Integrated Process of Biosurfactant Production by Bacillus atrophaeus ATCC-9372 Using an Air-Lift Bioreactor Coupled to a Foam Fraction Column
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Culture Conditions
2.2. Reactor and Separator Design
2.3. Fermentation Conditions
2.4. Analytical Determinations
3. Results and Discussion
3.1. Biosurfactant Production
3.2. Biosurfactant Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vanjani, S.J.; Upasani, V.N. Criticall review on biosurfactant analysis, purification and characterization using rhamnoolipid as a model biosurfactan. Bioresour. Technol. 2017, 232, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.S.; Hussein, I.A.; Sultan, A.S. Review on surfactant flooding: Phase behavior, retention, IFT, and field applications. Energy Fuels 2017, 31, 7701–7720. [Google Scholar] [CrossRef]
- Singh, P.; Patil, Y.; Rale, V. Biosurfactant production: Emerging trends and promising strategies. J. Appl. Microbiol. 2018, 126, 2–13. [Google Scholar] [CrossRef]
- Farias, B.B.B.; Almeida, F.C.G.; Silva, I.A.; Souza, T.C.; Meira, H.M.; Silva, R.C.F.S.; Luna, J.M.; Santos, V.A.; Converti, A.; Banat, I.M.; et al. Production of green surfactants: Market prospects. Electron. J. Biotechnol. 2021, 51, 28–29. [Google Scholar] [CrossRef]
- Wu, B.; Xiu, J.; Yu, L.; Huang, L.; Yi, L.; Ma, Y. Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs. Sci. Rep. 2022, 12, 7785. [Google Scholar] [CrossRef]
- Routhu, S.R.; Nagarjuna Chary, R.; Shaik, A.B.; Prabhakar, S.; Ganesh Kumar, C.; Kamal, A. Induction of apoptosis in lung carcinoma cells by antiproliferative cyclic lipopeptides from marine algicolous isolate Bacillus atrophaeus strain AKLSR1. Process Biochem. 2019, 79, 142–154. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Zang, T.; Wei, J.; Wu, H.; Wei, C.; Qiu, G.; Li, F. A biosurfactant-producing Pseudomonas aeruginos S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Bioresour. Technol. 2019, 281, 421–428. [Google Scholar] [CrossRef]
- Moshtagh, B.; Hawboldt, K.; Zhang, B. Biosurfactant production by native marine bacteria (Acinetobacter calcoaceticus P1-1A) using waste carbon sources: Impact of process conditions. Can. J. Chem. Eng. 2012, 9, 2386–2397. [Google Scholar] [CrossRef]
- Ferreira, T.F.; Martins, F.F.; Cayres, C.A.; Amaral, P.F.F.; Azevedo, D.A.; Coelho, M.A.Z. Biosurfactant production from the biodegradation of n-paraffins, isoprenoids and aromatic hydrocarbons from crude petroleum by Yarrowia lipolytica IMUFRJ 50682. Fermentation 2023, 9, 21. [Google Scholar] [CrossRef]
- Khana, A.H.A.; Tanveer, S.; Kiyani, A.; Barros, R.; Iqbal, M.; Yousaf, S. Biosurfactant-producing Aspergillus, Penicillium, and Candida performed higher biodegradation of diesel oil than a non-producing fungal strain. Appl. Biochem. Microbiol. 2023, 59, 282–289. [Google Scholar] [CrossRef]
- Rivera, A.D.; Urbina, M.A.M.; Lopez, V.E.L. Advances on research in the use of agro-industrial waste in biosurfactant production. World J. Microbiol. Biotechnol. 2019, 35, 155. [Google Scholar] [CrossRef]
