Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = water emulsion fuel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4736 KiB  
Article
Investigation of Water-in-Diesel Emulsion Behavior Formulated for Performance Conditions in a Single-Cylinder Diesel Engine
by Pedro Oliveira, Francisco Brójo, Rogério Serôdio and João Serôdio
Energies 2025, 18(4), 934; https://doi.org/10.3390/en18040934 - 15 Feb 2025
Viewed by 969
Abstract
The search for alternative fuels is driven by increasing environmental and health concerns across the globe. Water-in-diesel emulsions (WiDEs) have been explored over the years as a potential fuel for diesel engines to mitigate emissions of greenhouse gases, especially nitrogen oxides and smoke. [...] Read more.
The search for alternative fuels is driven by increasing environmental and health concerns across the globe. Water-in-diesel emulsions (WiDEs) have been explored over the years as a potential fuel for diesel engines to mitigate emissions of greenhouse gases, especially nitrogen oxides and smoke. Researchers have been developing and testing different formulations of emulsified fuels with the common goal of stabilizing the mixture and minimizing pollutant emissions without significantly compromising engine performance. In this work, a novel approach is taken by developing a hydrophilic emulsion formulation optimized for engine operating temperatures, overcoming the storage-related stability issues that most studies focus on. Two different mixtures of WiDE were heated and supplied to a Hatz 1B40 single-cylinder diesel engine. The engine was coupled to an eddy current dynamometer to measure speed, torque, and power values. Emissions of carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HCs), nitric oxide (NO), and oxygen (O2) were measured by an AVL DiGas 1000 exhaust gas analyzer. Smoke emissions were measured by an AVL DiSmoke 480. This study represents a contribution to the field of alternative fuels for diesel engines by providing experimental evidence that formulating WiDE for operating temperatures can be advantageous and significantly improve thermal efficiency and reduce emissions of NO and smoke at specific engine operating conditions, with a maximum reduction of 46.86% for NO emissions and a maximum reduction of 83.67% for smoke emissions obtained when compared to diesel. Full article
(This article belongs to the Special Issue Advances in Fuel Energy)
Show Figures

