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Abstract: This study aims to assess the impact of the water ratio and nanoparticle concentration
of neat diesel fuel on the performance characteristics of and exhaust gas emissions from diesel
engines. The experimental tests were conducted in two stages. In the first stage, the effects of
adding water to neat diesel fuel in ratios of 2.5% and 5% on engine performance and emissions
characteristics were examined and compared to those of neat diesel at a constant engine speed of
3000 rpm under three different engine loads. A response surface methodology (RSM) based on a
central composite design (CCD) was utilized to simulate the design of the experiment. According to
the test results, adding water to neat diesel fuel increased the brake-specific fuel consumption and
reduced the brake thermal efficiency compared to neat diesel fuel. In the examination of exhaust
emissions, hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in the tested fuel
containing 2.5% of water were decreased in comparison to pure diesel fuel by 16.62%, 21.56%, and
60.18%, respectively, on average, through engine loading. In the second stage, due to the trade-off
between emissions and performance, the emulsion fuel containing 2.5% of water is chosen as the
best emulsion from the previous stage and mixed with aluminum oxide nanoparticles at two dose
levels (50 and 100 ppm). With the same engine conditions, the emulsion fuel mixed with 50 ppm of
aluminum oxide nanoparticles exhibited the best performance and the lowest emissions compared
to the other evaluated fuels. The outcomes of the investigations showed that a low concentration
of 50 ppm with a small amount of 11 nm of aluminum oxide nanoparticles combined with a water
diesel emulsion is a successful method for improving diesel engine performance while lowering
emissions. Additionally, it was found that the mathematical model could accurately predict engine
performance parameters and pollution characteristics.

Keywords: water diesel emulsion; nanoparticles; engine performance; emissions characteristics;
design of experiment; response surface method

1. Introduction

The use of diesel engines has exceeded that of gasoline engines in the vehicles industry
and power generation due to their greater reliability and capacity. In contrast, diesel engines sig-
nificantly contribute to environmental pollution, especially through substances that are harmful
to human health, like hydrocarbons (HC), carbon monoxide (CO), particulate matter (PM),
and nitrogen oxides (NOx). The use of exhaust gas recirculation (EGR), various fuel injection
techniques, and alternative fuels like biodiesel derived from vegetable oil and animal fat are
just a few of the numerous studies scientists continue to perform to decrease these harmful
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emissions [1]. Among these, due to its excellent ability to reduce hazardous emissions, es-
pecially NOx and PM, water diesel emulsion fuel has emerged as a favored alternative fuel
for diesel engines. Additionally, it can be used without engine changes [2]. The excessively
high temperature in the diesel engine promotes the generation of NOx gas through the
reaction of oxygen and nitrogen from the air. The presence of water in emulsion fuel helps
to lower NOx emissions by lowering the engine’s temperature [3].

Since diesel and water are immiscible, a small amount of surfactant is added to the
mixture of water and neat diesel fuel through high-speed stirring, ultrasonic mixing, or
other external forces to create a water–oil mixture known as a water–diesel emulsion [4,5].
The surfactant assists in creating stable water-in-fuel emulsions by reducing the interfacial
tension between the two substances [5]. Different types of surfactants, such as Span 20,
Span 60, Span 80, Tween 20, Tween 80, and Triton X100, with different ratios, have been
used in several studies [6–11].

Seifi et al. [5] examined the engine performance and exhaust emission parameters
using water percentages (2%, 5%, 8%, and 10% by volume) mixed with pure diesel fuel to
create a water–diesel emulsion. They observed a notable decrease in engine power and
torque when using emulsions, primarily attributable to the reduction in heating value.
They also observed that emulsions led to a reduction in engine NOx emissions, attributed
to the lowering of combustion temperatures compared to neat diesel fuel. Ithnin et al. [6]
studied the impact of water–diesel emulsion on the performance of and emissions from
a direct-injection diesel engine. Four samples of water–diesel emulsions were examined,
each containing varying water proportions (5%, 10%, 15%, and 20%) while maintaining
a constant surfactant content of 2% (Span 80). These samples were labeled E5, E10, E15,
and E20, respectively. Based on their results, E20 exhibited similar in-cylinder pressure
and heat release rates to pure diesel fuel, concurrently reducing NOx and PM emissions
significantly. In their study, Azimi et al. [7] studied water–diesel emulsions as a possible
solution to reduce engine pollution. The emulsion fuel varied in water content, ranging
from 0% to 10% by volume. Their findings indicated that emulsified diesel fuel containing
2% water content enhanced engine power and torque while reducing exhaust emissions.
Watanabe et al. [12] conducted experiments on a single-cylinder diesel generator using two
types of water–diesel emulsions with different water contents (10% and 20% by volume)
and 1% surfactant (Span 80). The test results revealed that emulsified fuels reduced NOx
and PM emissions by up to 51% and 14%, respectively. Alahmer et al. [13] focused on
assessing the engine’s performance and its environmental impact when running on both
pure diesel and emulsified fuel containing various water content levels (ranging from
5% to 30% by volume). During the experiments, the engine operated within a speed
range of 1000 to 3000 rpm. The results showed that emulsified fuel, while maintaining or
improving thermal efficiency and reducing NOx emissions, also increased brake-specific
fuel consumption. Furthermore, a higher water content in the emulsion contributed
to reduced nitrogen oxide emissions. However, it was noted that diesel emulsion fuel
produced higher CO2 emissions compared to pure diesel.

Researchers have recently become interested in adding nano additives to water–diesel
emulsions, which substantially impact the diesel engine’s operational characteristics [14].
In internal combustion engines, metal nanoparticles are frequently utilized in fuel as
nano additives [15]. Nanoparticles of metal oxides, such as aluminum oxide (Al2O3),
zinc oxide (ZnO), cerium oxide (CeO2), and others, are the focus of the majority of the
research on metal nanoparticles utilized in emulsified fuel at the present time [16]. These
nanoparticles’ benefits, such as their high oxygen content, high thermal conductivity, potent
catalytic function, quick combustion rate, and increased production of free radicals, make
them ideal for improving thermal efficiency, lowering fuel consumption, and reducing
harmful emissions [17].

