Geospatial Drivers of China’s Nature Reserves: Implications for Sustainable Agricultural Development
Abstract
1. Introduction
2. Methods
2.1. Research Area and Data Sources
2.2. Research Methods
2.2.1. Standard Deviation Ellipse
2.2.2. Imbalance Index and Lorenz Curve
2.2.3. Geographic Concentration Index
2.2.4. Geographic Detector
2.2.5. Spatial Durbin Model
3. Results
3.1. Spatial Distribution Patterns of Nature Reserves in China
3.1.1. Analysis of Standard Deviation Ellipses
3.1.2. Analysis of Imbalance Index and Lorenz Curve
- (1)
- The top five provinces (Guangdong, Inner Mongolia, Heilongjiang, Jiangxi, and Sichuan) account for 37.2% of China’s total nature reserves, and their actual cumulative proportion (49.1%) is significantly higher than theoretical uniform distribution value of 16.1%. This indicates the prioritized implementation of ecological protection policies in biodiversity hotspots.
- (2)
- The middle section of the curve (cumulative provincial proportion of 40–70%) remains steep, revealing clustering phenomenon in the mountainous ecological zones of the southwest (Yunnan Province, Guizhou Province) and the Northeast Forest Belt (Liaoning Province, Jilin Province). The actual contribution of the 15 provinces in the tail (cumulative proportion of 48.4%) is only 12.9%, especially in the economically developed coastal regions (Shanghai, Tianjin) and arid northwest areas (Ningxia Hui Autonomous Region, Qinghai Province) showing significant low values.
- (3)
- The curve shows local concavities at the points corresponding to Guangxi Zhuang Autonomous Region and Xizang Autonomous Region, which is related to the special protection mechanism of plateau ecosystems (such as large contiguous protected areas) and variations in administrative division statistics. This chart clearly illustrates the significant spatial imbalance in the distribution of nature reserves in China. The systematic deviation between the actual cumulative distribution curve (marked in blue) and theoretical uniform distribution curve (marked in orange) indicates that the spatial clustering degree of China’s nature reserves is highly unbalanced.
3.2. Spatial Environmental Factors Affecting the Distribution of Nature Reserves in China
3.2.1. Altitude
3.2.2. Rivers
3.2.3. Transportation Maps
3.3. Multivariate Driving Forces and Interaction Analysis of Nature Reserve Distribution in China
3.3.1. Selection of Impact Factors
3.3.2. Analysis of Driving Forces
3.3.3. Three-Dimensional Kernel Density
4. Discussion
- (1)
- Spatial distribution of China’s nature reserves
- (2)
- The Impact of Altitude
- (3)
- Influence of River Distribution
- (4)
- Influence of Transportation Distribution
- (5)
- The Impact of Geographical Detector Spatial Distribution
5. Conclusions
- (1)
- Research Findings
- (2)
- Future Research Direction
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, Y.; Liu, Y.; Liu, Y.S. Spatio-temporal characteristics and influencing factors of rural settlements in China during 2000–2015. Habitat Int. 2020, 97, 102122. [Google Scholar]
- Liu, Y.; Li, Y.; Yang, Y. Strategic adjustment of land use policy under the framework of rural revitalization in China. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use transition and rural transformation development in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Tu, S.; Ge, D.; Qu, Y. Farmland abandonment under rural restructuring in China explained from a village perspective: A case study of Hunan Province. J. Rural Stud. 2020, 82, 538–551. [Google Scholar]