Figure 1

23 pages, 5505 KiB  
Article
Simulation Approach as an Educational Tool for Comparing NOx Emission Reductions in Two-Stroke Marine Diesel Engines During Low-Load Operation: Water–Fuel Emulsion vs. Late Injection
by Mario Stipanov, Josip Dujmović, Vladimir Pelić and Radoslav Radonja
Sustainability 2024, 16(24), 10833; https://doi.org/10.3390/su162410833 - 11 Dec 2024
Cited by 1 | Viewed by 1231
Abstract
Shipping, as the most efficient, cheapest, and most widespread mode of transporting goods, also generates significant exhaust emissions. This has led to the adoption of stringent regulatory restrictions on emissions from ship propulsion systems. Consequently, the education and training of marine engineers can [...] Read more.
Shipping, as the most efficient, cheapest, and most widespread mode of transporting goods, also generates significant exhaust emissions. This has led to the adoption of stringent regulatory restrictions on emissions from ship propulsion systems. Consequently, the education and training of marine engineers can significantly impact their understanding of how emissions are generated and their potential for reduction. The engine room simulator is an indispensable tool in the training of marine engineers. Since operating conditions and parameters have the greatest impact on NOx emissions, this forms the primary focus of this research. This study tests the accuracy and precision of the engine room simulator in simulating emissions and evaluating the influence of operating conditions on them. Furthermore, the implementation and testing of NOx emission reduction technologies are vital for promoting sustainable shipping, ensuring regulatory compliance, and training personnel to support environmentally conscious maritime operations. Using the example of a two-stroke marine diesel engine, the results obtained are compared with test bench data from similar engines. Special emphasis is placed on simulating the operation of a two-stroke diesel engine at low speed, or low load, where secondary NOx reduction methods cannot be used. Therefore, the simulator is tested using two available technologies: water–fuel emulsion and altering the fuel injection timing to reduce NOx emissions. The simulation results for the water–fuel emulsion show high accuracy in predicting NOx emission trends when changing the water content in the emulsion at nominal power. However, at low load, the results show significant deviations. Testing the effect of altering fuel injection timing under low load using the engine room simulator shows significant differences compared to available research. Nonetheless, research on NOx emissions in this engine mode is limited, presenting a potential area for further study. When comparing the results for nominal power operation, the simulation provides more accurate results, particularly in terms of the influence of fuel injection timing on NOx emissions. However, engine tests on the test bench still reveal more substantial changes in emissions than those obtained using the engine room simulator. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 6426 KiB  
Project Report
Fuel–Water Emulsions as an Alternative Fuel for Gas Turbines: A Project Summary
by Paweł Niszczota and Marian Gieras
Appl. Sci. 2024, 14(15), 6686; https://doi.org/10.3390/app14156686 - 31 Jul 2024
Viewed by 1680
Abstract
The paper presents conclusions from research conducted at the Warsaw University of Technology in 2019–2023 regarding the combustion of fuel–water emulsions in a miniature gas turbine. The presented conclusions were made taking the current state of knowledge available in the literature into account. [...] Read more.
The paper presents conclusions from research conducted at the Warsaw University of Technology in 2019–2023 regarding the combustion of fuel–water emulsions in a miniature gas turbine. The presented conclusions were made taking the current state of knowledge available in the literature into account. Particular emphasis was placed on explaining the discrepancies in the results of the experimental studies available in the literature. The main aspects of the combustion of the fuel–water emulsions that were analyzed were their impact on the emissions of NOx and CO, as well as the impact of the surfactant included in the fuel mixture on the combustion process, emissions and the formation of deposits on the walls of the combustion chamber. The impact of the emulsion fuel on fuel consumption was also discussed. In order to explain the changes occurring in the combustion chamber as a result of adding water to the fuel, numerical methods and methods of fluid mechanics were used. Studies have shown a positive impact of the use of fuel–water emulsions on CO and NOx emissions and fuel consumption. It was also demonstrated that fuel additives used for emulsification can create deposits on the walls of the hot engine section. Full article
Show Figures

Figure 1

16 pages, 10761 KiB  
Article
An Experimental Study on the Performance and Emissions of an 8% Water-in-Diesel Emulsion Stabilized by a Hydrophilic Surfactant Blend
by Pedro Oliveira and Francisco Brójo
Energies 2024, 17(6), 1328; https://doi.org/10.3390/en17061328 - 10 Mar 2024
Cited by 6 | Viewed by 1864
Abstract
Diesel engines are known for their excellent efficiency and are therefore used in a variety of applications. However, they are also one of the main sources of hazardous emissions such as nitrogen oxides (NOx) and smoke. Water-in-Diesel Emulsion (WiDE) is an [...] Read more.
Diesel engines are known for their excellent efficiency and are therefore used in a variety of applications. However, they are also one of the main sources of hazardous emissions such as nitrogen oxides (NOx) and smoke. Water-in-Diesel Emulsion (WiDE) is an alternative fuel that can possibly reduce some of the pollutant emissions without compromising engine performance. The surfactant formulation for WiDE usually follows the one used in water-in-oil (w/o) emulsions, where low hydrophilic–lipophilic balance (HLB) emulsifiers are preferred for better solubility in the diesel phase and stabilization at storage temperatures. However, by using a hydrophilic blend with a non-ionic surfactant, it is possible to develop an optimized formulation at higher fuel temperatures, which occur during an engine’s operating condition, achieving possibly higher benefits. Across the different speeds, the results for the emulsion show 7.57% mean improvement in specific fuel consumption (SFC), 19.14% mean improvement in thermal efficiency (TE), 5.54% mean reduction in carbon dioxide (CO2), 20.50% mean reduction in nitric oxide (NO) and 75.19% mean reduction in smoke levels. However, carbon monoxide (CO) and hydrocarbons (HC) emissions were higher, with a mean increase of 81.09% and 93.83%, respectively. Full article
(This article belongs to the Topic Advanced Technologies and Methods in the Energy System)
Show Figures