Vali and Wani [14] performed research on the influence of a diesel–water emulsion
containing 88% diesel, 10% water, and 2% surfactants mixed with ZnO nanoparticles,
varying between 50 ppm and 100 ppm, on engine performance and emissions compared to



Designs 2024, 8, 3 3 of 24

neat diesel fuel and water–diesel emulsion fuel at different compression ratios. As a result,
a more significant improvement in BTE and BSFC was seen for emulsified fuels contained
ZnO nanoparticles compared to other test blends by increasing the engine’s compression
ratio. CO and HC emissions were reduced dramatically, but CO2 emissions were increased
for emulsified fuels containing ZnO nanoparticles. Basha et al. [18] examined a diesel
engine’s performance and emission characteristics when fueled with an emulsified mixture
composed of 83% diesel, 15% water, and 2% surfactants by volume. Alumina nanoparticles
were systematically introduced into the water–diesel emulsion fuel at 25, 50, and 100 ppm
mass concentrations. Their findings revealed a notable enhancement in engine perfor-
mance and reduced harmful emissions due to incorporating alumina nanoparticles into the
water–diesel emulsion fuel. In a study by Khatri and Goyal [19], the combined impact of sil-
icon dioxide (SiO2) nanoparticles and water–diesel fuel on the performance and emissions
of diesel engines was investigated. The base fuel, denoted as D94W5S1, consisted of 94%
diesel, 5% water, and 1% Span 80. SiO2 nanoparticles were introduced at concentrations of
25, 50, 75, and 100 ppm. Based on the experimental results, the test fuel containing 50 ppm
of SiO2, labeled as D94W5S1-Si50, emerged as the optimal configuration. This particular
configuration led to notable reductions in NOX, smoke opacity, hydrocarbon, and carbon
monoxide emissions of 52.52%, 29.32%, 69.69%, and 64.28%, respectively, when compared
to pure diesel under full load conditions. Anil et al. [20] aimed to address a reduction in
pollutants emanating from the exhaust of diesel engines while concurrently enhancing
performance. This was achieved by incorporating cobalt oxide (Co3O4) nanoparticles into
water-emulsified diesel. Emulsion blends were prepared with varying water concentrations
(5% and 10%) and nanoparticle dosages (50 ppm and 100 ppm). The experimental results
revealed that adding 100 ppm of cobalt oxide nanoparticles to the emulsified fuel led
to significant reductions of 23% in NOx, 33.3% in HC, 25% in CO, and 44.6% in smoke
emissions compared to pure diesel. Furthermore, BTE enhancements and BSFC reductions
were observed across all emulsion blends.

Response surface methodology (RSM) application is quickly becoming a crucial and
popular tool for tackling various industrial issues [21]. This approach is also considered
to be effective and less costly for analyzing the individual and combined elements of
experiment variables that affect output responses [21]. Compared to other optimization
methods, RSM shortens the time needed to finish the procedure by reducing the number of
tests and establishing a suitable test matrix [22].

The authors of this work have previously evaluated the influence of the addition
of aluminum oxide nanoparticles to diesel fuel on emissions and the performance of
an engine generator set using response surface methodology [23]. This study aims to
investigate diesel engines’ performance characteristics and emissions by mixing water,
Al2O3 nanoparticles, and diesel fuel at two stages of experimental work. Based on previous
studies, using a water–diesel emulsion effectively reduced NOx emission [1,3,6,24–31]. In
contrast, many studies showed a decrease in brake thermal efficiency (BTE) and an increase
in brake-specific fuel consumption (BSFC) with an increasing water ratio in the emulsion
fuel due to a lower heating value [32–38]. To combat this issue, Al2O3 nanoparticles
are chosen as the combustion enhancer and mixed with the water–diesel emulsion fuel.
The novelty of the current study is the fact that no previous study has optimized the
input variables of a diesel engine for improved performance and emission responses from
water–diesel emulsions with the addition of Al2O3 nanoparticles according to response
surface methodology approach.

2. Methods and Materials
2.1. The Experimental Strategy

The experimental investigations have been divided into two stages. In the first stage,
the impact of adding water with ratios of 2.5 and 5% to neat diesel fuel on engine per-
formance and emissions parameters was investigated and compared with those in neat
diesel. Based on improved engine performance and the possible reduction in emissions, the
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best emulsion fuel will be chosen. In the second stage, the best emulsion fuel, which was
experimentally selected in the first stage, is combined with aluminum oxide nanoparticles
at two dosage levels (50 and 100 ppm), and their impacts on the same engine will be
examined and compared to those of water diesel emulsion and neat diesel.

2.2. Water Diesel Emulsion Fuel Preparation

Two samples with low water ratios were selected based on the literature and prelimi-
nary experiments. This choice was made since increasing the emulsion’s water ratio tends
to reduce brake thermal efficiency and increase brake-specific fuel consumption. By volume,
the first sample, designated as E2.5, is composed of 94.5% diesel, 3.3% surfactant, and 2.5%
water. The second sample, E5, has a volume percentage of 92% diesel, 3% surfactant, and
5% water. The water–diesel emulsions were prepared using stirring and ultrasonication
phases. In the stirring step, 3% of Span 20 (Sorbitan monolaurate) by volume is added to
diesel as a surfactant using a magnetic stirrer for ten minutes at a speed of 2400 rpm. Then,
the distilled water is added gradually drop-by-drop into the mixture of surfactant and
diesel fuel for another 20 min. In the ultrasonication phase, the emulsion was placed in a
sonicator for one hour. Strong stirring effects are produced by this ultrasonication method,
which mixes the continuous (diesel) and dispersed (water) phases [39]. Figure 1 depicts the
process of making water–diesel emulsion. The real appearances of the prepared neat diesel
fuel and water–diesel emulsion fuels are presented in Figure 2.
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2.3. Nanoparticles Characteristics and Aluminum Oxide Nanoparticles Blended Water Diesel
Emulsion Fuel Preparation

The physical properties of Al2O3 nanoparticles, bought from the Nanotech Egypt
Company, are displayed in Table 1. Figure 3 depicts Al2O3 nanoparticles using transmission
electron microscopy (TEM). The nanoparticles were added to the mixture of diesel fuel
and surfactant at the start of the stirring phase to prepare nanoparticles-blended water–
diesel emulsion fuel. Then, the same preparation procedure was utilized, as discussed
in Section 2.2.
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Table 1. The physical properties of Al2O3 nanoparticles.