- Long, H. Land consolidation: An indispensable way of spatial restructuring in rural China. J. Geogr. Sci. 2014, 24, 211–225. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Long, H.; Cui, W. Community-based rural residential land consolidation and allocation in China: A case study of land consolidation in Longgang, Zhejiang. Habitat Int. 2014, 43, 263–272. [Google Scholar]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban land expansion and arable land loss in China—A case study of Beijing–Tianjin–Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Long, H.; Tu, S.; Ge, D.; Zhang, Y.; Ma, L. The allocation and management of rural land resources in China: Status, problems, and prospects. Land Use Policy 2016, 55, 366–373. [Google Scholar]
- Kong, X.; Liu, Y.; Zhou, Y.; Wang, W.; Cao, Z. Understanding rural revitalization in China: Frameworks and evaluation. Land Use Policy 2020, 97, 104781. [Google Scholar]
- Liu, Y.; Kong, X.; Wang, W. Evaluation of rural development level and spatial differentiation in China. Acta Geogr. Sin. 2021, 76, 21–38. [Google Scholar]
- Kong, X.; Liu, Y. A comprehensive evaluation of rural sustainability in China: A method integrating the multidimensional balance and coupling model. Land 2021, 10, 589. [Google Scholar]
- Liu, S.; Yu, Q.; Wei, C. Spatial-Temporal Dynamic Analysis of Land Use and Landscape Pattern in Guangzhou, China: Exploring the Driving Forces from an Urban Sustainability Perspective. Sustainability 2019, 11, 6675. [Google Scholar] [CrossRef]
- Fu, B.; Wang, Y.; Lu, Y.; He, C.; Chen, L.; Song, C. The ecosystem service trade-off and synergies of urbanization in the Loess Plateau, China. Ecol. Indic. 2013, 45, 238–246. [Google Scholar]
- Cheng, M.; Yin, Z.; Westlund, H. Counterurbanization in China? A case study of counties in Huang-Huai-Hai area from the perspective of urban-rural relations. J. Rural Stud. 2024, 110, 103386. [Google Scholar]
- Xiang, L.; Wu, Y.; Liu, Y.; Liu, Y. Rural development resilience: A new framework and evaluation approach. J. Rural Stud. 2022, 95, 147–158. [Google Scholar]
- Fan, J.; Liu, Y.; Kong, X. Evaluation of rural sustainability in China: A multidimensional approach. Sustainability 2021, 13, 12949. [Google Scholar]
- Zhou, Y.; Li, X.; Liu, Y. Rural transformation development and new countryside construction in China. Habitat Int. 2013, 38, 25–34. [Google Scholar]
- Tan, R.; Qu, F.; Heerink, N.; Mettepenningen, E.; Van Huylenbroeck, G. Rural development policy preferences of Chinese farmers and rural residents. Land Use Policy 2011, 28, 895–905. [Google Scholar]
- Chen, M.; Liu, W.; Lu, D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef]
- Bouamrane, M.; Aubertin, C.; Toirambe, B. Operationalizing the ecosystem approach in the Congo Basin: Status and prospects. EcoHealth 2016, 13, 40–52. [Google Scholar]
