1&category[0]=683 (accessed on 20 June 2025).
- Cojoianu, T.F.; Hoepner, A.G.F.; Schneider, F.I.; Urban, M.; Vu, A.; Wójcik, D. The City Never Sleeps: But When Will Investment Banks Wake up to the Climate Crisis? Reg. Stud. 2023, 57, 268–286. [Google Scholar] [CrossRef]
- Kong, X.; Ma, J.; Garg, S.; Waite, T.D. Tailored Metal–Organic Frameworks for Water Purification: Perfluorinated Fe–MOFs for Enhanced Heterogeneous Catalytic Ozonation. Environ. Sci. Technol. 2024, 58, 8988–8999. [Google Scholar] [CrossRef]
- He, M.; Shi, S.; Liu, Z.; Wu, Y.; Wang, L. Design, Synthesis, and Applications of Defective Metal–Organic Frameworks in Water Treatment. Chem. Commun. 2025, 61, 5072–5083. [Google Scholar] [CrossRef]
- Lal, S.; Singh, P.; Singhal, A.; Kumar, S.; Gahlot, A.P.S.; Gandhi, N.; Kumari, P. Advances in Metal–Organic Frameworks for Water Remediation Applications. RSC Adv. 2024, 14, 3413–3446. [Google Scholar] [CrossRef]
- Elmerhi, N.; Kumar, S.; Abi Jaoude, M.; Shetty, D. Covalent Organic Framework-Derived Composite Membranes for Water Treatment. Chem.—Asian J. 2024, 19, e202300944. [Google Scholar] [CrossRef]
- Ding, H.; Liang, X.; Xu, J.; Tang, Z.; Li, Z.; Liang, R.; Sun, G. Hydrolyzed Hydrogels with Super Stretchability, High Strength, and Fast Self-Recovery for Flexible Sensors|ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/full/10.1021/acsami.1c04781?casa_token=ZKYqrv0ZYFcAAAAA%3Ag28wv4B2FA13kfTBRbXLQnTHhvmC2tSvn5nIcl873xos6_VorzFqexWnqXBr3pjczFT_eGdzGEkjVVU (accessed on 3 May 2025).
- Catoira, M.C.; González-Payo, J.; Fusaro, L.; Ramella, M.; Boccafoschi, F. Natural Hydrogels R&D Process: Technical and Regulatory Aspects for Industrial Implementation. J. Mater. Sci. Mater. Med. 2020, 31, 64. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Zhang, J. Application of Graphene-Based Solar Driven Interfacial Evaporation-Coupled Photocatalysis in Water Treatment. Catalysts 2025, 15, 336. [Google Scholar] [CrossRef]
- Darban, Z.; Shahabuddin, S.; Gaur, R.; Ahmad, I.; Sridewi, N. Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels 2022, 8, 263. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, S.; Ramasubramanian, B. ESG and Circular Economy|SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-981-97-0589-4_8 (accessed on 18 May 2025).
- Pistocchi, A.; Parravicini, V.; Langergraber, G.; Masi, F. How Many Small Agglomerations Do Exist in the European Union, and How Should We Treat Their Wastewater? Water Air Soil Pollut. 2022, 233, 431. [Google Scholar] [CrossRef]
- Qi, X.; Wang, B.; Gao, Q. Environment, Social and Governance Research of Infrastructure Investment: A Literature Review. J. Clean. Prod. 2023, 425, 139030. [Google Scholar] [CrossRef]
- Stefanakis, A. (Ed.) Constructed Wetlands for Wastewater Treatment in Hot and Arid Climates; Wetlands: Ecology, Conservation and Management; Springer International Publishing: Cham, Switzerland, 2022; Volume 7, ISBN 978-3-031-03599-9. [Google Scholar]
- Retta, B.; Coppola, E.; Ciniglia, C.; Grilli, E. Constructed Wetlands for the Wastewater Treatment: A Review of Italian Case Studies. Appl. Sci. 2023, 13, 6211. [Google Scholar] [CrossRef]
- García-Herrero, L.; Lavrnić, S.; Guerrieri, V.; Toscano, A.; Milani, M.; Cirelli, G.L.; Vittuari, M. Cost-Benefit of Green Infrastructures for Water Management: A Sustainability Assessment of Full-Scale Constructed Wetlands in Northern and Southern Italy. Ecol. Eng. 2022, 185, 106797. [Google Scholar] [CrossRef]
- Sustainable Bond Market Data ICMA. Available online: https://www.icmagroup.org/sustainable-finance/sustainable-bonds-database/ (accessed on 20 June 2025).