Item Specification

Chemical name Aluminum oxide (Al2O3)
Manufacturer Nanotech, Egypt

Appearance (Form) powder
Appearance (Color) White

Shape (TEM) Spherical-like Shape
Average particle size (TEM) 11 ± 2 nm
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2.4. Fuel Properties

Using the ASTM criteria for Egyptian diesel fuel provided in Table 2, it is assumed,
for testing purposes, that pure diesel has a density of 829 kg/m3 and a heating value of
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42,000 kJ/kg [23,40]. Additionally, it is assumed that water has a density of 1000 kg/m3

and that Span 20 has a density of 1032 kg/m3 [41]. The heating values for the water
and surfactant are assumed to be zero [42]. As shown in Table 3, the heating values and
densities of water–diesel emulsion fuel samples have been determined using the weighted
average approach [29,42–44]. Furthermore, in our work, it is assumed that the heating
value and density of aluminum oxide nanoparticles blended with water–diesel emulsion
fuel will not change due to the marginal effect; similar assumptions were made in earlier
studies [23,45,46].

Table 2. Egyptian diesel fuel’s technical specifications in compliance with ASTM standards [40].

Physical Property Value

Density at 15.56 ◦C
(
kg/m3) 829

Cetane Number 45
Flash Point (◦C) 75 ◦C

Kinematic Viscosity at 40 ◦C
(
mm2/s(cst)

)
2.8

Heating Value ( kJ/kg) 42,000

Table 3. Details of water–diesel emulsion fuels.

No. Fuel Designation Water (%) by Vol. Span 20 (%) by Vol. Diesel Fuel (%) by Vol. Density
kg/m3

Heating Value
kJ/kg

1 E2.5 2.5 3 94.5 839.365 39,690
2 E5 5 3 92 843.64 38,640

2.5. Experimental Apparatus and Procedure

The apparatus consists of a fuel supply, an electric load bank, an engine generator set,
and measuring apparatus. A schematic representation of the test rig is depicted in Figure 4.
The technical details of the engine and generator are provided in Table 4. To determine
the fuel consumption, a fuel burette and timer were utilized. For this, it was noted how
long it took to consume twenty milliliters of fuel and then the mass was divided by the
duration. The electric load was measured with the aid of a Tense-EM-06 digital multi-meter.
The BSFC and BTE values were determined for the electrical power of the generator load.
The exhaust emissions were measured by the Brain Bee-AGS668 emissions analyzer. The
technical details of the exhaust gas analyzers are listed in Table 5. EGT was monitored
using a thermocouple (K-type) installed in the exhaust pipe and an Arduino UNO R3
microcontroller linked to a MAX6675 analog-to-digital signal converter.

Table 4. The technical details of the engine-generator set.

Engine Type Single Cylinder, Four-Stroke Diesel Engine

Model 5GF-SKM2 (Lister)
Cooling system Force air cooled
Displacement 406 cm3

Bore 86 mm
Stroke lenght 70 mm
Rated power 9 hp
Rated speed 3000 rpm
Start system Electric start

Generator Type AC generator with two-poles
Voltage 220 VAC

Frequency 50 Hz
Rated output 5 kW

Maximum output 5.5 kW
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Table 5. The technical details of the emission analyzer.

Emissions Unit Resolution Range

CO % vol 0.01 0–9.99
CO2 % vol. 0.1 0–19.9
HC ppm 1 0–9999

NOX ppm 1 0–5000
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In the experiment, for warming up and establishing steady conditions, the engine
could continue to operate for ten minutes. With a partial engine load and a rated speed
of 3000 rpm, the experiment was run using an electric load bank with three different load
levels: 0.9, 1.8, and 2.7 kW. In many practical applications, diesel engines run under partial
load circumstances for much of their runtime. This is especially true when the engine
does not continuously operate at full power, such as industrial machinery or city driving.
Consequently, partial loads offer valuable insights into conditions that are applicable in real-
world scenarios. Once the engine’s operating state had stabilized, data on its performance
and exhaust emissions were collected. The average data were immediately entered into
the design expert program after being measured in triplicate throughout each run on the
same day. It was necessary to empty and clean the fuel burette with the fuel line before
switching to different fuel samples.

2.6. Measurement Uncertainty

Uncertainty analysis is a methodical and balanced series of steps used to determine
the errors in the collected experimental data [47]. In line with the uncertainty analysis
methodology, as outlined by Casseres et al. [48], the type A evaluation method was applied.
This method involves conducting a statistical analysis of a series of measurements. Subse-
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quently, to determine the most accurate estimate (xi) from a collection of measurements
(q1, q2, q3, . . . , qn) the following expression was employed:

xi = q =
1
n
·

n

∑
i=1

qi (1)

The variability within the set of measurements (q1, q2, q3, . . . , qn) is established by
computing the standard deviation (S).

S =

√
1

n − 1
·

n

∑
i=1

(qi − q)2 (2)

The standard uncertainty is derived by computing the average experimental standard
deviation u(xi).

u(xi) =
1√
n
·
√

1
n − 1

·
n

∑
i=1

(qi − q)2 (3)

where ‘n’ signifies the number of measurements performed repeatedly. The overall uncer-
tainty U(overall) regarding the engine’s performance and emission parameters is computed
utilizing the subsequent equation [47]:

U(overall) = ±
√

Uncertainty of %
(

NOx2 + HC2 + CO2
2 + CO2 + EGT2 + BSFC2 + BTE2

)
(4)

The uncertainty of each variable and the overall uncertainty of the experiment at two
stages are presented in Table 6.