Figure 1

24 pages, 6792 KiB  
Article
Investigating the Combined Impact of Water–Diesel Emulsion and Al2O3 Nanoparticles on the Performance and the Emissions from a Diesel Engine via the Design of Experiment
by A. Mostafa, M. Mourad, Ahmad Mustafa and I. Youssef
Designs 2024, 8(1), 3; https://doi.org/10.3390/designs8010003 - 22 Dec 2023
Cited by 3 | Viewed by 2704
Abstract
This study aims to assess the impact of the water ratio and nanoparticle concentration of neat diesel fuel on the performance characteristics of and exhaust gas emissions from diesel engines. The experimental tests were conducted in two stages. In the first stage, the [...] Read more.
This study aims to assess the impact of the water ratio and nanoparticle concentration of neat diesel fuel on the performance characteristics of and exhaust gas emissions from diesel engines. The experimental tests were conducted in two stages. In the first stage, the effects of adding water to neat diesel fuel in ratios of 2.5% and 5% on engine performance and emissions characteristics were examined and compared to those of neat diesel at a constant engine speed of 3000 rpm under three different engine loads. A response surface methodology (RSM) based on a central composite design (CCD) was utilized to simulate the design of the experiment. According to the test results, adding water to neat diesel fuel increased the brake-specific fuel consumption and reduced the brake thermal efficiency compared to neat diesel fuel. In the examination of exhaust emissions, hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in the tested fuel containing 2.5% of water were decreased in comparison to pure diesel fuel by 16.62%, 21.56%, and 60.18%, respectively, on average, through engine loading. In the second stage, due to the trade-off between emissions and performance, the emulsion fuel containing 2.5% of water is chosen as the best emulsion from the previous stage and mixed with aluminum oxide nanoparticles at two dose levels (50 and 100 ppm). With the same engine conditions, the emulsion fuel mixed with 50 ppm of aluminum oxide nanoparticles exhibited the best performance and the lowest emissions compared to the other evaluated fuels. The outcomes of the investigations showed that a low concentration of 50 ppm with a small amount of 11 nm of aluminum oxide nanoparticles combined with a water diesel emulsion is a successful method for improving diesel engine performance while lowering emissions. Additionally, it was found that the mathematical model could accurately predict engine performance parameters and pollution characteristics. Full article
(This article belongs to the Special Issue Design Sensitivity Analysis and Engineering Optimization)
Show Figures

Figure 1

13 pages, 2009 KiB  
Article
Integrated Process of Biosurfactant Production by Bacillus atrophaeus ATCC-9372 Using an Air-Lift Bioreactor Coupled to a Foam Fraction Column
by Maria de Fátima F. Rocha, Paulo S. Sobral Júnior, Milena S. Leite, Luciana P. Malpiedi, Matheus M. Pereira, Cleide M. F. Soares and Álvaro S. Lima
Fermentation 2023, 9(11), 959; https://doi.org/10.3390/fermentation9110959 - 9 Nov 2023
Cited by 4 | Viewed by 2795
Abstract
Biosurfactants are surface-active molecules, produced by several microorganisms, that possess unique properties such as low toxicity and biodegradability. Their application in various industries depends on their purity and their specific properties, such as emulsification and stability. Therefore, this study focuses on the production [...] Read more.
Biosurfactants are surface-active molecules, produced by several microorganisms, that possess unique properties such as low toxicity and biodegradability. Their application in various industries depends on their purity and their specific properties, such as emulsification and stability. Therefore, this study focuses on the production of biosurfactant from Bacillus atrophaeus in an air-lift bioreactor. It analyzes the effects of agitation rate and temperature on biosurfactant production, as well as the concurrent separation process using a foam fractionation column. Moreover, the ability of the produced biosurfactant to form emulsions in water with several substrates (vegetables oils, hydrocarbons, and fossil fuels) was determined, and the stability of the soybean oil–water emulsion (used as an example) at different temperatures and pH values was verified. The biosurfactant produced, tentatively identified as iturin, was only detected in the coalescent liquid after passing through the foam fractionation column, demonstrating the complete separation of the biosurfactant. The best operational conditions for production and separation were an air flow of 1.00 vvm and a temperature of 34 °C (emulsifier index (EI24) = 66.9%, and productivity (Pp) = 967.5% mL h−1). Vegetable oils, hydrocarbons, and fossil fuels were emulsified in water, highlighting the soybean oil, whose emulsion oil–water had the highest ES (3333.3 min) at a temperature of 50 °C and a pH value of 9.0. Full article
(This article belongs to the Special Issue Production and Application of Bioactive Biosurfactants)
Show Figures

