Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,707)

Search Parameters:
Keywords = warm-up strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1235 KiB  
Article
Assessing Rainfall and Temperature Trends in Central Ethiopia: Implications for Agricultural Resilience and Future Climate Projections
by Teshome Girma Tesema, Nigussie Dechassa Robi, Kibebew Kibret Tsehai, Yibekal Alemayehu Abebe and Feyera Merga Liben
Sustainability 2025, 17(15), 7077; https://doi.org/10.3390/su17157077 - 5 Aug 2025
Abstract
In the past three decades, localized research has highlighted shifts in rainfall patterns and temperature trends in central Ethiopia, a region vital for agriculture and economic activities and heavily dependent on climate conditions to sustain livelihoods and ensure food security. However, comprehensive analyses [...] Read more.
In the past three decades, localized research has highlighted shifts in rainfall patterns and temperature trends in central Ethiopia, a region vital for agriculture and economic activities and heavily dependent on climate conditions to sustain livelihoods and ensure food security. However, comprehensive analyses of long-term climate data remain limited for this area. Understanding local climate trends is essential for enhancing agricultural resilience in the study area, a region heavily dependent on rainfall for crop production. This study analyzes historical rainfall and temperature patterns over the past 30 years and projects future climate conditions using downscaled CMIP6 models under SSP4.5 and SSP8.5 scenarios. Results indicate spatial variability in rainfall trends, with certain areas showing increasing rainfall while others experience declines. Temperature has shown a consistent upward trend across all seasons, with more pronounced warming during the short rainy season (Belg). Climate projections suggest continued warming and moderate increases in annual rainfall, particularly under SSP8.5 by the end of the 21st century. It is concluded that both temperature and rainfall are projected to increase in magnitude by 2080, with higher Sen’s slope values compared to earlier periods, indicating a continued upward trend. These findings highlight potential breaks in agricultural calendars, such as shifts in rainfall onset and cessation, shortened or extended growing seasons, and increased risk of temperature-induced stress. This study highlights the need for localized adaptation strategies to safeguard agriculture production and enhance resilience in the face of future climate variability. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

26 pages, 6698 KiB  
Article
Cumulative and Lagged Effects of Drought on the Phenology of Different Vegetation Types in East Asia, 2001–2020
by Kexin Deng, Mark Henderson, Binhui Liu, Weiwei Huang, Mingyang Chen, Pingping Zheng and Ruiting Gu
Remote Sens. 2025, 17(15), 2700; https://doi.org/10.3390/rs17152700 - 4 Aug 2025
Abstract
Drought disturbances are becoming more frequent with global warming. Accurately assessing the regulatory effect of drought on vegetation phenology is key to understanding terrestrial ecosystem response mechanisms in the context of climate change. Previous studies on cumulative and lagged effects of drought on [...] Read more.
Drought disturbances are becoming more frequent with global warming. Accurately assessing the regulatory effect of drought on vegetation phenology is key to understanding terrestrial ecosystem response mechanisms in the context of climate change. Previous studies on cumulative and lagged effects of drought on vegetation growth have mostly focused on a single vegetation type or the overall vegetation NDVI, overlooking the possible influence of different adaptation strategies of different vegetation types and differences in drought effects on different phenological nodes. This study investigates the cumulative and lagged effects of drought on vegetation phenology across a region of East Asia from 2001 to 2020 using NDVI data and the Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the start of growing season (SOS) and end of growing season (EOS) responses to drought across four vegetation types: deciduous needleleaf forests (DNFs), deciduous broadleaf forests (DBFs), shrublands, and grasslands. Results reveal contrasting phenological responses: drought delayed SOS in grasslands through a “drought escape” strategy but advanced SOS in forests and shrublands. All vegetation types showed earlier EOS under drought stress. Cumulative drought effects were strongest on DNFs, SOS, and shrubland SOS, while lagged effects dominated DBFs and grassland SOS. Drought impacts varied with moisture conditions: they were stronger in dry regions for SOS but more pronounced in humid areas for EOS. By confirming that drought effects vary by vegetation type and phenology node, these findings enhance our understanding of vegetation adaptation strategies and ecosystem responses to climate stress. Full article
Show Figures