Table 6. Experimental test uncertainty.

Variable Uncertainty [%] at Stage I Uncertainty [%] at Stage II

NOX ±0.8 ±1.5%
HC ±1.5 ±1.8%
CO2 ±0.4 ±0.3%
CO ±6.8 ±7.1%
EGT ±0.2% ±0.1%
BSFC ±0.6% ±0.6
BTE ±0.6% ±0.6%

U(overall) ±7.1 ±7.6

2.7. RSM Modeling

In the 1950s, Box and associates created the response surface methodology [49]. RSM
is a computer-based application used for modeling and optimizing internal combustion
engines and has gained recognition across several fields. This technique calculates and max-
imizes the effects and magnitudes of various input elements on the engine’s response [50].
In RSM modeling, a quadratic polynomial equation, as in Equation (5), is typically used to
explain the relationship between the input and output parameters:

y = β0 + ∑k
i=1 βixi + ∑k

i=1 ∑k
j≥i βijxixj + ∑k

i=1 βiix2
i + ε (5)

where Y is the predicted output response for emission characteristics and engine perfor-
mance (i.e., HC, NOx, CO, CO2, EGT, BSFC, and BTE), k is the number of factors (k = 2 in
this work), xi and xj are independent factors, and ε is error; β0 constant, βi, βii, and βij are
linear, quadric, and interaction coefficients, respectively [51]. The experimental plan for
RSM was created using the Design Expert Software version 13. The software was also
utilized to analyze data gathered from experiments. A central composite design (CCD)
was employed to examine the relationship between the responses and several experimental
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factors. The most popular type of response surface is a CCD. As it may be applied to build
on earlier factorial experiments by adding axial and center points, CCD is beneficial in
chronological experimental work [21]. In addition, the response surface method uses fewer
experimental groups, which can save research expenses [52]. The flow chart in Figure 5
illustrates our thorough research process.
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3. Results and Discussions
3.1. Models Assessment

CCD is composed of thirteen runs with five replicated center points in order to
evaluate the pure error. In the first stage of the experiment, water ratio and engine load
were employed as two independent variables. There were three levels used for each
independent variable, −1, 0, and +1, in order to construct models for the prediction of
HC, NOx, CO, CO2, EGT, BSFC, and BTE. In Table 7, the input variables and their values
are shown.

Table 7. Experimental variables and their levels for stage I based on CCD.

Experimental Design Variables Unit Code Levels

Low (−1) Central (0) High (1)

Water ratio % A 0 2.5 5
Engine load kW B 0.9 1.8 2.7

In the second stage of the experiment, E2.5 is selected as the best emulsion from the
previous stage, due to the trade-off between emissions and performance; it was combined
with aluminum oxide nanoparticles at two dosage levels (50 and 100 ppm) and named
E2.5 + 50Al2O3 and E2.5 + 100Al2O3. Table 8 shows the independent variables and their
ranges in the second stage.

The experimental design data for stages I and II are tabulated in Tables 9 and 10. In
the two stages of experimental work, to determine the variables and their interactions that
significantly affect the outcomes, analysis of variance (ANOVA) is employed. The various
response parameters, such as HC, NOx, CO, CO2, EGT, BSFC, and BTE, are tabulated
in Tables 11 and 12 using analysis of variance. The tables show that all models can be
considered significant because their p-values are less than 0.05 [52]. How well the experi-
mental data matches the models is demonstrated by the coefficient of determination (R2)



Designs 2024, 8, 3 10 of 24

value [53]. The R2 values for HC, NOx, CO, CO2, EGT, BSFC, and BTE were 0.9360, 0.9992,
0.8134, 0.9987, 0.9997, 0.9969, and 0.9976, respectively, in the first stage, and were 0.9443,
0.9867, 0.8315, 0.9989, 0.9994, 0.9986, and 0.9971 in second stage, which, when compared to
the experimental results, function as highly exact model consequences. Except for the CO
model (R2 is more than 80%), all responses have R2 values more than 90%. An R2 value
near unity (1.0) indicates that our constructed model is highly standard [54]. Predicted
R2 and adjusted R2 values are useful metrics for modeling accuracy [55]. Since their values
are within 0.20 of one another for all models, the adjusted R2 and predicted R2 for the
models have an acceptable degree of agreement [56]. For all models, in terms of pure error,
the F value (the lack of fit) shows that it is not significant. The model fit is sufficient if there
is no significant lack of fit [57]. All models should be utilized to explore the design space
because the obtained signal-to-noise ratios (Adequate Precision) for the models are more
than four [58]. Figures 6 and 7 display the relationship between the predicted and actual
values. They show how closely the values of the actual and expected data coincide. This
implies that the model is significant. Regression analysis, which entails fitting the response
into the polynomial model, was used to examine all the responses. Tables 13 and 14 provide
the final empirical model equations for HC, NOx, CO, CO2, EGT, BSFC, and BTE in terms
of coded factors in stages I and II.

Table 8. Experimental design variables and their levels for stage II based on CCD.

Experimental Design Variables Unit Code Levels

Low (−1) Central (0) High (1)

Nanoparticles concentration in E2.5 fuel ppm A 0 50 100
Engine load kW B 0.9 1.8 2.7

Table 9. The experimental design data from stage I.