- Zhou, L.; Wu, D.T.; Li, Z.H.; Wang, Y.; Qiao, L.; Xiao, Y. Study on spatial distribution and its influencing factors of natural tourism resource in China-Mongolia-Russia Economic Corridor. Resour. Sci. 2018, 40, 2168–2176. [Google Scholar]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Long, H.; Liu, Y. Spatio-temporal pattern and its driving forces of rural development in China in the context of industrialization and urbanization. J. Rural Stud. 2015, 38, 12–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, J. Spatial differentiation of tourism ecological security pattern in nature reserves in China. Tour. Trib. 2022, 37, 101–113. [Google Scholar]
- Berrouet, L.; Machado, J.; Villegas-Palacio, C. Vulnerability of socio-ecological systems: A conceptual framework. Ecol. Indic. 2021, 121, 107169. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, P.; Qiu, M.; Zhang, Y.; Liu, L.; Wu, J. Exploring resilience in social-ecological systems: A case study of the Wolong Nature Reserve. J. Geogr. Sci. 2016, 26, 957–971. [Google Scholar]
- Cumming, G. The resilience of big river basins. Water Int. 2016, 41, 753–765. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Long, H. Socio-economic driving forces of arable land use changes in China: A spatial-temporal perspective. Appl. Geogr. 2010, 30, 375–393. [Google Scholar]
- Shi, T.; Li, Y.; Chen, Y.; Gong, L. Spatial-temporal coupling evolution and driving forces of urban land expansion and ecological environment effects in Nanchang Metropolitan Area. J. Nat. Resour. 2022, 37, 627–644. [Google Scholar]
- Tang, Y.; Zhai, R.; Liu, X.; Sun, M.; Zhang, X. Spatiotemporal variation and influencing factors of ecosystem services in the Three Gorges Reservoir Area. J. Nat. Resour. 2020, 35, 237–251. [Google Scholar]
- Peng, H.; Xu, F.; Yang, J. Review and prospect of research on spatio-temporal evolution and simulation of ecosystem services. Resour. Sci. 2020, 42, 2019–2030. [Google Scholar]
- Kong, X.; Wu, F. Coupling mechanism and spatial correlation network of ecosystem services and land use functions in the Yellow River Basin. Acta Geogr. Sin. 2021, 76, 2345–2362. [Google Scholar]
- Xu, Z.; Zhang, D.; Yang, S. Land use functions’ tradeoffs and ecological service effects in Sichuan Province. Resour. Sci. 2021, 43, 1721–1733. [Google Scholar]
- Shi, Y.; Liu, Y. Coupling coordination and driving mechanism between regional urbanization and ecosystem services. Resour. Sci. 2020, 42, 2296–2308. [Google Scholar]
- Dai, X.; Liu, Y.; Liu, S.; Liu, J.; Lin, Y. Spatial correlation and driving forces of ecosystem service balance in China. Resour. Sci. 2020, 42, 199–211. [Google Scholar]
- Chen, L.; Han, Y.; Li, Z.; Pan, Y.; Sun, C. Spatial coupling coordination and influencing factors between urbanization and ecosystem services in the Yellow River Basin. J. Nat. Resour. 2022, 37, 1357–1373. [Google Scholar]
- Long, H. Land use policy in China: Adjustment and improvement. Land Use Policy 2014, 40, 1–5. [Google Scholar] [CrossRef]
- Sun, C.; Fan, X.; Zhang, X. Coordinated development analysis of tourism economy and ecological environment in the Yellow River Basin. Resour. Dev. Mark. 2021, 37, 1225–1231. [Google Scholar]
- Liu, Y.; Li, Y.; Yang, Y. Strategic adjustment of land use policy under the framework of rural revitalization. Acta Geogr. Sin. 2018, 73, 1135–1149. [Google Scholar]
- Liu, Y.; Li, J.; Yang, Y. Spatial-temporal evolution and driving forces of urban-rural integration development in China. J. Geogr. Sci. 2018, 28, 1843–1862. [Google Scholar]
- Gao, Y.; Wei, Y.; Dai, T. Understanding rural development and revitalization in China. Habitat Int. 2020, 104, 102242. [Google Scholar]