- Babkin, A.; Shkarupeta, E.; Tashenova, L.; Malevskaia-Malevich, E.; Shchegoleva, T. Framework for Assessing the Sustainability of ESG Performance in Industrial Cluster Ecosystems in a Circular Economy. J. Open Innov. Technol. Mark. Complex. 2023, 9, 100071. [Google Scholar] [CrossRef]
- Simioni, F.J.; Soares, J.F.; Rosário, J.d.A.d.; Sell, L.G.; Bertol, E.; Souza, F.M.P.; Santos Júnior, E.P.; Coelho Junior, L.M. Industrial Symbiosis and Circular Economy Practices Towards Sustainability in Forest-Based Clusters: Case Studies in Southern Brazil. Sustainability 2024, 16, 9258. [Google Scholar] [CrossRef]
- Malevskaia-Malevich, E. Green Financing for Sustainable ESG Development of Smart City Industrial Ecosystems in the Circular Economy. In Digital Transformation: What are the Smart Cities Today? Sari, M., Kulachinskaya, A., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 63–72. ISBN 978-3-031-49390-4. [Google Scholar]
- Castellet-Viciano, L.; Hernández-Chover, V.; Bellver-Domingo, Á.; Hernández-Sancho, F. Industrial Symbiosis: A Mechanism to Guarantee the Implementation of Circular Economy Practices. Sustainability 2022, 14, 15872. [Google Scholar] [CrossRef]
- Brenot, A.; Chuffart, C.; Coste-Manière, I.; Deroche, M.; Godat, E.; Lemoine, L.; Ramchandani, M.; Sette, E.; Tornaire, C. Water Footprint in Fashion and Luxury Industry☆. In Water in Textiles and Fashion; Muthu, S.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 95–113. ISBN 978-0-08-102633-5. [Google Scholar]
- Suganthi, L. Investigating the Relationship between Corporate Social Responsibility and Market, Cost and Environmental Performance for Sustainable Business. South Afr. J. Bus. Manag. 2020, 51, 1–13. [Google Scholar] [CrossRef]
- Al-Shaer, H.; Hussainey, K. Sustainability Reporting beyond the Business Case and Its Impact on Sustainability Performance: UK Evidence. J. Environ. Manag. 2022, 311, 114883. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A. Implementation and Integration of Sustainability in the Water Industry: A Systematic Literature Review. Sustainability 2022, 14, 15919. [Google Scholar] [CrossRef]
- Sonune, A.; Ghate, R. Developments in Wastewater Treatment Methods. Desalination 2004, 167, 55–63. [Google Scholar] [CrossRef]
- Shemer, H.; Wald, S.; Semiat, R. Challenges and Solutions for Global Water Scarcity. Membranes 2023, 13, 612. [Google Scholar] [CrossRef]
- Osobajo, O.A.; Oke, A.; Omotayo, T.; Obi, L.I. A Systematic Review of Circular Economy Research in the Construction Industry. Smart Sustain. Built Environ. 2020, 11, 39–64. [Google Scholar] [CrossRef]
- Valenzuela-Morales, G.Y.; Hernández-Téllez, M.; Ruiz-Gómez, M.d.L.; Gómez-Albores, M.A.; Arévalo-Mejía, R.; Mastachi-Loza, C.A. Water Conservation Education in Elementary Schools: The Case of the Nenetzingo River Catchment, Mexico. Sustainability 2022, 14, 2402. [Google Scholar] [CrossRef]
- EU Taxonomy for Sustainable Activities—European Commission. Available online: https://finance.ec.europa.eu/sustainable-finance/tools-and-standards/eu-taxonomy-sustainable-activities_en (accessed on 4 May 2025).
- European Union. Regulation (EU) 2020/852 of the European Parliament and of the Council of 18 June 2020 on the Establishment of a Framework to Facilitate Sustainable Investment, and Amending Regulation (EU) 2019/2088 (Text with EEA Relevance); European Union: Brussels, Belgium, 2020; Volume 198. [Google Scholar]
- Moeslinger, M.; Fazio, A.; Eulaerts, O. Data Platform Support to SMEs for ESG Reporting and EU Taxonomy Implementation. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC128998 (accessed on 4 May 2025).