Input Variables Emission Parameters Performance Parameters

Run Water Ratio
(%)

Load
(kW) HC (ppm) NOx

(ppm)
CO

(% Vol.)
CO2

(% Vol.)
EGT
(◦C)

BSFC
(g/kWh)

BTE
(%)

1 2.5 2.7 18 53 0.04 6.2 299 392.7 23.10
2 2.5 1.8 17 42 0.03 4.9 256 524.6 17.29
3 5 2.7 19 50 0.05 6.1 297 424.5 21.95
4 2.5 1.8 16 42 0.04 4.8 257 516.5 17.56
5 2.5 1.8 17 42 0.03 4.9 256 508.7 17.83
6 2.5 0.9 16 31 0.05 3.7 209 754.5 12.02
7 0 1.8 20 104 0.05 4.7 259 480.6 17.84
8 5 0.9 16 29 0.05 3.7 207 843.6 11.04
9 0 0.9 18 83 0.06 3.6 210 698.1 12.28
10 0 2.7 23 127 0.05 6 300 362.4 23.65
11 2.5 1.8 16 41 0.04 4.9 258 516.5 17.56
12 2.5 1.8 17 43 0.04 4.9 257 524.6 17.29
13 5 1.8 18 40 0.04 4.8 256 544.3 17.12

Table 10. The experimental design data from stage II.

Input Variables Emission Parameters Performance Parameters

Run Nanoparticles Conc. in
E2.5 Fuel (ppm)

Load
(kW) HC (ppm) NOx

(ppm)
CO

(% Vol.)
CO2

(% Vol.)
EGT
◦C

BSFC
(g/kWh)

BTE
(%)

1 50 2.7 15 41 0.04 6.2 285 355.3 25.53
2 50 1.8 14 33 0.03 4.9 244 466.3 19.45
3 100 2.7 16 46 0.04 6.2 286 373.1 24.97
4 50 1.8 14 33 0.02 4.9 244 466.3 19.45
5 50 1.8 13 32 0.03 4.9 243 479.6 18.91
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Table 10. Cont.

Input Variables Emission Parameters Performance Parameters

Run Nanoparticles Conc. in
E2.5 Fuel (ppm)

Load
(kW) HC (ppm) NOx

(ppm)
CO

(% Vol.)
CO2

(% Vol.)
EGT
◦C

BSFC
(g/kWh)

BTE
(%)

6 50 0.9 12 22 0.04 3.8 200 714.4 12.70
7 0 1.8 17 42 0.03 4.9 258 524.6 17.56
8 100 0.9 15 23 0.04 3.8 201 737.9 12.63
9 0 0.9 16 31 0.05 3.7 209 754.5 12.28
10 0 2.7 18 53 0.04 6.2 299 392.7 23.10
11 50 1.8 13 34 0.03 5 245 466.3 19.45
12 50 1.8 13 35 0.03 4.9 244 472.9 19.18
13 100 1.8 15 37 0.03 4.9 244 486.6 19.15

Table 11. Model evaluation for stage I.

Response
Emission Parameters Performance Parameters

HC NOx CO CO2 EGT BSFC BTE

p-value <0.0001 <0.0001 0.0172 <0.0001 <0.0001 <0.0001 <0.0001
F value (Lack of Fit) 1.24 1.94 0.2036 0.6590 0.4729 3.59 1.64

Coefficient of Determination (R2) 0.9360 0.9992 0.8134 0.9987 0.9997 0.9969 0.9976
Adjusted (R2) 0.9040 0.9987 0.6801 0.9977 0.9995 0.9946 0.9959
Predicted (R2) 0.7465 0.9950 0.5246 0.9944 0.9991 0.9771 0.9859

Adequate Precision 19.2006 131.7593 7.4351 92.5698 185.965 67.0173 71.1875
Standard Deviation 0.0713 0.0646 0.0119 0.0413 0.7361 0.2129 0.2551

Mean 4.21 7.28 0.2084 4.86 255.46 23.19 17.43

Table 12. Model evaluation for stage II.

Response
Emission Parameters Performance Parameters

HC NOx CO CO2 EGT BSFC BTE

p-value 0.0003 <0.0001 0.0123 <0.0001 <0.0001 <0.0001 <0.0001
F value (Lack of Fit) 0.9432 1.66 0.1535 0.2807 3.41 1.50 2.67

Coefficient of Determination (R2) 0.9443 0.9867 0.8315 0.9989 0.9994 0.9986 0.9971
Adjusted (R2) 0.9045 0.9772 0.7112 0.9981 0.9989 0.9976 0.9950
Predicted (R2) 0.7187 0.9175 0.6024 0.9968 0.9954 0.9919 0.9788

Adequate Precision 15.6600 35.1651 6.8548 98.8349 145.399 91.1282 63.3320
Standard Deviation 0.5410 1.29 0.0113 0.0372 0.0323 6.56 0.0361

Mean 14.69 35.54 0.1849 4.95 15.67 514.65 4.31

Table 13. Final equations for stage I.

Quadratic
Model Equation Transformation Response

HC (ppm) (6) Square Root Sqrt (HC) = 4.08742 − 0.151511 × A + 0.192455 × B − 0.048573 × AB + 0.264602 × A2

NOx (ppm) (7) Square Root Sqrt (NOx) = 6.47996 − 1.96619 × A + 0.926207 × B − 0.118273 × AB + 1.78284 × A2 −
0.0545217 × B2

CO (% vol.) (8) Square Root Sqrt (CO) = 0.190024 − 0.0074915 × A −0.0074915 × B + 0.00533554 × AB + 0.019923 × A2 +
0.019923 × B2

CO2 (% vol.) (9) None CO2 = 4.87586 + 0.05 × A + 1.21667 × B + 1.05542 × 10−15 × AB −0.115517 × A2 +
0.0844828 × B2

EGT ◦C (10) None EGT = 256.966 − 1.5 × A + 45 × B + 9.15884× 10−14 × AB + 0.12069 × A2 − 3.37931 × B2

BSFC (g/kWh) (11) Square Root Sqrt (BSFC) = 22.726 + 0.932899 × A − 3.91319 × B − 0.264493 × AB − 0.00613766 × A2 +
1.00993 × B2

BTE (%) (12) None BTE = 17.5473 − 0.609208 × A + 5.55921 × B − 0.117002 × AB 0.174233 × A2 − 0.0908004 × B2
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Table 14. Final equations for stage II.