- Wang, W.; Liu, Y.; Kong, X. Multidimensional rural regional types and classification systems in China. Geogr. Res. 2020, 39, 148–164. [Google Scholar]
- Zhang, X.; Wu, F.; Liu, Y. Reflections on rural development research in China from the perspective of geography. Geogr. Res. 2021, 40, 1151–1166. [Google Scholar]
- Zhang, W.; Liu, Y. Coordination between human and land systems and its regional differentiation in rural China. Habitat Int. 2022, 127, 102643. [Google Scholar]
- Wang, Q.; Xu, H. Evaluation of tourism ecological security in national nature reserves in China. Tour. Trib. 2020, 35, 86–95. [Google Scholar]
- Zhang, Y.; Zhao, J.; Liu, Y. Spatial differentiation and influencing factors of tourism ecological security in national forest parks. Geogr. Res. 2021, 40, 2612–2628. [Google Scholar]
- Zhang, Y.; Zhao, J.; Zhao, X.; Liu, Y. Evaluation of tourism ecological security and its influencing factors in national wetland parks in China. Resour. Sci. 2022, 44, 1382–1396. [Google Scholar]
- Geng, Y.; Ren, W.; Zhu, Q.; Lin, S.; Zuo, J.; Zhang, J. Spatial analysis of tourism eco-efficiency in China. Sustainability 2020, 12, 6932. [Google Scholar]
- Liu, J.; Fang, X.; Li, H.; Gong, J.; Xie, X. Spatiotemporal variation of tourism ecological security and its influencing factors in the Yangtze River Economic Belt. Ecol. Econ. 2022, 38, 95–104. [Google Scholar]
- Zhang, H.; Ma, Y.; Yao, W.; Zhang, W.; Zhang, H. Evaluation and prediction of tourism ecological security based on PSR–Grey forecasting model. Sustainability 2021, 13, 4551. [Google Scholar]
- Zhang, Y.; Wang, L. Spatial characteristics and driving mechanism of rural tourism development in China. Resour. Sci. 2023, 45, 33–46. [Google Scholar]
- Zhang, J.G.; Xu, X. Research on the spatial distribution of forest parks and tourism development in Zhejiang Province. J. Zhejiang A F Univ. 2022, 39, 1124–1132. [Google Scholar]
- Yang, Y.; Tang, X.L. Spatial distribution characteristics of national nature reserves in the Yangtze River Basin and their influencing factors. Yangtze River Basin Res. Environ. 2022, 31, 2430–2448. [Google Scholar]
Serial Number | Region | The Area of Nature Reserves in China (104 km2) | Province Area (104 km2) | Density (Item·10−4 km−2) | The Proportion of Nature Reserves (%) |
---|---|---|---|---|---|
1 | Guangdong Province | 3.55 | 17.98 | 20.63 | 19.76 |
2 | Nei Mongol | 13.83 | 118.30 | 1.66 | 11.69 |
3 | Heilongjiang Province | 6.18 | 47.30 | 4.02 | 13.06 |
4 | Jiangxi Province | 1.10 | 16.69 | 10.43 | 6.60 |
5 | Sichuan Province | 8.75 | 48.60 | 3.37 | 18.01 |
6 | Yunnan Province | 2.84 | 39.41 | 3.86 | 7.21 |
7 | Guizhou Province | 0.95 | 17.62 | 7.32 | 5.39 |
8 | Anhui Province | 0.53 | 14.01 | 7.28 | 3.77 |
9 | Liaoning Province | 2.65 | 14.87 | 6.39 | 17.80 |
10 | Hunan Province | 1.12 | 21.18 | 4.49 | 5.29 |
11 | Fujian Province | 0.51 | 12.40 | 7.42 | 4.08 |
12 | Guangxi Zhuang Autonomous Region | 1.43 | 23.76 | 3.20 | 6.01 |
13 | Shandong Province | 1.10 | 15.81 | 4.74 | 6.94 |
14 | Hainan Province | 2.81 | 3.54 | 19.21 | 79.47 |
15 | Hubei Province | 0.99 | 18.59 | 3.39 | 5.34 |
16 | Gansu Province | 7.54 | 42.58 | 1.34 | 17.71 |
17 | Chongqing | 0.89 | 8.24 | 6.19 | 10.81 |
18 | Shaanxi Province | 1.05 | 20.56 | 2.43 | 5.09 |