- Alessi, L.; Battiston, S. Two Sides of the Same Coin: Green Taxonomy Alignment versus Transition Risk in Financial Portfolios. Int. Rev. Financ. Anal. 2022, 84, 102319. [Google Scholar] [CrossRef]
- Ben-Amar, W.; Herrera, D.C.; Martinez, I. Do Climate Risk Disclosures Matter to Financial Analysts? J. Bus. Financ. Account. 2024, 51, 2153–2180. [Google Scholar] [CrossRef]
- Carnini Pulino, S.; Ciaburri, M.; Magnanelli, B.S.; Nasta, L. Does ESG Disclosure Influence Firm Performance? Sustainability 2022, 14, 7595. [Google Scholar] [CrossRef]
- Veltri, S.; Bruni, M.E.; Iazzolino, G.; Morea, D.; Baldissarro, G. Do ESG Factors Improve Utilities Corporate Efficiency and Reduce the Risk Perceived by Credit Lending Institutions? An Empirical Analysis. Util. Policy 2023, 81, 101520. [Google Scholar] [CrossRef]
- Gopal, S.; Pitts, J. ESG Integration: Unveiling Risk and Driving Innovation in Sustainable Finance. In The FinTech Revolution: Bridging Geospatial Data Science, AI, and Sustainability; Gopal, S., Pitts, J., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 35–81. ISBN 978-3-031-74418-1. [Google Scholar]
- Kenneth David, L.; Wang, J.; Angel, V.; Luo, M. Environmental Commitments and Innovation in China’s Corporate Landscape: An Analysis of ESG Governance Strategies. J. Environ. Manag. 2024, 349, 119529. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lin, Z.; Luo, Y.; Wu, R.; Fang, R.; Umar, A.; Zhang, Z.; Zhao, Z.; Yao, J.; Zhao, S. Superhydrophobic MOF Based Materials and Their Applications for Oil-Water Separation. J. Clean. Prod. 2023, 420, 138347. [Google Scholar] [CrossRef]
- Tsiarapas, A.; Mallios, Z.; Theodossiou, N. Investigating the Potential of Groundwater Recycling as an Alternative to Groundwater Trading in Terms of Resource Efficiency. Sustain. Chem. Pharm. 2023, 33, 101112. [Google Scholar] [CrossRef]
- Berg, H.; Dang, S.; Thanh Tam, N. Assessing Stakeholders’ Preferences for Future Rice Farming Practices in the Mekong Delta, Vietnam. Available online: https://www.mdpi.com/2071-1050/15/14/10873 (accessed on 4 May 2025).
- Qin, X.; Zhuang, Y.; Shi, B. PFAS Promotes Disinfection Byproduct Formation through Triggering Particle-Bound Organic Matter Release in Drinking Water Pipes. Water Res. 2024, 254, 121339. [Google Scholar] [CrossRef]
- Elston, T.; Belb, G. Full Article: Does Inter-Municipal Collaboration Improve Public Service Resilience? Evidence from Local Authorities in England. Available online: https://www.tandfonline.com/doi/full/10.1080/14719037.2021.2012377 (accessed on 4 May 2025).
- Perevoznic, F.M.; Dragomir, V.D. Achieving the 2030 Agenda: Mapping the Landscape of Corporate Sustainability Goals and Policies in the European Union. Sustainability 2024, 16, 2971. [Google Scholar] [CrossRef]
- Wuijts, S.; Van Rijswick, H.F.; Driessen, P.P.; Runhaar, H.A. Moving Forward to Achieve the Ambitions of the European Water Framework Directive: Lessons Learned from the Netherlands. J. Environ. Manag. 2023, 333, 117424. [Google Scholar] [CrossRef]
- Ionescu, R.V.; Zlati, M.L.; Antohi, V.M.; Cristea, D.S.; Petrea, Ș.M.; Forțea, C. Modelling the Economic and Environmental Impacts of Water Resources in the Context of Climate Neutrality in the EUSDR Member States. Front. Environ. Sci. 2024, 12, 1353107. [Google Scholar] [CrossRef]
- Sukri, A.S.; Saripuddin, M.; Karama, R.; Nasrul; Talanipa, R.; Kadir, A.; Aswad, N.H. Utilization Management to Ensure Clean Water Sources in Coastal Areas. J. Hum. Earth Future 2023, 4, 23–35. [Google Scholar] [CrossRef]
- Ayaz, M.; Namazi, M.A.; ud Din, M.A.; Ershath, M.I.M.; Mansour, A.; Aggoune, e.-H.M. Sustainable Seawater Desalination: Current Status, Environmental Implications and Future Expectations. Desalination 2022, 540, 116022. [Google Scholar] [CrossRef]