Quadratic
Model Equation Transformation Response

HC (ppm) (13) None (HC) = 13.3793 − 0.833333 × A + 1 × B − 0.25 × AB + 2.67241 × A2 + 0.172414 × B2

NOx (ppm) (14) None (NOx) = 33.3103 − 3.33333 × A + 10.6667 × B + 0.25 × AB + 6.41379 × A2 − 1.58621 × B2

CO (% vol.) (15) Square Root Sqrt (CO) = 0.166911 − 0.00393447 × A − 0.00393447 × B + 0.0059017 × AB + 0.00613707 ×
A2 + 0.032932 × B2

CO2 (% vol.) (16) None CO2 = 4.92069 + 0.0166667 × A + 1.21667 × B − 0.025 × AB − 0.0224138 × A2 +
0.0775862 × B2

EGT ◦C (17) Square Root Sqrt (EGT) = 15.6237 − 0.183558 × A + 1.38478 × B − 0.0251741 × AB + 0.209543 × A2 −
0.119857 × B2

BSFC (g/kWh) (18) None BSFC = 0471.064 − 12.3718 × A − 180.953 × B − 0.763 × AB + 32.6036 × A2 + 61.8281 × B2

BTE (%) (19) Square Root Sqrt (BTE) = 4.38965 + 0.0709963 × A + 0.705923 × B + 0.0355258 × AB − 0.101044 × A2 −
0.0761533 × B2
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It should be noted that, as per [59], the measurement error in the used exhaust gas
analyzer (Brain Bee-AGS668 ) is ±5% as a relative error for CO, CO2, and HC. Herin,
Tables 9 and 10 show that the difference in the responses’ values of this study, due to
interactions between the parameters, reveals a small difference compared to the ±5% device
error. While the measuring device has a higher error margin, the consistent replication
of results across multiple trials underscores the reliability of our findings. In this study,
statistical analysis confirms that the obtained results are highly significant, with a p-value
much lower than the conventional value of 0.05. In addition, the evaluation of diesel
engines primarily centers on NOx emissions, in the sense that CO and HC are not the
primary focus as they are generated in low quantities in diesel engines compared to gasoline
engines. In our study, the differences between NOx responses were quite large, which
is not surprising owing to the addition of water to the neat diesel. Similar study have
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reported the same limitation posed by the measurement error using the same gas analyzer
model [60].

It was also observed that the effect of additives on the obtained CO and CO2 values
was small, this was most likely due to the low resolution of the exhaust gas analyzer we
used. This suggests that a more accurate exhaust gas analyzer should be used [61].

3.2. Analysis of Emissions Characteristics
3.2.1. HC Emissions

Incomplete combustion of the hydrocarbon fuel results in HC emissions. In general,
the amount of hydrocarbons (HC) in exhaust gases is given as the total hydrocarbons
concentration in parts per million carbon atoms [62]. Figure 8a,b present (3D) contour plot
graphs (both stage I and II results) for the HC emissions response with respect to change
in independent variables. Both Figures show that the HC curves gradually increase with
the increase in engine load. This pattern might result from greater loads having a richer
fuel–air mixture [63,64]. In stage I, Figure 8a shows the interactions between the water ratio
in the emulsion and the engine load for HC emissions. Due to a lack of oxygen content and
incomplete combustion, pure diesel fuel generated large amounts of HC emissions [65].
With the addition of water, there is a decrease in HC emissions. This is probably because
adding water to the emulsion fuel improves air–fuel mixing, which is a benefit of micro-
explosion occurrences [39]. The value of HC is 18 and 19 ppm when utilizing E2.5 and E5,
respectively, at a maximum test load, as opposed to 23 for pure diesel. At stage II, regarding
the influence of nanoparticles concentration in E2.5 fuel, it can be seen from Figure 8b
that there is a significant reduction in HC emission compared to other tested fuels. This
might be the result of Al2O3 nanoparticles’ shorter ignition delay and improved ignition
properties, which enhance the burning action by acting as an essential catalyst and oxygen
buffer [8,66–68]. Additionally, the nanoparticles’ activation energy boosts the combustion
of the in-cylinder carbon particles at the cylinder wall, which lowers HC emissions [69].
HC for E2.5 + 50Al2O3 is 15 ppm at the maximum test load, whereas it is 16 ppm for
E2.5 + 100Al2O3.
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3.2.2. NOx Emissions

NOx is the result of the reaction between NO and NO2. NO2 has a substantially
higher toxicity than NO. Unlike NO2, which is dark in color and smells strongly, NO is
an uncolored, odorless gas [70]. By oxidating nitrogen in accordance with the Zeldovich’s
mechanism, NOx is formed. The primary factors influencing NOx generation are oxy-
gen availability, combustion temperature, and combustion time [14]. As can be observed
in Figure 9a,b, increasing engine load at two stages led to a rise in NOx emissions lev-
els because the combustion temperature inside the combustion chamber increased [71].
Figure 9a displays a three-dimensional surface plot of NOx emissions vs. engine load,
emulsified fuels, and neat diesel. It is evident that decreasing the NOx emissions by increas-
ing the water content of the emulsion fuel has a considerable impact. This can be associated
with the combustion process absorbing latent heat of water evaporation, which causes the
peak flame temperature in the combustion enclosure to decrease [28,72,73]. Additionally,
it is also true that, as the percentage of water in fuel increases, less diesel is used per unit
volume of fuel, which lowers emissions and limits NOx generation. Furthermore, higher
water content increases the likelihood that extra oxygen will be utilized during the water
ionization process via the creation of hydroxyl (OH) radicals, which reduces the formation
of NOx [29]. The maximum NOx emission values for neat diesel, E2.5, and E5 are 127 ppm,
53 ppm, and 50 ppm, respectively, at the maximum test load. As illustrated in Figure 9b,
adding Al2O3 nanoparticles to water–diesel emulsion fuel (E2.5) further reduces NOx
emissions. The possible reason for NOx reduction may be the ability of the nanoparticles to
reduce the ignition delay and heat transport by offering a high surface area-to-volume ratio,
which causes rapid heat transfer from the flame to the water and lowers the temperature
inside the cylinder [8,74]; at maximum test load, the results showed NOx emissions of
41 ppm for E2.5 + 50Al2O3 and 46 ppm for E2.5 + 100Al2O3.
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3.2.3. CO Emissions