Figure 1

20 pages, 8314 KiB  
Article
Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers
by Victoria Kornienko, Mykola Radchenko, Andrii Radchenko, Hanna Koshlak and Roman Radchenko
Energies 2023, 16(18), 6743; https://doi.org/10.3390/en16186743 - 21 Sep 2023
Cited by 6 | Viewed by 1736
Abstract
Cogeneration or combined heat and power (CHP) has found wide application in various industries because it very effectively meets the growing demand for electricity, steam, hot water, and also has a number of operational, environmental, economic advantages over traditional electrical and thermal systems. [...] Read more.
Cogeneration or combined heat and power (CHP) has found wide application in various industries because it very effectively meets the growing demand for electricity, steam, hot water, and also has a number of operational, environmental, economic advantages over traditional electrical and thermal systems. Experimental and theoretical investigations of the afterburning of fuel oil in the combustion engine exhaust gas at the boiler inlet were carried out in order to enhance the efficiency of cogeneration power plants; this was achieved by increasing the boiler steam capacity, resulting in reduced production of waste heat and exhaust emissions. The afterburning of fuel oil in the exhaust gas of diesel engines is possible due to a high the excess air ratio (three to four). Based on the experimental data of the low-temperature corrosion of the gas boiler condensing heat exchange surfaces, the admissible values of corrosion rate and the lowest exhaust gas temperature which provide deep exhaust gas heat utilization and high efficiency of the exhaust gas boiler were obtained. The use of WFE and afterburning fuel oil provides an increase in efficiency and power of the CPPs based on diesel engines of up to 5% due to a decrease in the exhaust gas temperature at the outlet of the EGB from 150 °C to 90 °C and waste heat, accordingly. The application of efficient environmentally friendly exhaust gas boilers with low-temperature condensing surfaces can be considered a new and prosperous trend in diesel engine exhaust gas heat utilization through the afterburning of fuel oil and in CPPs as a whole. Full article
(This article belongs to the Special Issue Heat Transfer and Multiphase Flow)
Show Figures

Figure 1

13 pages, 2500 KiB  
Article
Effects of Surfactant Characteristics on Fuel Properties of Emulsions of Alternative Engine Fuel through the Phase Inversion Method
by Cherng-Yuan Lin, Keng-Hung Lin and Hsuan Yang
Processes 2023, 11(7), 1864; https://doi.org/10.3390/pr11071864 - 21 Jun 2023
Cited by 11 | Viewed by 2448
Abstract
Emulsions that mix two or more immiscible phases are broadly applied in pharmaceutics, chemistry, and industries. The phase inversion temperature (PIT) method is an emulsifying approach to preparing an emulsion with low energy consumption and cheap equipment. The effects of surfactant characteristics and [...] Read more.
Emulsions that mix two or more immiscible phases are broadly applied in pharmaceutics, chemistry, and industries. The phase inversion temperature (PIT) method is an emulsifying approach to preparing an emulsion with low energy consumption and cheap equipment. The effects of surfactant characteristics and processes of cooling or heating on the fuel properties of emulsions composed of silicone oil by the emulsifying method, such as mean droplet sizes of the de-ionized water phase, were considered herein. The application of the silicone oil emulsion as engine fuel was first evaluated. The results show that the emulsions added with the polyol surfactant mixture appeared to have a larger mean water-droplet size, a larger number of dispersed water droplets, a wider range of dispersed-water sizes, and lower kinematic viscosity than those with Brij 30 surfactant. Increasing the surfactant concentration of either Tween 20 mixed with Span 80 or Brij 30 surfactant increased kinematic viscosity and the number of dispersed droplets while decreasing mean droplet sizes. After being subjected to fast heating and then fast cooling, the silicone oil emulsion appeared to form many smaller dispersed droplets than those being proceeded with slow cooling. The emulsion of silicone oil was found to have adequate engine fuel properties. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