Figure 1

22 pages, 1288 KiB  
Article
How Multicriteria Environmental Assessment Alters Sustainability Rankings: Case Study of Hempcrete and Prefabricated Walls
by Tinkara Ošlovnik and Matjaž Denac
Sustainability 2025, 17(15), 7032; https://doi.org/10.3390/su17157032 - 2 Aug 2025
Viewed by 174
Abstract
The construction sector emphasises circular economy principles that prioritise eco-design strategies, particularly the usage of secondary raw materials. The growing interest in using industrial hemp as a sustainable building material in the construction sector is driven by its versatility. Industrial hemp has been [...] Read more.
The construction sector emphasises circular economy principles that prioritise eco-design strategies, particularly the usage of secondary raw materials. The growing interest in using industrial hemp as a sustainable building material in the construction sector is driven by its versatility. Industrial hemp has been preferential in comparison to other traditional building materials due to its lower global warming impact. Claims regarding the environmental benefits of hemp-containing construction materials based on the single impact category could be misleading; therefore, life cycle assessment (LCA) studies including multiple environmental indicators should be implemented. This study aims to compare two alternative wall designs regarding their environmental impacts. The comparative LCA study for hempcrete and prefabricated walls used in residential buildings was assessed using IPCC and ReCiPe life cycle impact assessment methods. The study highlighted a significant discrepancy depending on the number of environmental indicators considered, as well as between characterised and weighted LCA results. A hempcrete wall was recognised as a slightly (13.63%) better alternative when assessed by the single-issue IPCC method, while its total burden assessed by the ReCiPe method was recognised to be significantly (2.78 times) higher. Based on the results from this case study, regulators could re-evaluate the appropriateness of reporting LCA results solely on the midpoint level, particularly when limited to a single impact indicator, while producers in the construction sector should recognise the threat of greenwashing when reporting using a single impact indicator only. Full article
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Viewed by 190
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 139
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

18 pages, 6642 KiB  
Article
Flood Impact and Evacuation Behavior in Toyohashi City, Japan: A Case Study of the 2 June 2023 Heavy Rain Event
by Masaya Toyoda, Reo Minami, Ryoto Asakura and Shigeru Kato
Sustainability 2025, 17(15), 6999; https://doi.org/10.3390/su17156999 - 1 Aug 2025
Viewed by 185
Abstract
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community [...] Read more.
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community resilience, this study contributes to sustainability-focused risk reduction through integrated analysis. This study focuses on the 2 June 2023 heavy rain disaster in Toyohashi City, Japan, which caused extensive damage due to flooding from the Yagyu and Umeda Rivers. Using numerical models, this study accurately reproduces flooding patterns, revealing that high tides amplified the inundation area by 1.5 times at the Yagyu River. A resident questionnaire conducted in collaboration with Toyohashi City identifies key trends in evacuation behavior and disaster information usage. Traditional media such as TV remain dominant, but younger generations leverage electronic devices for disaster updates. These insights emphasize the need for targeted information dissemination and enhanced disaster preparedness strategies, including online materials and flexible training programs. The methods and findings presented in this study can inform local and regional governments in building adaptive disaster management policies, which contribute to a more sustainable society. Full article
Show Figures

Figure 1

17 pages, 5311 KiB  
Article
Projections of Urban Heat Island Effects Under Future Climate Scenarios: A Case Study in Zhengzhou, China
by Xueli Ni, Yujie Chang, Tianqi Bai, Pengfei Liu, Hongquan Song, Feng Wang and Man Jin
Remote Sens. 2025, 17(15), 2660; https://doi.org/10.3390/rs17152660 - 1 Aug 2025
Viewed by 362
Abstract
As global climate change accelerates, the urban heat island (UHI) phenomenon has become increasingly pronounced, posing significant challenges to urban energy balance, atmospheric processes, and public health. This study used the Weather Research and Forecasting (WRF) model to dynamically downscale two CMIP6 scenarios—moderate [...] Read more.
As global climate change accelerates, the urban heat island (UHI) phenomenon has become increasingly pronounced, posing significant challenges to urban energy balance, atmospheric processes, and public health. This study used the Weather Research and Forecasting (WRF) model to dynamically downscale two CMIP6 scenarios—moderate forcing (SSP245) and high forcing (SSP585)—focusing on Zhengzhou, a rapidly urbanizing city in central China. High-resolution simulations captured fine-scale intra-urban temperature patterns and analyze the spatial and seasonal variations in UHI intensity in 2030 and 2060. The results demonstrated significant seasonal variations in UHI effects in Zhengzhou for both 2030 and 2060 under SSP245 and SSP585 scenarios, with the most pronounced warming in summer. Notably, under the SSP245 scenario, elevated autumn temperatures in suburban areas reduced the urban–rural temperature gradient, while intensified rural cooling during winter enhanced the UHI effect. These findings underscore the importance of integrating high-resolution climate modeling into urban planning and developing targeted adaptation strategies based on future UHI patterns to address climate challenges. Full article
Show Figures