When hydrocarbon fuels burn incompletely inside the combustion chamber, a toxic
compound known as carbon monoxide is created [75]. As the air–fuel ratio declines below
the stoichiometric value, the CO emissions rise. At the stoichiometric air–fuel ratio, when a
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homogenous mixture is burned, the amount of CO in the exhaust output is negligible [63].
As shown in Figure 10a,b, the CO emissions for all tested fuels decreased from 0.9 kW to
1.8 kW of engine load and again increased to a final load of 2.7 kW. According to Venkanna
and Reddy’s [63] explanation for a similar trend, when compared to the 0.9 kW load,
CO emissions decreased at the 1.8 kW load because the temperature increased while the
absolute air–fuel ratio decreased, remaining higher than the stoichiometric value. Despite
the cylinder temperature and absolute air–fuel ratio being somewhat higher than the
stoichiometric ratio, CO emissions increased at a load of 2.7 kW. This is because incomplete
combustion occurs in certain pockets in the chamber where the absolute air–fuel ratio is
less than the stoichiometric value. The relationships between engine load and water ratio
for CO emissions are shown in Figure 10a. It was found that adding water to neat diesel
reduced CO emissions slightly, especially for the E2.5 fuel sample. The reason for this
could be the micro explosion, resulting in more complete combustion [76]. In addition,
the presence of oxygen molecules in the fuel composition of an emulsion might trigger
the transformation of CO into CO2, resulting in a decrease in CO [64]. Additionally, it
was found that the addition of nanoparticles to E2.5 fuel was similar. Furthermore, the
E2.5 + 50Al2O3 fuel produced less CO emissions at all load conditions. When combustion
occurs, secondary atomization is produced by the catalytic effect caused by nanoparticles.
Carbon monoxide emissions are further decreased by this subsequent atomization [77].
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3.2.4. CO2 Emissions

One sign that the combustion inside the combustion chamber is complete is the higher
production of CO2. In general, incomplete combustion lowers CO2 and raises HC and
CO [28,78]. Since CO2 is a greenhouse gas, there is a strong need to reduce emissions, even
though it is normally exempt from emission regulations and is not considered harmful [79].
The impact of engine load on CO2 for all tested fuel samples is presented in Figure 11a,b.
For all fuel samples, the CO2 increased linearly with the load due to high combustion
temperatures and rates of oxidization [80]. In addition, no significant difference was found
in the case of using a water–diesel emulsion or the addition of nanoparticles to E2.5 fuel
as compared to pure diesel fuel. Furthermore, the marginal increase in CO2 is a result of
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emulsified fuels’ higher oxygen atom content, which leads to an improved combustion
process [78,81].
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3.3. Analysis of Engine Performance Parameters
3.3.1. EGT

Exhaust gas temperature (EGT) is an important parameter for engine performance
and indicates the combustion quality inside the combustion chamber [82,83]. In internal
combustion engines, an extremely high EGT is undesirable. Considering that it might
harm the engine permanently, the EGT is therefore monitored in investigation studies on
alternative fuels [51]. As shown in Figure 12a,b, an increase in the EGT with increasing
load was noticed for all tested fuels since the engine needed more fuel to produce the
additional power required to handle the increased loading [84]. The EGT decreased as the
water percentage increased in the emulsified fuel, as presented in Figure 12a. The water’s
ability to absorb heat can lighten the drop in exhaust gas temperature. Water evaporation
and the average cylinder temperature after injection and before ignition fall as the water
content in the emulsion fuel increases, meaning that the latent heat in the water will cool
the charge [32,76]. For stage II, Figure 12b shows the inclusion of Al2O3 in a water–diesel
emulsion. It is clear from the Figure that the EGT decreased further due to the catalytic
impact and accelerated combustion [66,85]. The lowest EGT measured at the maximum test
load for E2.5 + 50Al2O3 was 285 °C, while the neat diesel, E2.5, E5, and E2.5 + 100Al2O3
exhibited EGT values of 300, 299, 297, and 286 °C, respectively.

3.3.2. BSFC

The definition of the BSFC is the total fuel flow rate per unit of generated power
(g/kWh) [86]. The primary factors contributing to the BSFC are the air/fuel ratio, volatile
nature, density, calorific value, and cetane number of the fuel [87]. Figure 13a,b presents
the variation in BSFC against engine load, water ratio, and nanoparticles’ concentration
in E2.5 fuel. For all tested fuel samples, it was found that the BSFC decreased as the load
increased. This behavior is explained by a greater total energy discharge at higher loads
with a constant frictional power loss; so, net power output increases and BSFC decreases.
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Another explanation would be that higher cylinder pressure and temperature (at high
loads) improve combustion efficiency [35]. With an increasing water ratio in fuel emulsion,
there is also an increase in BSFC, as presented in Figure 13a. As emulsified fuels have a
lower heating value, a higher mass of fuel flow is necessary to produce an identical fuel
energy input [38,66]. The existence of oxide nanoparticles in E2.5 fuel improved the BSFC,
as shown in Figure 13b. This could be due to shortened ignition delay characteristics,
enhanced surface-area-to-volume ratio, and increased heat transfer rate [8,39,66,74]. In
addition, when a nanoparticle acts as a source of oxygen, it causes complete combustion,
which releases more energy and uses less fuel [8]. For E2.5 + 50Al2O3, the minimum BSFC
observed at the maximum test load was 355.3 g/kWh, whereas it was 362.4, 392.7, 424.5,
and 373.1 g/kWh for the neat diesel, E2.5, E5, and E2.5 + 100Al2O3, respectively.
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3.3.3. BTE