12 pages, 4677 KiB  
Article
Unsteady Combustion of the Heptane-in-Water Emulsion Foamed with Hydrogen–Oxygen Mixture
by Alexey Kiverin and Ivan Yakovenko
Appl. Sci. 2023, 13(8), 4829; https://doi.org/10.3390/app13084829 - 12 Apr 2023
Cited by 2 | Viewed by 1580
Abstract
This research paper numerically studies how hydrocarbon additives affect hydrogen combustion in the process of complex fuel burning on the example of the combustible foam representing the heptane-in-water emulsion foamed with a hydrogen–oxygen mixture. It is demonstrated that the two-phase hydrodynamic model with [...] Read more.
This research paper numerically studies how hydrocarbon additives affect hydrogen combustion in the process of complex fuel burning on the example of the combustible foam representing the heptane-in-water emulsion foamed with a hydrogen–oxygen mixture. It is demonstrated that the two-phase hydrodynamic model with an account of foam structure and chemical kinetics reproduces quite accurately, at least at the qualitative level, the experimentally observed features of foamed emulsion combustion. Due to this, it is concluded that a proposed model can be fruitfully used for the interpretation of the combustion features observed in such a complex combined fuel. Based on the obtained numerical data, it is found that there are two main possibilities related to the hydrogen–hydrocarbon chemistry interactions. In the case of near-stoichiometric, hydrocarbons act mainly as an inhibitor of hydrogen combustion; however, for lean hydrogen–oxygen mixtures, flame propagation is determined by the joint hydrocarbon and hydrogen oxidation kinetics. Herewith, the hydrocarbon burns together with the hydrogen inside the flame front in the case of slow combustion, while in the case of high-speed combustion, hydrogen oxidation kinetics becomes predominant, and hydrocarbons evaporate and burn behind the flame front, causing a lesser effect on the flame dynamics. Full article
(This article belongs to the Special Issue Interdisciplinary Researches for Combustion Theory)
Show Figures

Figure 1

12 pages, 2511 KiB  
Article
The Influences of Emulsification Variables on Emulsion Characteristics Prepared through the Phase Inversion Temperature Method as Engine Fuel
by Cherng-Yuan Lin, Keng-Hung Lin and Hsuan Yang
Processes 2023, 11(4), 1091; https://doi.org/10.3390/pr11041091 - 4 Apr 2023
Cited by 3 | Viewed by 4215
Abstract
The effects of emulsification variables, such as surfactant type and heating/cooling emulsion processes, on the emulsification characteristics of silicone oil’s emulsions prepared by the phase inversion temperature method were investigated in this study. The water-in-oil (W/O) emulsions have been widely applied to enhance [...] Read more.
The effects of emulsification variables, such as surfactant type and heating/cooling emulsion processes, on the emulsification characteristics of silicone oil’s emulsions prepared by the phase inversion temperature method were investigated in this study. The water-in-oil (W/O) emulsions have been widely applied to enhance burning efficiency and reduce both pollutant emissions and fuel consumption. The silicone oil was emulsified with de-ionized water with the assistance of nonionic surfactants to form oil-in-water (O/W) emulsions. The hydrophilic–lipophilic balance (HLB) value of the Span 80 and Tween 20 surfactant mixture was set equal to 10 based on their weight proportions and the respective HLB values of the two surfactants. The experimental results show that the emulsions with the Span 80/Tween 20 surfactant mixture appeared to have a higher phase inversion temperature and a larger electrical conductance. On the other hand, it has a lower emulsification stability and a narrower range of phase inversion temperature than the emulsions prepared with a Brij 30 surfactant (polyoxyethylene (4) lauryl ether). The increase in surfactant concentration from 1 wt.% to 10 wt.% decreased the electrical conductance and phase inversion temperature while increasing the suspensibility and absorbance value for the emulsions prepared with either Span 80/Tween 20 mixture or Brij 30. Full article
Show Figures