19 | Shanxi Province | 1.14 | 15.67 | 2.94 | 7.27 |
20 | Xizang Autonomous Region | 41.60 | 120.28 | 0.37 | 34.59 |
21 | Henan Province | 0.75 | 16.70 | 2.10 | 4.50 |
22 | Jilin Province | 7.53 | 18.74 | 1.81 | 40.20 |
23 | Hebei Province | 0.57 | 18.88 | 1.80 | 3.00 |
24 | Zhejiang Province | 0.26 | 10.55 | 2.94 | 2.44 |
25 | Jiangsu Province | 0.56 | 10.72 | 2.80 | 5.27 |
26 | Xinjiang Uygur Autonomous Region | 21.49 | 166.49 | 0.16 | 12.91 |
27 | Beijing | 0.01 | 1.64 | 12.19 | 0.41 |
28 | Ningxia Hui Autonomous Region | 0.51 | 6.64 | 1.96 | 7.63 |
29 | Qinghai Province | 21.59 | 72.23 | 0.15 | 29.89 |
30 | Tianjin | 0.15 | 1.20 | 6.69 | 12.89 |
31 | Shanghai | 0.09 | 0.63 | 6.31 | 14.80 |
Serial Number | Region | Number of Protected Areas | Proportion | Cumulative Proportion | Theoretical Proportion | Cumulative Theoretical Proportion |
---|---|---|---|---|---|---|
1 | Guangdong Province | 371 | 14.62% | 14.62% | 3.23% | 3.23% |
2 | Nei Mongol | 196 | 7.72% | 22.34% | 3.23% | 6.45% |
3 | Heilongjiang Province | 190 | 7.49% | 29.83% | 3.23% | 9.68% |
4 | Jiangxi Province | 174 | 6.86% | 36.68% | 3.23% | 12.90% |
5 | Sichuan Province | 164 | 6.46% | 43.14% | 3.23% | 16.13% |
6 | Yunnan Province | 152 | 5.99% | 49.13% | 3.23% | 19.35% |
7 | Guizhou Province | 129 | 5.08% | 54.22% | 3.23% | 22.58% |
8 | Anhui Province | 102 | 4.02% | 58.23% | 3.23% | 25.81% |
9 | Liaoning Province | 95 | 3.74% | 61.98% | 3.23% | 29.03% |
10 | Hunan Province | 95 | 3.74% | 65.72% | 3.23% | 32.26% |
11 | Fujian Province | 92 | 3.62% | 69.35% | 3.23% | 35.48% |
12 | Guangxi Zhuang Autonomous Region | 76 | 2.99% | 72.34% | 3.23% | 38.71% |
13 | Shandong Province | 75 | 2.96% | 75.30% | 3.23% | 41.94% |
14 | Hainan Province | 68 | 2.68% | 77.97% | 3.23% | 45.16% |
15 | Hubei Province | 63 | 2.48% | 80.46% | 3.23% | 48.39% |
16 | Gansu Province | 57 | 2.25% | 82.70% | 3.23% | 51.61% |
17 | Chongqing | 51 | 2.01% | 84.71% | 3.23% | 54.84% |
18 | Shaanxi Province | 50 | 1.97% | 86.68% | 3.23% | 58.06% |
19 | Shanxi Province | 46 | 1.81% | 88.49% | 3.23% | 61.29% |
20 | Xizang Autonomous Region | 45 | 1.77% | 90.27% | 3.23% | 64.52% |
21 | Henan Province | 35 | 1.38% | 91.65% | 3.23% | 67.74% |
22 | Jilin Province | 34 | 1.34% | 92.99% | 3.23% | 70.97% |
23 | Hebei Province | 34 | 1.34% | 94.33% | 3.23% | 74.19% |
24 | Zhejiang Province | 31 | 1.22% | 95.55% | 3.23% | 77.42% |
25 | Jiangsu Province | 30 | 1.18% | 96.73% | 3.23% | 80.65% |
26 | Xinjiang Uygur Autonomous Region | 27 | 1.06% | 97.79% | 3.23% | 83.87% |
27 | Beijing | 20 | 0.79% | 98.58% | 3.23% | 87.10% |
28 | Ningxia Hui Autonomous Region | 13 | 0.51% | 99.09% | 3.23% | 90.32% |
29 | Qinghai Province | 11 | 0.43% | 99.53% | 3.23% | 93.55% |
30 | Tianjin | 8 | 0.32% | 99.84% | 3.23% | 96.77% |
31 | Shanghai | 4 | 0.16% | 100.00% | 3.23% | 100.00% |
Serial Number | Region | Count | ||
---|---|---|---|---|
1 | Guangdong Province | 371 | 0.1461780930 | 0.0213680349 |
2 | Nei Mongol | 196 | 0.0772261623 | 0.0059638801 |
3 | Heilongjiang Province | 190 | 0.0748620961 | 0.0056043334 |
4 | Jiangxi Province | 174 | 0.0685579196 | 0.0047001883 |
5 | Sichuan Province | 164 | 0.0646178093 | 0.0041754613 |
6 | Yunnan Province | 152 | 0.0598896769 | 0.0035867734 |
7 | Guizhou Province | 129 | 0.0508274232 | 0.0025834269 |
8 | Anhui Province | 102 | 0.0401891253 | 0.0016151658 |