Figure 1

18 pages, 590 KiB  
Review
FcRn Blockade as a Targeted Therapeutic Strategy in Antibody-Mediated Autoimmune Diseases: A Focus on Warm Autoimmune Hemolytic Anemia
by Michael Sandhu and Irina Murakhovskaya
Antibodies 2025, 14(3), 65; https://doi.org/10.3390/antib14030065 - 1 Aug 2025
Viewed by 277
Abstract
Antibody-mediated autoimmune diseases are common, can involve any organ system, and pose a large burden for patients and healthcare systems. Most antibody-mediated diseases are mediated by IgG antibodies. Selective targeting of pathogenic antibodies is an attractive treatment option which has already proven to [...] Read more.
Antibody-mediated autoimmune diseases are common, can involve any organ system, and pose a large burden for patients and healthcare systems. Most antibody-mediated diseases are mediated by IgG antibodies. Selective targeting of pathogenic antibodies is an attractive treatment option which has already proven to be effective in antibody-positive generalized myasthenia gravis, maternal-fetal alloimmune cytopenias, and immune thrombocytopenic purpura. Warm autoimmune hemolytic anemia (wAIHA) is an autoimmune disorder mediated by pathogenic antibodies mainly of the IgG class with no approved therapy. Current treatment includes non-specific immunosuppression with corticosteroids, rituximab, and other immunosuppressive agents. With most therapies, time to response can be delayed and transfusions may be needed. Neonatal Fc receptor (FcRN) therapies provide rapid and sustained reduction of pathogenic IgG levels providing potential for fast, effective therapy in antibody-mediated autoimmune diseases including warm autoimmune hemolytic anemia. This review focuses on the emerging role of FcRn inhibition in autoimmune hematologic diseases, and their therapeutic potential in wAIHA. Full article
(This article belongs to the Special Issue Antibody and Autoantibody Specificities in Autoimmunity)
Show Figures

Figure 1

24 pages, 7997 KiB  
Article
Comparative Analysis of Habitat Expansion Mechanisms for Four Invasive Amaranthaceae Plants Under Current and Future Climates Using MaxEnt
by Mao Lin, Xingzhuang Ye, Zixin Zhao, Shipin Chen and Bao Liu
Plants 2025, 14(15), 2363; https://doi.org/10.3390/plants14152363 - 1 Aug 2025
Viewed by 247
Abstract
As China’s first systematic assessment of high-risk Amaranthaceae invaders, this study addresses a critical knowledge gap identified in the National Invasive Species Inventory, in which four invasive Amaranthaceae species (Dysphania ambrosioides, Celosia argentea, Amaranthus palmeri, and Amaranthus spinosus) [...] Read more.
As China’s first systematic assessment of high-risk Amaranthaceae invaders, this study addresses a critical knowledge gap identified in the National Invasive Species Inventory, in which four invasive Amaranthaceae species (Dysphania ambrosioides, Celosia argentea, Amaranthus palmeri, and Amaranthus spinosus) are prioritized due to CNY 2.6 billion annual ecosystem damages in China. By coupling multi-species comparative analysis with a parameter-optimized Maximum Entropy (MaxEnt) model integrating climate, soil, and topographical variables in China under Shared Socioeconomic Pathways (SSP) 126/245/585 scenarios, we reveal divergent expansion mechanisms (e.g., 247 km faster northward shift in A. palmeri than D. ambrosioides) that redefine invasion corridors in the North China Plain. Under current conditions, the suitable habitats of these species span from 92° E to 129° E and 18° N to 49° N, with high-risk zones concentrated in central and southern China, including the Yunnan–Guizhou–Sichuan region and the North China Plain. Temperature variables (Bio: Bioclimatic Variables; Bio6, Bio11) were the primary contributors based on permutation importance (e.g., Bio11 explained 56.4% for C. argentea), while altitude (e.g., 27.3% for A. palmeri) and UV-B (e.g., 16.2% for A. palmeri) exerted lower influence. Model validation confirmed high accuracy (mean area under the curve (AUC) > 0.86 and true skill statistic (TSS) > 0.6). By the 2090s, all species showed net habitat expansion overall, although D. ambrosioides exhibited net total contractions during mid-century under the SSP126/245 scenarios, C. argentea experienced reduced total suitability during the 2050s–2070s despite high-suitability growth, and A. palmeri and A. spinosus expanded significantly in both total and highly suitable habitat. All species shifted their distribution centroids northward, aligning with warming trends. Overall, these findings highlight the critical role of temperature in driving range dynamics and underscore the need for latitude-specific monitoring strategies to mitigate invasion risks, providing a scientific basis for adaptive management under global climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 (registering DOI) - 1 Aug 2025
Viewed by 136
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
Climate-Induced Water Management Challenges for Cabbage and Carrot in Southern Poland
by Stanisław Rolbiecki, Barbara Jagosz, Roman Rolbiecki and Renata Kuśmierek-Tomaszewska
Sustainability 2025, 17(15), 6975; https://doi.org/10.3390/su17156975 - 31 Jul 2025
Viewed by 250
Abstract
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios [...] Read more.
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios RCP 4.5 and RCP 8.5 for the period 2031–2100. The analysis was conducted for Kraków and Rzeszów Counties in southern Poland using projected monthly temperature and precipitation data from the Klimada 2.0 portal. Potential evapotranspiration (ETp) during the growing season (May–October) was estimated using Treder’s empirical model and the crop coefficient method adapted for Polish conditions. The reference period for comparison was 1951–2020. The results reveal a significant upward trend in water demand for both crops, with the highest increases under the RCP 8.5 scenario–seasonal ETp values reaching up to 517 mm for cabbage and 497 mm for carrot. Rainfall deficits are projected to intensify, especially during July and August, with greater shortages in Rzeszów County compared to Kraków County. Irrigation demand varies depending on soil type and drought severity, becoming critical in medium and very dry years. These findings underscore the necessity of adapting irrigation strategies and water resource management to ensure sustainable vegetable production under changing climate conditions. The data provide valuable guidance for farmers, advisors, and policymakers in planning effective irrigation infrastructure and optimizing water-use efficiency in southern Poland. Full article
Show Figures