Figure 1

13 pages, 2326 KiB  
Article
Oil–Water Separation on Hydrophobic and Superhydrophobic Membranes Made of Stainless Steel Meshes with Fluoropolymer Coatings
by Alexandra Melnik, Alena Bogoslovtseva, Anna Petrova, Alexey Safonov and Christos N. Markides
Water 2023, 15(7), 1346; https://doi.org/10.3390/w15071346 - 30 Mar 2023
Cited by 17 | Viewed by 3998
Abstract
In this work, membranes were synthesized by depositing fluoropolymer coatings onto metal meshes using the hot wire chemical vapor deposition (HW CVD) method. By changing the deposition parameters, membranes with different wetting angles were obtained, with water contact angles for different membranes over [...] Read more.
In this work, membranes were synthesized by depositing fluoropolymer coatings onto metal meshes using the hot wire chemical vapor deposition (HW CVD) method. By changing the deposition parameters, membranes with different wetting angles were obtained, with water contact angles for different membranes over a range from 130° ± 5° to 170° ± 2° and a constant oil contact angle of about 80° ± 2°. These membranes were used for the separation of an oil–water emulsion in a simple filtration test. The main parameters affecting the separation efficiency and the optimal separation mode were determined. The results reveal the effectiveness of the use of the membranes for the separation of emulsions of water and commercial crude oil, with separation efficiency values that can reach over 99%. The membranes are most efficient when separating emulsions with a water concentration of less than 5%. The pore size of the membrane significantly affects the rate and efficiency of separation. Pore sizes in the range from 40 to 200 µm are investigated. The smaller the pore size of the membranes, the higher the separation efficiency. The work is of great economic and practical importance for improving the efficiency of the membrane separation of oil–water emulsions. It lays the foundation for future research on the use of hydrophobic membranes for the separation of various emulsions of water and oil products (diesel fuel, gasoline, kerosene, etc.). Full article
Show Figures

Figure 1

26 pages, 3384 KiB  
Article
Optimal Water Addition in Emulsion Diesel Fuel Using Machine Learning and Sea-Horse Optimizer to Minimize Exhaust Pollutants from Diesel Engine
by Hussein Alahmer, Ali Alahmer, Malik I. Alamayreh, Mohammad Alrbai, Raed Al-Rbaihat, Ahmed Al-Manea and Razan Alkhazaleh
Atmosphere 2023, 14(3), 449; https://doi.org/10.3390/atmos14030449 - 23 Feb 2023
Cited by 53 | Viewed by 4756
Abstract
Water-in-diesel (W/D) emulsion fuel is a potentially viable diesel fuel that can simultaneously enhance engine performance and reduce exhaust emissions in a current diesel engine without requiring engine modifications or incurring additional costs. In a consistent manner, the current study examines the impact [...] Read more.
Water-in-diesel (W/D) emulsion fuel is a potentially viable diesel fuel that can simultaneously enhance engine performance and reduce exhaust emissions in a current diesel engine without requiring engine modifications or incurring additional costs. In a consistent manner, the current study examines the impact of adding water, in the range of 5–30% wt. (5% increment) and 2% surfactant of polysorbate 20, on the performance in terms of brake torque (BT) and exhaust emissions of a four-cylinder four-stroke diesel engine. The relationship between independent factors, including water addition and engine speed, and dependent factors, including different exhaust released emissions and BT, was initially generated using machine learning support vector regression (SVR). Subsequently, a robust and modern optimization of the sea-horse optimizer (SHO) was run through the SVR model to find the optimal water addition and engine speed for improving the BT and lowering exhaust emissions. Furthermore, the SVR model was compared to the artificial neural network (ANN) model in terms of R-squared and mean square error (MSE). According to the experimental results, the BT was boosted by 3.34% compared to pure diesel at 5% water addition. The highest reduction in carbon monoxide (CO) and unburned hydrocarbon (UHC) was 9.57% and 15.63%, respectively, at 15% of water addition compared to diesel fuel. The nitrogen oxides (NOx) emissions from emulsified fuel were significantly lower than those from pure diesel, with a maximum decrease of 67.14% at 30% water addition. The suggested SVR-SHO model demonstrated superior prediction reliability, with a significant R-Squared of more than 0.98 and a low MSE of less than 0.003. The SHO revealed that adding 15% water to the W/D emulsion fuel at an engine speed of 1848 rpm yielded the optimum BT, CO, UHC, and NOx values of 49.5 N.m, 0.5%, 57 ppm, and 369 ppm, respectively. Finally, these outcomes have important implications for the potential of the SVR-SHO approach to minimize engine exhaust emissions while maximizing engine performance. Full article
(This article belongs to the Special Issue Traffic Related Emission and Control)
Show Figures