- Starkl, M.; Brunner, N.; Das, S.; Singh, A. Sustainability Assessment for Wastewater Treatment Systems in Developing Countries. Water 2022, 14, 241. [Google Scholar] [CrossRef]
- Huntjens, P.; Kemp, R. The Importance of a Natural Social Contract and Co-Evolutionary Governance for Sustainability Transitions. Sustainability 2022, 14, 2976. [Google Scholar] [CrossRef]
- Roestamy, M.; Fulazzaky, M.A. A Review of the Water Resources Management for the Brantas River Basin: Challenges in the Transition to an Integrated Water Resources Management. Environ. Dev. Sustain. 2022, 24, 11514–11529. [Google Scholar] [CrossRef]
- Borowski, P.F. The Circular Economy Concept and Its Application to SDG 6. In Circular Economy Applications for Water Security; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-003-44100-7. [Google Scholar]
- Elgaaied-Gambier, L.; Bertrandias, L.; Bernard, Y. Degrowth + Marketing = Demarketing? Rethinking Demarketing as an Effective Tool for Sufficiency. Mark. Theory 2025, 14705931251321823. [Google Scholar] [CrossRef]
- Miller, D.M.; Abels, K.; Guo, J.; Williams, K.S.; Liu, M.J.; Tarpeh, W.A. Electrochemical Wastewater Refining: A Vision for Circular Chemical Manufacturing. J. Am. Chem. Soc. 2023, 145, 19422–19439. [Google Scholar] [CrossRef] [PubMed]
- Rita, J. The Role of the Supply Chain in Developing Innovation Processes in the Textile Industry. In Industry and Innovation: Textile Industry; Moleiro Martins, J., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 53–63. ISBN 978-3-031-57804-5. [Google Scholar]
- Gautam, R. The Narrative of Circular Economy and Sustainability-A Critical Analysis of Fashion Industry. Circ. Econ. Sust. 2024, 4, 3183–3213. [Google Scholar] [CrossRef]
- Coppola, C.; Vollero, A.; Siano, A. Developing Dynamic Capabilities for the Circular Economy in the Textile and Clothing Industry in Italy: A Natural-Resource-Based View. Bus. Strategy Environ. 2023, 32, 4798–4820. [Google Scholar] [CrossRef]
- Stathatou, P.M.; Corbin, L.; Meredith, J.C.; Garmulewicz, A. Biomaterials and Regenerative Agriculture: A Methodological Framework to Enable Circular Transitions. Sustainability 2023, 15, 14306. [Google Scholar] [CrossRef]
- Dudensing, R. Role of Value-Added Agriculture in Promoting Regenerative Processes within a Circular Economy. In Sustainable Agricultural Practices and Product Design; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2023; Volume 1449, pp. 1–10. [Google Scholar]
- Rempelos, L.; Kabourakis, E.; Leifert, C. Innovative Organic and Regenerative Agricultural Production. Agronomy 2023, 13, 1344. [Google Scholar] [CrossRef]
- Singha, C.; Sahoo, S.; Govind, A.; Pradhan, B.; Alrawashdeh, S.; Hamdi Aljohani, T.; Almohamad, H.; Md Towfiqul Islam, A.R.; Abdo, H.G. Impacts of Hydroclimate Change on Climate-Resilient Agriculture at the River Basin Management. J. Water Clim. Chang. 2023, 15, 209–232. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Lun, F.; Hu, Q.; Xu, Y.; Sun, D. A Framework to Identify Critical Dynamics of Water Quality for Diagnosing River Basin Ecosystem Resilience and Management. Environ. Res. Lett. 2023, 18, 034026. [Google Scholar] [CrossRef]
- Ganeshkumar, C.; Jena, S.K.; Sivakumar, A.; Nambirajan, T. Artificial Intelligence in Agricultural Value Chain: Review and Future Directions. J. Agribus. Dev. Emerg. Econ. 2021, 13, 379–398. [Google Scholar] [CrossRef]
- Nureen, N.; Sun, H.; Irfan, M.; Nuta, A.C.; Malik, M. Digital Transformation: Fresh Insights to Implement Green Supply Chain Management, Eco-Technological Innovation, and Collaborative Capability in Manufacturing Sector of an Emerging Economy. Env. Sci. Pollut. Res. 2023, 30, 78168–78181. [Google Scholar] [CrossRef]