- Pott, R.W.M.; Von Johannides, J. Process Development in Biosurfactant Production. In Biosurfactants for the Biobased Economy. Advances in Biochemical Engineering/Biotechnology; Hausmann, R., Henkel, M., Eds.; Springer: Cham, Switzerland; Basel, Switzerland, 2022; Volume 181, pp. 195–233. [Google Scholar] [CrossRef]
- Coutte, F.; Lecouturier, D.; Yahia, S.A.; Leclère, V.; Béchet, M.; Jacques, P.; Dhulster, P. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl. Microbiol. Biotechnol. 2010, 87, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Chtioui, C.; Dimitrov, K.; Gancel, F.; Nikov, I. Biosurfactants production by immobilized cells of Bacillus subtilis ATCC 21332 and their recovery by pertraction. Process Biochem. 2010, 45, 1795–1799. [Google Scholar] [CrossRef]
- Chtioui, O.; Dimitrov, K.; Gancel, F.; Dhulster, P.; Nikov, I. Rotating discs bioreactor, a new tool for lipopeptides production. Process Biochem. 2012, 47, 2020–2024. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Ghurye, G.L.; Willson, R.C. Biosurfactant production using mixed cultures under non-aseptic conditions. Mater. Res. Soc. Symp. Proc. 1994, 344, 315–322. [Google Scholar] [CrossRef]
- Ramonet, F.; Haddadi, B.; Harasek, M. Optimal design of double stage internal loop air-lift bioreactor. Energies 2023, 16, 3267. [Google Scholar] [CrossRef]
- Teli, S.M.; Mathpati, C.S. Experimental and numerical study of gas-liquid flow in a sectionalized external-loop airlift reactor. Chin. J. Chem. Eng. 2021, 32, 39–60. [Google Scholar] [CrossRef]
- Kashif, A.; Rehman, R.; Fuwad, A.; Shahid, M.K.; Dayarathne, H.N.P.; Jamal, A.; Aftab, M.N.; Mainali, B.; Choi, Y. Current advances in the classification, production, properties and applications of microbial biosurfactants—A critical review. Adv. Colloid Interface Sci. 2022, 306, 102718. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; Rtimi, S. Preparation, characterization and application of biosurfactant in various industries: A critical review on progress, challenges and perspectives. Environ. Technol. Innov. 2021, 24, 102090. [Google Scholar] [CrossRef]
- Markande, A.R.; Patel, D.; Varjani, S. A review on biosurfactants: Properties, applications and current developments. Bioresour. Technol. 2021, 330, 124963. [Google Scholar] [CrossRef]
- Venkataraman, S.; Rajendran, D.S.; Kumar, P.S.; Vo, D.V.N.; Vaidyanathan, V.K. Extraction, purifcation and applications of biosurfactants based on microbial-derived glycolipids and lipopeptides: A review. Environ. Chem. Lett. 2022, 20, 949–970. [Google Scholar] [CrossRef]
- Invally, K.; Sancheti, A.; Ju, L.K. A new approach for downstream purification of rhamnolipid biosurfactants. Food Bioprod. Process. 2019, 114, 122–131. [Google Scholar] [CrossRef]
- Joshi, S.J.; Geetha, S.J.; Desai, A.J. Characterization and application of biosurfactant produced by Bacillus licheniformis R2. Appl. Biochem. Biotechnol. 2015, 177, 346–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Luo, L.; Jin, M.; Zhao, M.; Niu, J.; Deng, S.; Long, X. Efficient isolation of biosurfactant rhamnolipids from fermentation broth via aqueous two-phase extraction with 2-propanol/ammonium sulfate system. Biochem. Eng. J. 2022, 188, 108676. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, U. Production, purification and characterization of biosurfactant isolated from Bacillus oceanisediminis H2. Mater. Today Proc. 2023, 81, 1012–1016. [Google Scholar] [CrossRef]