Figure 1

23 pages, 5484 KiB  
Article
Applied Intelligent Grey Wolf Optimizer (IGWO) to Improve the Performance of CI Engine Running on Emulsion Diesel Fuel Blends
by Hussein Alahmer, Ali Alahmer, Razan Alkhazaleh, Mohammad Alrbai and Malik I. Alamayreh
Fuels 2023, 4(1), 35-57; https://doi.org/10.3390/fuels4010004 - 31 Jan 2023
Cited by 35 | Viewed by 3474
Abstract
Water-in-diesel (W/D) emulsion fuel is a potential alternative fuel that can simultaneously lower NOx exhaust emissions and improves combustion efficiency. Additionally, there are no additional costs or engine modifications required when using W/D emulsion fuel. The proportion of water added and engine speed [...] Read more.
Water-in-diesel (W/D) emulsion fuel is a potential alternative fuel that can simultaneously lower NOx exhaust emissions and improves combustion efficiency. Additionally, there are no additional costs or engine modifications required when using W/D emulsion fuel. The proportion of water added and engine speed is crucial factors influencing engine behavior. This study aims to examine the impact of the W/D emulsion diesel fuel on engine performance and NOx pollutant emissions using a compression ignition (CI) engine. The emulsion fuel had water content ranging from 0 to 30% with a 5% increment, and 2% surfactant was employed. The tests were performed at speeds ranging from 1000 to 3000 rpm. All W/D emulsion fuel was compared to a standard of pure diesel in all tests. A four-cylinder, four-stroke, water-cooled, direct-injection diesel engine test bed was used for the experiments. The performance and exhaust emissions of the diesel engine were measured at full load and various engine speeds using a dynamometer and an exhaust gas analyzer, respectively. The second purpose of this study is to illustrate the application of two optimizers, grey wolf optimizer (GWO) and intelligent grey wolf optimizer (IGOW), along with using multivariate polynomial regression (MPR) to identify the optimum (W/D) emulsion blend percentage and engine speed to enhance the performance, reduce fuel consumption, and reduce NOX exhaust emissions of a diesel engine operating. The engine speed and proportion of water in the fuel mixture were the independent variables (inputs), while brake power (BP), brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), and NOx were the dependent variables (outcomes). It was experimentally observed that utilizing emulsified gasoline generally enhances engine performance and decreases emissions in general. Experimentally, at 5% water content and 2000 rpm, the BSFC has a minimal value of 0.258 kJ/kW·h. Under the same conditions, the maximum BP of 11.6 kW and BTE of 32.8% were achieved. According to the IGWO process findings, adding 9% water to diesel fuel and running the engine at a speed of 1998 rpm produced the highest BP (11.2 kW) and BTE (33.3%) and the lowest BSFC (0.259 kg/kW·h) and reduced NOx by 14.3% compared with the CI engine powered by pure diesel. The accuracy of the model is high, as indicated by a correlation coefficient R2 exceeding 0.97 and a mean absolute error (MAE) less than 0.04. In terms of the optimizer, the IGWO performs better than GWO in determining the optimal water addition and engine speed. This is attributed to the IGWO has excellent exploratory capability in the early stages of searching. Full article
Show Figures