- Haque, M.E.; Kabir, K.; Khan, M.A.; Nizami, M.A.S.; Kabiraj, R.; Fakhruddin, M.; Arif, M.G.; Hanif, M.A. Optimization of Finishing Process and Energy Savings in Denim Textile Facility. J. Text. Sci. Technol. 2023, 9, 151–164. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Periyasami, S. Critical Review on Sustainability in Denim: A Step toward Sustainable Production and Consumption of Denim. ACS Omega 2023, 8, 4472–4490. [Google Scholar] [CrossRef] [PubMed]
- Aykaç Özen, H.; Temiz, E.; Çoruh, S. A Water Footprint Inventory for a Textile Organization: A Case Study in the Denim Washing Industry Based on the Integrated Reverse Osmosis System. Integr. Environ. Assess. Manag. 2025, 21, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Khalil, E.; Sarkar, J.; Rahman, M.M.; Shamsuzzaman, M.; Das, D. Advanced Technology in Textile Dyeing. In Advanced Technology in Textiles: Fibre to Apparel; Rahman, M.M., Mashud, M., Rahman, M.M., Eds.; Springer Nature: Singapore, 2023; pp. 97–138. ISBN 978-981-99-2142-3. [Google Scholar]
- Zhao, H.; Zhou, Y.; Lu, Z.; Ren, X.; Barcelo, D.; Zhang, Z.; Wang, Q. Microplastic Pollution in Organic Farming Development Cannot Be Ignored in China: Perspective of Commercial Organic Fertilizer. J. Hazard. Mater. 2023, 460, 132478. [Google Scholar] [CrossRef]
- Akanmu, A.O.; Olowe, O.M.; Phiri, A.T.; Nirere, D.; Odebode, A.J.; Karemera Umuhoza, N.J.; Asemoloye, M.D.; Babalola, O.O. Bioresources in Organic Farming: Implications for Sustainable Agricultural Systems. Horticulturae 2023, 9, 659. [Google Scholar] [CrossRef]
- Liu, X.; Sathishkumar, K.; Zhang, H.; Saxena, K.K.; Zhang, F.; Naraginti, S.; Anbarasu, K.; Rajendiran, R.; Rajasekar, A.; Guo, X. Frontiers in Environmental Cleanup: Recent Advances in Remediation of Emerging Pollutants from Soil and Water. J. Hazard. Mater. Adv. 2024, 16, 100461. [Google Scholar] [CrossRef]
- Obiuto, N.C.; Olu-lawal, K.A.; Ani, E.C.; Gwuanyi, E.D.; Ninduwezuor-Ehiobu, N. Chemical Management in Electronics Manufacturing: Protecting Worker Health and the Environment. World J. Adv. Res. Rev. 2024, 21, 010–018. [Google Scholar] [CrossRef]
- Uğur, Ş.S. Sustainable Dyeing and Finishing of Cotton Fabrics with Layer-by-Layer Technique. Coatings 2023, 13, 1129. [Google Scholar] [CrossRef]
- Valli Nachiyar, C.; Rakshi, A.D.; Sandhya, S.; Britlin Deva Jebasta, N.; Nellore, J. Developments in Treatment Technologies of Dye-Containing Effluent: A Review. Case Stud. Chem. Environ. Eng. 2023, 7, 100339. [Google Scholar] [CrossRef]
Rank | Member State | WEI+ % (2022) | 10-yr Trend (%-Points) | Primary Stress Driver |
---|---|---|---|---|
1 | Malta | 110.3% | ▲ +5.1 | Tourism + desalination energy demand |
2 | Cyprus | 73.4 | ▲ +4.2 | Irrigated citrus and olives |
3 | Spain | 41.2 | ▼ −1.3 | Agriculture, drought frequency |
4 | Greece | 39.7 | ▲ +2.9 | Summer tourism, hydropower |
5 | Italy | 32.4 | ▲ +1.8 | Po Basin irrigation |
6 | Portugal | 31.1 | ▼ −0.6 | Almond and olive expansion |
7 | Belgium | 29.6 | ▲ +0.9 | Industrial clusters (Flanders) |
8 | Romania | 26.8 | ▲ +2.2 | Leakage + ageing networks |
9 | Germany | 22.7 | ▲ +0.4 | Navigation, thermal cooling |
10 | France | 21.9 | ▼ −1.1 | Agriculture; improved reuse |
ESG Principle | Feature | European Union | Romania | Refs. |
---|---|---|---|---|
Environmental (E) | sustainable water management | strong emphasis through EU directives, widespread implementation | progressing slowly, dependent on EU funding and local capacity | [55,56] |