- Schumpe, A.; Quicker, G.; Deckwer, W.D. Gas solubilities in microbial culture media. In Reaction Engineering. Advances in Biochemical Engineering; Fiechter, A., Ed.; Springer: Heidelberg, Germany, 1982; Volume 24, pp. 1–38. [Google Scholar]
- Junker, B. Foam and its mitigation in fermentation systems. Biotechnol. Prog. 2007, 23, 767–784. [Google Scholar] [CrossRef]
- Oraby, A.; Weickardt, I.; Zibek, S. Foam fractionation methods in aerobic fermentation processes. Biotechnol. Bioeng. 2022, 119, 1697–1711. [Google Scholar] [CrossRef]
- Valdez, H.C.; Amado, R.S.; Souza, F.C.; D’Elia, E.; Vieira, E.C. Determinação de glicerol livre e total em amostras de biodiesel por método enzimático com detecção colorimétrica. Quim. Nova 2012, 35, 601–607. [Google Scholar] [CrossRef]
- Ong, S.A.; Wu, J.C. A simple method for rapid screening of biosurfactant-producing strains using bromothymol blue alone. Biocatal. Agric. Biotechnol. 2018, 16, 121–125. [Google Scholar] [CrossRef]
- Cooper, D.G.; Goldenberg, B.G. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef]
- Lima, A.S.; Alegre, R.M. Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913. Braz. Arch. Biol. Technol. 2009, 52, 285–290. [Google Scholar] [CrossRef]
- Cirigliano, M.C.; Carman, G.M. Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 1985, 50, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Xue, Q.; Gao, H.; Lai, H.; Wang, P. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microb. Cell Factories 2016, 15, 168. [Google Scholar] [CrossRef] [PubMed]
- Neves, L.C.M.; Oliveira, K.S.; Kobayashi, M.J.; Penna, T.C.V.; Converti, A. Biosurfactant production by cultivation of Bacillus atrophaeus ATCC 9372 in semidefined glucose/casein-based media. In Applied Biochemistry and Biotecnology; Mielenz, J.R., Klasson, K.T., Adney, W.S., McMillan, J.D., Eds.; Humana Press: Totowa, NJ, USA, 2007; pp. 539–554. [Google Scholar] [CrossRef]
- Roukas, T.; Mantzouridou, F. Effect of the aeration rate on pullulan production and fermentation broth rheological properties in an airlift reactor. J. Chem. Technol. Biotechnol. 2001, 76, 371–376. [Google Scholar] [CrossRef]
- Al-Masry, W.A.; Dukkan, A.R. The role of gas disengagement and surface active agents on hydrodynamic and mass transfer characteristics of airlift reactors. Chem. Eng. J. 1997, 65, 263–271. [Google Scholar] [CrossRef]
- Anazadehsayed, A.; Rezaee, N.; Naser, J.; Nguyen, A.V. A review of aqueous foam in microscale. J. Colloid Interface Sci. 2018, 256, 203–229. [Google Scholar] [CrossRef]
- Zeng, Y.; Farajzadeh, R.; Eftekhari, A.A.; Vincent-Bonnieu, S.; Muthuswamy, A.; Rossen, W.R.; Hirasaki, G.J.; Biswal, S.L. Role of gas type on foam transport in porous media. Langmuir 2016, 32, 6239–6245. [Google Scholar] [CrossRef]
- Sarachat, T.; Pornsunthorntawee, O.; Chavadej, S.; Rujiravanit, R. Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation. Bioresour. Technol. 2010, 101, 324–330. [Google Scholar] [CrossRef]