Figure 1

27 pages, 8835 KiB  
Article
Secondary Atomization of Fuel Oil and Fuel Oil/Water Emulsion through Droplet-Droplet Collisions and Impingement on a Solid Wall
by Anastasia Islamova, Pavel Tkachenko, Nikita Shlegel and Genii Kuznetsov
Energies 2023, 16(2), 1008; https://doi.org/10.3390/en16021008 - 16 Jan 2023
Cited by 6 | Viewed by 2994
Abstract
This paper presents findings from an experimental study investigating the secondary atomization of liquid fuel droplets widely used in the heat and power industry exemplified by fuel oil and environmentally promising fuel oil/water emulsion. The scientific novelty comes from the comparative analysis of [...] Read more.
This paper presents findings from an experimental study investigating the secondary atomization of liquid fuel droplets widely used in the heat and power industry exemplified by fuel oil and environmentally promising fuel oil/water emulsion. The scientific novelty comes from the comparative analysis of the critical conditions and integral characteristics of the secondary atomization of the liquid and composite fuels with the greatest potential for power plants. Here, we used two fuel atomization schemes: droplet–droplet collisions in a gas and droplets impinging on a heated solid wall. The temperature of the liquids under study was 80 °C. The velocities before collision ranged from 0.1 m/s to 7 m/s, while the initial droplet sizes varied from 0.3 mm to 2.7 mm. A copper substrate served as a solid wall; its temperature was varied from 20 °C to 300 °C. The main characteristics of droplet interaction were recorded by a high-speed camera. Regime maps were constructed using the experimental findings. It was established that the critical Weber number was several times lower when water and fuel oil droplets collided than during the collision of fuel oil droplets with 10 vol% of water. The secondary atomization of fuel oil/water emulsion droplets by their impingement on a heated solid wall was found to reduce the typical sizes of liquid fragments by a factor of 40–50. As shown in the paper, even highly viscous fuels can be effectively sprayed using primary and secondary droplet atomization schemes. It was established that the optimal temperature of the fuel oil to be supplied to the droplet collision zone is 80 °C, while the optimal substrate temperature for the atomization of fuel oil/water emulsion droplets approximates 300 °C. Full article
Show Figures

Figure 1

22 pages, 11627 KiB  
Article
EGR and Emulsified Fuel Combination Effects on the Combustion, Performance, and NOx Emissions in Marine Diesel Engines
by Elsayed Abdelhameed and Hiroshi Tashima
Energies 2023, 16(1), 336; https://doi.org/10.3390/en16010336 - 28 Dec 2022
Cited by 7 | Viewed by 3330
Abstract
Techniques such as exhaust gas recirculation (EGR) and water-in-fuel emulsions (WFEs) can significantly decrease NOx emissions in diesel engines. As a disadvantage of adopting EGR, the afterburning period lengthens owing to a shortage of oxygen, lowering thermal efficiency. Meanwhile, WFEs can slightly reduce [...] Read more.
Techniques such as exhaust gas recirculation (EGR) and water-in-fuel emulsions (WFEs) can significantly decrease NOx emissions in diesel engines. As a disadvantage of adopting EGR, the afterburning period lengthens owing to a shortage of oxygen, lowering thermal efficiency. Meanwhile, WFEs can slightly reduce NOx emissions and reduce the afterburning phase without severely compromising thermal efficiency. Therefore, the EGR–WFE combination was modeled utilizing the KIVA-3V code along with GT power and experimental results. The findings indicated that combining EGR with WFEs is an efficient technique to reduce afterburning and enhance thermal efficiency. Under the EGR state, the NO product was evenly lowered. In the WFE, a considerable NO amount was created near the front edge of the combustion flame. Additionally, squish flow from the piston’s up–down movement improved fuel–air mixing, and NO production was increased as a result, particularly at high injection pressure. Using WFEs with EGR at a low oxygen concentration significantly reduced NO emissions while increasing thermal efficiency. For instance, using 16% of the oxygen concentration and a 40% water emulsion, a 94% drop in NO and a 4% improvement in the Indicated Mean Effective Pressure were obtained concurrently. This research proposes using the EGR–WFE combination to minimize NO emissions while maintaining thermal efficiency. Full article
Show Figures

Figure 1

Back to TopTop