9 | Liaoning Province | 95 | 0.0374310481 | 0.0014010834 |
10 | Hunan Province | 95 | 0.0374310481 | 0.0014010834 |
11 | Fujian Province | 92 | 0.0362490150 | 0.0013139911 |
12 | Guangxi Zhuang Autonomous Region | 76 | 0.0299448385 | 0.0008966934 |
13 | Shandong Province | 75 | 0.0295508274 | 0.0008732514 |
14 | Hainan Province | 68 | 0.0267927502 | 0.0007178515 |
15 | Hubei Province | 63 | 0.0248226950 | 0.0006161662 |
16 | Gansu Province | 57 | 0.0224586288 | 0.0005043900 |
17 | Chongqing | 51 | 0.0200945626 | 0.0004037914 |
18 | Shaanxi Province | 50 | 0.0197005516 | 0.0003881117 |
19 | Shanxi Province | 46 | 0.0181245075 | 0.0003284978 |
20 | Xizang Autonomous Region | 45 | 0.0177304965 | 0.0003143705 |
21 | Henan Province | 35 | 0.0137903861 | 0.0001901747 |
22 | Jilin Province | 34 | 0.0133963751 | 0.0001794629 |
23 | Hebei Province | 34 | 0.0133963751 | 0.0001794629 |
24 | Zhejiang Province | 31 | 0.0122143420 | 0.0001491902 |
25 | Jiangsu Province | 30 | 0.0118203310 | 0.0001397202 |
26 | Xinjiang Uygur Autonomous Region | 27 | 0.0106382979 | 0.0001131734 |
27 | Beijing | 20 | 0.0078802206 | 0.0000620979 |
28 | Ningxia Hui Autonomous Region | 13 | 0.0051221434 | 0.0000262364 |
29 | Qinghai Province | 11 | 0.0043341214 | 0.0000187846 |
30 | Tianjin | 8 | 0.0031520883 | 0.0000099357 |
31 | Shanghai | 4 | 0.0015760441 | 0.0000024839 |
Factor | Impact Factor | Coding | q Statistic | p Value |
---|---|---|---|---|
Social and economic pressure | Resident population (ten thousand Chinese yuan) | X1 | 0.250000 | 0.204818 |
Natural resource conditions | Total water resources (hundred million cubic meters) | X2 | 0.361111 | 0.067044 * |
Water resources per capita (m3/per person) | X3 | 0.288889 | 0.074263 * | |
Ecological resource endowment | Forest area (ten thousand hectares) | X4 | 0.383333 | 0.051803 * |
Forest stock (million cubic meters) | X5 | 0.438889 | 0.025500 ** | |
Intensity of capital investment | Forestry and grassland investment quota (ten thousand Chinese yuan) | X6 | 0.394444 | 0.045302 ** |
Management and monitoring funds (ten thousand Chinese yuan) | X7 | 0.200159 | 0.358260 | |
Biodiversity values | Biodiversity conservation investment (ten thousand Chinese yuan) | X8 | 0.400000 | 0.042306 ** |
Judgment Criteria | Nonlinearity Attenuation |
---|---|
Nonlinear attenuation | |
Single-factor nonlinear attenuation | |
Dual-factor enhancement | |
Independence | |
Nonlinear enhancement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, S.; Wen, J. Geospatial Drivers of China’s Nature Reserves: Implications for Sustainable Agricultural Development. Agriculture 2025, 15, 1596. https://doi.org/10.3390/agriculture15151596
Ouyang S, Wen J. Geospatial Drivers of China’s Nature Reserves: Implications for Sustainable Agricultural Development. Agriculture. 2025; 15(15):1596. https://doi.org/10.3390/agriculture15151596
Chicago/Turabian StyleOuyang, Shasha, and Jun Wen. 2025. "Geospatial Drivers of China’s Nature Reserves: Implications for Sustainable Agricultural Development" Agriculture 15, no. 15: 1596. https://doi.org/10.3390/agriculture15151596
APA StyleOuyang, S., & Wen, J. (2025). Geospatial Drivers of China’s Nature Reserves: Implications for Sustainable Agricultural Development. Agriculture, 15(15), 1596. https://doi.org/10.3390/agriculture15151596