- Santos, C.V.M.; Vieira, I.M.M.; Santos, B.L.P.; Souza, R.R.; Ruzene, D.S.; Silva, D.P. Biosurfactant production from pineapple waste and application of experimental design and statistical analysis. Appl. Biochem. Biotechnol. 2023, 195, 386–400. [Google Scholar] [CrossRef]
- Khopade, A.; Biao, R.; Liu, X.; Mahadik, K.; Zhang, L.; Kokare, C. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 2012, 285, 198–204. [Google Scholar] [CrossRef]
- Giro, M.E.A.; Martins, J.J.L.; Rocha, M.V.P.; Melo, V.M.M.; Gonçalves, L.R.B. Clarified cashew apple juice as alternative raw material for biosurfactant production by Bacillus subtilisin a batch bioreactor. Biotechnol. J. 2009, 4, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Czinkóczky, R.; Németh, A. The effect of pH on biosurfactant production by Bacillus subtilis DSM10. Hung. J. Ind. Chem. 2020, 48, 37–43. [Google Scholar] [CrossRef]
- Das, P.; Mukherjee, S.; Sen, R. Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresour. Technol. 2009, 100, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.T.S.; Soares, C.M.F.; Lima, A.S.; Santana, C.S. Integral production and concentration of surfactin from Bacillus sp. ITP-001 by semi-batch foam fractionation. Biochem. Eng. J. 2015, 104, 91–97. [Google Scholar] [CrossRef]
- Wan, C.; Fan, X.; Lou, Z.; Wang, H.; Olatunde, A.; Rengasamy, K.R.R. Iturin: Cyclic lipopeptide with multifunction biological potential. Crit. Rev. Food Sci. Nutr. 2022, 62, 7976–7988. [Google Scholar] [CrossRef]
- Sakthipriya, N.; Doble, M.; Sangwai, J.S. Action of biosurfactant producing thermophilic Bacillus subtilis on waxy crude oil and long chain paraffins. Int. Biodeterior. Biodegrad. 2015, 105, 168–177. [Google Scholar] [CrossRef]
- Sifour, M.; Al-Jilawi, M.; Aziz, G.M. Emulsification properties of biosurfactant produced from Pseudomonas aeruginosa BR 28. Pak. J. Biol. Sci. 2007, 10, 1331–1335. [Google Scholar] [CrossRef]
- Durval, I.J.B.; Ribeiro, B.G.; Aguiar, J.S.; Rufino, R.D.; Converti, A.; Sarubbo, L.A. Application of a biosurfactant produced by Bacillus cereus UCP 1615 from waste frying oil as an emulsifier in a cookie formulation. Fermentation 2017, 7, 189. [Google Scholar] [CrossRef]
- Li, J.; Deng, M.; Wang, Y.; Chen, W. Production and characteristics of biosurfactant produced by Bacillus pseudomycoides BS6 utilizing soybean oil waste. Int. Biodeterior. Biodegrad. 2016, 112, 72–79. [Google Scholar] [CrossRef]
- Rahman, K.S.M.; Rahman, T.J.; Lakshmanaperumalsamy, P.; Marchant, R.; Banat, I.M. The potential of bacterial isolates for emulsificationwith a range of hydrocarbons. Acta Biotechnol. 2003, 23, 335–345. [Google Scholar] [CrossRef]
- Deshmukh, N.; Kathwate, G. Biosurfactant production by Pseudomonas aeruginosa Strain LTR1 and its application. Biointerface Res. Appl. Chem. 2023, 13, 10. [Google Scholar] [CrossRef]
- Gudiña, E.J.; Teixeira, J.A.; Rodrigues, L.R. Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf. B 2010, 76, 298–304. [Google Scholar] [CrossRef]
- Elkhawaga, M.A. Optimization and characterization of biosurfactant from Streptomyces griseoplanus NRRL-ISP5009 (MS1). J. Appl. Microbiol. 2018, 124, 691–707. [Google Scholar] [CrossRef] [PubMed]