The engine’s ability to convert the fuel’s chemical energy into productive work is
evaluated by brake thermal efficiency. This value is computed by dividing the engine’s
braking power by the energy input to the system [8,88]. For all tested fuel samples, BTE
increases linearly as the load increases, as seen in Figure 14a,b. There is a decrease in BTE
with increasing water ratio in emulsion fuel, as seen in Figure 14a. Since the water has no
calorific value, the mixture has a lower heating value, which is the main cause of the BTE
value decreasing as the concentration of water in the diesel increases [33]. The influence of
nanoparticles in E2.5 fuel is well presented in Figure 14b as compensating for the lower
heating value. The E2.5 + 50Al2O3 achieved the highest BTE under all load conditions. This
is most likely due to the greater surface-area-to-volume ratio and improved combustion
properties of nanoparticles, which boost the fuel’s burning efficiency by enabling extra fuel
to react with air [66]. The BTE observed for E2.5 + 50Al2O3 at maximum test load was
25.53%, while the BTEs for the neat diesel, E2.5, E5, and E2.5 + 50Al2O3 were 23.65, 23.10,
21.95, and 24.31, respectively.
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4. Conclusions

The main objective of this study was to improve engine performance and reduce ex-
haust emissions by utilizing water–diesel emulsions and aluminum oxide nanoparticles in
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a two-stage experimental framework facilitated by response surface methodology (RSM). In
the first stage, experiments were conducted to assess the impact of water–diesel emulsions
on diesel engine performance and emissions at various loads relative to the base fuel. Water
was introduced at varying ratios of 2.5% and 5% in the base fuel. The significant results
from this stage are as follows:

• Model analysis indicated the stability of each response model, with all p-values being
less than 0.05. Additionally, HC, NOx, CO, CO2, EGT, BSFC, and BTE exhibited
coefficient determination (R2) values of 0.9360, 0.9992, 0.8134, 0.9987, 0.9997, 0.9969,
and 0.9976, respectively. The predicted R2 and adjusted R2 values differed by less
than 0.2, signifying the robustness of both the model and the data.

• Performance analysis revealed that, due to the lower heating value of the emulsion,
brake specific fuel consumption increased with an escalating water ratio, while brake
thermal efficiency decreased.

• In terms of exhaust emissions analysis, the E2.5 fuel demonstrated average reductions
of 60.18% for NOx, 16.62% for HC, and 21.56% for CO throughout engine loading
compared to pure diesel fuel.

Overall, while water–diesel emulsion fuel proved efficient in pollutant reduction, it did
not enhance engine performance. In the second stage, owing to a trade-off between emis-
sions and performance, E2.5 was identified as the optimal emulsion from the previous stage
and blended with aluminum oxide nanoparticles at two concentrations (50 and 100 ppm).
Conclusions drawn from this stage include:

• Model analysis showed a p-value below 0.05 for every response model, with the
corresponding R2 values for HC, NOx, CO, CO2, EGT, BSFC and BTE being 0.9443,
0.9867, 0.8315, 0.9989, 0.9994, 0.9986, and 0.9971, respectively. Additionally, the mini-
mal difference between predicted R2 and adjusted R2 values (below 0.2) indicates the
reliability of the models.

• Exhaust emissions analysis revealed that, on average, throughout engine loading,
E2.5 + 50Al2O3 fuel accomplished a substantial reduction in NOx (69.70%), HC (33.37%),
and CO (32.44%) compared to pure diesel fuel.

• Performance analysis indicated a 7.94% increase in brake thermal efficiency for
E2.5 + 50Al2O3 compared to pure diesel fuel at maximum test load.

The findings of this study underscore the exceptional efficacy of the E2.5 + 50Al2O3
blend, showcasing a discernible advancement in both engine performance and emission
reduction compared to a spectrum of other investigated fuels. This marked superiority
positions our research at the forefront of contemporary endeavors in the realm of alternative
fuel formulations for internal combustion engines. The nuanced integration of water–diesel
emulsions, particularly in the form of the E2.5 variant, coupled with the judicious addition
of aluminum oxide nanoparticles at the optimized concentration of 50 ppm, represents
a novel and distinctive approach. Our confidence in the current results and models,
as presented in the manuscript, is firmly recognized. The analysis conducted provides
valuable insights and establishes a foundational understanding of the correlations between
the studied additives and engine parameters. This work serves as a significant step in
exploring the combined impact of nanoparticles and water–diesel emulsions on diesel
engines. Moving forward, further research is indeed essential to deepen this understanding.
Future studies should focus on employing more precise exhaust gas analyzers and fuel
consumption meters to refine the accuracy of the findings. Expanding the scope to include
a variety of engines and test stands is also recommended to ensure a comprehensive
evaluation of torque and other vital parameters. Such extended research endeavors will
not only validate and enhance the current conclusions but also contribute substantially to
the field of engine performance and additive efficiency.



Designs 2024, 8, 3 21 of 24

Author Contributions: Conceptualization, A.M. (A. Mostafa) and M.M.; methodology, A.M. (A. Mostafa)
and A.M. (Ahmad Mustafa); software, A.M. (A. Mostafa) and A.M. (Ahmad Mustafa); validation, I.Y.;
formal analysis, A.M. (A. Mostafa) and M.M.; investigation, I.Y. and A.M. (Ahmad Mustafa); resources,
M.M. and I.Y.; data curation, A.M. (A. Mostafa) and M.M; writing—original draft preparation, A.M.
(A. Mostafa); writing—review and editing, M.M., I.Y. and A.M. (Ahmad Mustafa); visualization,
I.Y.; supervision, M.M., I.Y. and A.M. (Ahmad Mustafa). All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflict of interest.

References
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