water quality and pollution control | generally good quality, monitored under EU Water Framework Directive | challenges with outdated infrastructure, improving with EU cohesion funds | [56,57] | |
climate adaptation | integrated in national and regional water planning | national strategy in place, but limited local implementation | [58] | |
leakage reduction | active policies for NRW (non-revenue water) reduction | high leakage rates, investments ongoing | [59] | |
Social (S) | access to safe water | near-universal access across EU countries | urban areas well-covered, rural gaps persist | [60] |
affordability | tariff structures vary, affordability ensured via social mechanisms | tariffs regulated but rising, affordability is a concern especially in rural areas | [59] | |
public participation | stronger civic participation and stakeholder involvement | required (aligned with EU WFD—Water Framework Directive), but low civic engagement | [61] | |
health and hygiene | high compliance with EU Drinking Water Directive | EU standards followed, but still some gaps in older systems | [62] | |
Governance (G) | regulatory framework | strong and harmonized regulatory environment across member states | aligned with EU, implementation varies regionally | [63] |
transparency and reporting | growing trend of ESG reporting, especially among large utilities | limited ESG reporting by water utilities | [64] | |
anti-corruption measures | strong institutional controls and transparency mechanisms | sector prone to political influence, efforts exist | [65] | |
stakeholder inclusion | stakeholder input integrated into planning | stakeholder involvement limited | [65] |
Metric | Romania Avg. (n = 7) | EU-27 Median | Leading Quartile (P75) |
---|---|---|---|
ESG disclosure rate % | 32 | 57 | 85 |
Taxonomy-aligned CAPEX % | 9 | 18 | 34 |
NRW (leakage) % | 38 | 24 | <12 |
0.38 | 0.29 | 0.18 | |
Board-level ESG KPI linkage % | 14 | 46 | 72 |
Material Class | Target Contaminant | Capacity/Flux | Removal Efficiency % | Specific Energy (kWh m−3) * | Ref. |
---|---|---|---|---|---|
Zr-MOF-801 | PFAS (C8) | 1.1 g g−1 | 99.2% | 0.18 | [64] |
Fe-MOF-PF15 | Ozonation catalyst | 0.46 g g−1 | 97% COD | 0.21 | [76] |
COF-Pb2+ composite | Heavy metals | 160 mg g−1 | 92.4% | 0.12 | [79] |
Photothermal hydrogel (PAM/GO) | Seawater → distillate | 1.37 kg m−2 h−1 | 99% salt rejection | 0.00 (solar) | [82] |
Year | Global Issuance (USD bn) | CAGR (2018–24) | % Allocated to EU Utilities |
---|---|---|---|
2018 | 5.4 | — | 11 |
2019 | 8.3 | 13 | |
2020 | 12.7 | 16 | |
2021 | 18.1 | 18 | |
2022 | 22.0 | 20 | |
2023 | 26.4 | 23 | |
2024e | 32.1 | 24.6% | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minea, G.; Lakatos, E.S.; Druta, R.M.; Moldovan, A.; Lupu, L.M.; Cioca, L.I. The Role of ESG in Driving Sustainable Innovation in Water Sector: From Gaps to Governance. Water 2025, 17, 2259. https://doi.org/10.3390/w17152259
Minea G, Lakatos ES, Druta RM, Moldovan A, Lupu LM, Cioca LI. The Role of ESG in Driving Sustainable Innovation in Water Sector: From Gaps to Governance. Water. 2025; 17(15):2259. https://doi.org/10.3390/w17152259
Chicago/Turabian StyleMinea, Gabriel, Elena Simina Lakatos, Roxana Maria Druta, Alina Moldovan, Lucian Marius Lupu, and Lucian Ionel Cioca. 2025. "The Role of ESG in Driving Sustainable Innovation in Water Sector: From Gaps to Governance" Water 17, no. 15: 2259. https://doi.org/10.3390/w17152259
APA StyleMinea, G., Lakatos, E. S., Druta, R. M., Moldovan, A., Lupu, L. M., & Cioca, L. I. (2025). The Role of ESG in Driving Sustainable Innovation in Water Sector: From Gaps to Governance. Water, 17(15), 2259. https://doi.org/10.3390/w17152259