- Bouassida, M.; Ghazala, I.; Ellouze-Chaabouni, S.; Ghribi, D. Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in a sand system. J. Microbiol. Biotechnol. 2018, 28, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Bezza, F.A.; Chirwa, E.M.N. Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem. Eng. J. 2015, 101, 168–178. [Google Scholar] [CrossRef]
- Varadavenkatesan, T.; Murty, V.R. Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. Microbiology 2013, 2013, 621519. [Google Scholar] [CrossRef]
Aeration Rate (vvm) | ∆Sglycerol (%) | ∆Ssucrose (%) | ∆Scs (%) | X (g L−1) | Vcollected (mL) | EI24 (%) | t (h) | Pp (% mL h−1) | Px (mg L−1 h−1) | YP/x |
---|---|---|---|---|---|---|---|---|---|---|
0.25 | 41.9 ± 0.5 | 100.0 ± 0.0 | 46.4 | 1.36 ± 0.01 | 32.1 | 67.6 | 10 | 108.5 | 0.14 | 49.71 |
0.50 | 35.3 ± 0.6 | 94.1 ± 0.7 | 39.8 | 2.28 ± 0.07 | 76.1 | 64.8 | 10 | 246.6 | 0.23 | 28.42 |
0.75 | 19.1 ± 1.1 | 100.0 ± 0.0 | 25.3 | 2.46 ± 0.01 | 169.4 | 65.1 | 10 | 551.4 | 0.25 | 26.46 |
1.00 | 19.6 ± 4.2 | 91.5 ± 0.7 | 23.7 | 3.14 ± 0.09 | 190.4 | 65.5 | 10 | 623.6 | 0.31 | 20.86 |
T (°C) | ∆Sglycerol (%) | ∆Ssucrose (%) | ∆Scs (%) | X (g L−1) | Vcollected (mL) | EI24 (%) | t (h) | Pp (% mL h−1) | Px (mg L−1 h−1) | YP/x |
---|---|---|---|---|---|---|---|---|---|---|
31 | 23.5 ± 0.9 | 14.3 ± 3.1 | 22.8 | 3.30 ± 0.04 | 366.9 | 62.6 | 12 | 957.0 | 0.28 | 18.97 |
34 | 32.9 ± 0.1 | 21.1 ± 2.8 | 32.0 | 3.24 ± 0.03 | 347.1 | 66.9 | 12 | 967.5 | 0.27 | 20.65 |
37 | 19.6 ± 4.2 | 91.5 ± 0.7 | 23.7 | 3.14 ± 0.09 | 190.4 | 65.5 | 10 | 623.6 | 0.31 | 20.86 |
40 | 21.5 ± 1.3 | 49.0 ± 1.5 | 23.6 | 2.92 ± 0.03 | 204.9 | 65.3 | 9 | 743.3 | 0.32 | 22.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, M.d.F.F.; Júnior, P.S.S.; Leite, M.S.; Malpiedi, L.P.; Pereira, M.M.; Soares, C.M.F.; Lima, Á.S. Integrated Process of Biosurfactant Production by Bacillus atrophaeus ATCC-9372 Using an Air-Lift Bioreactor Coupled to a Foam Fraction Column. Fermentation 2023, 9, 959. https://doi.org/10.3390/fermentation9110959
Rocha MdFF, Júnior PSS, Leite MS, Malpiedi LP, Pereira MM, Soares CMF, Lima ÁS. Integrated Process of Biosurfactant Production by Bacillus atrophaeus ATCC-9372 Using an Air-Lift Bioreactor Coupled to a Foam Fraction Column. Fermentation. 2023; 9(11):959. https://doi.org/10.3390/fermentation9110959
Chicago/Turabian StyleRocha, Maria de Fátima F., Paulo S. Sobral Júnior, Milena S. Leite, Luciana P. Malpiedi, Matheus M. Pereira, Cleide M. F. Soares, and Álvaro S. Lima. 2023. "Integrated Process of Biosurfactant Production by Bacillus atrophaeus ATCC-9372 Using an Air-Lift Bioreactor Coupled to a Foam Fraction Column" Fermentation 9, no. 11: 959. https://doi.org/10.3390/fermentation9110959
APA StyleRocha, M. d. F. F., Júnior, P. S. S., Leite, M. S., Malpiedi, L. P., Pereira, M. M., Soares, C. M. F., & Lima, Á. S. (2023). Integrated Process of Biosurfactant Production by Bacillus atrophaeus ATCC-9372 Using an Air-Lift Bioreactor Coupled to a Foam Fraction Column. Fermentation, 9(11), 959. https://doi.org/10.3390/fermentation9110959