Figure 1

15 pages, 319 KiB  
Review
Toxoplasma gondii at the Host Interface: Immune Modulation and Translational Strategies for Infection Control
by Billy J. Erazo Flores and Laura J. Knoll
Vaccines 2025, 13(8), 819; https://doi.org/10.3390/vaccines13080819 (registering DOI) - 31 Jul 2025
Viewed by 312
Abstract
Toxoplasma gondii is an intracellular protozoan found worldwide that is capable of infecting nearly all warm-blooded animals, including humans. Its parasitic success lies in its capacity to create chronic infections while avoiding immune detection, altering host immune responses, and disrupting programmed cell death [...] Read more.
Toxoplasma gondii is an intracellular protozoan found worldwide that is capable of infecting nearly all warm-blooded animals, including humans. Its parasitic success lies in its capacity to create chronic infections while avoiding immune detection, altering host immune responses, and disrupting programmed cell death pathways. This review examines the complex relationship between T. gondii and host immunity, focusing on how the parasite influences innate and adaptive immune responses to survive in immune-privileged tissues. We present recent findings on the immune modulation specific to various parasite strains, the immunopathology caused by imbalanced inflammation, and how the parasite undermines host cell death mechanisms such as apoptosis, necroptosis, and pyroptosis. These immune evasion tactics enable prolonged intracellular survival and pose significant challenges for treatment and vaccine development. We also review advancements in therapeutic strategies, including host-directed approaches, nanoparticle drug delivery, and CRISPR-based technologies, along with progress in vaccine development from subunit and DNA vaccines to live-attenuated candidates. This review emphasizes the importance of T. gondii as a model for chronic infections and points out potential avenues for developing innovative therapies and vaccines aimed at toxoplasmosis and similar intracellular pathogens. Full article
(This article belongs to the Special Issue Intracellular Parasites: Immunology, Resistance, and Therapeutics)
26 pages, 4899 KiB  
Article
Material Perception in Virtual Environments: Impacts on Thermal Perception, Emotions, and Functionality in Industrial Renovation
by Long He, Minjia Wu, Yue Ma, Di Cui, Yongjiang Wu and Yang Wei
Buildings 2025, 15(15), 2698; https://doi.org/10.3390/buildings15152698 - 31 Jul 2025
Viewed by 228
Abstract
Industrial building renovation is a sustainable strategy to preserve urban heritage while meeting modern needs. However, how interior material scenes affect users’ emotions, thermal perception, and functional preferences remains underexplored in adaptive reuse contexts. This study used virtual reality (VR) to examine four [...] Read more.
Industrial building renovation is a sustainable strategy to preserve urban heritage while meeting modern needs. However, how interior material scenes affect users’ emotions, thermal perception, and functional preferences remains underexplored in adaptive reuse contexts. This study used virtual reality (VR) to examine four common material scenes—wood, concrete, red brick, and white-painted surfaces—within industrial renovation settings. A total of 159 participants experienced four Lumion-rendered VR environments and rated them on thermal perception (visual warmth, thermal sensation, comfort), emotional response (arousal, pleasure, restoration), and functional preference. Data were analyzed using repeated measures ANOVA and Pearson correlation. Wood and red brick scenes were associated with warm visuals; wood scenes received the highest ratings for thermal comfort and pleasure, white-painted scenes for restoration and arousal, and concrete scenes, the lowest scores overall. Functional preferences varied by space: white-painted and concrete scenes were most preferred in study/work settings, wood in social spaces, wood and red brick in rest areas, and concrete in exhibition spaces. By isolating material variables in VR, this study offers a novel empirical approach and practical guidance for material selection in adaptive reuse to enhance user comfort, emotional well-being, and spatial functionality in industrial heritage renovations. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 286 KiB  
Review
Strategies for Maximising Lung Utilisation in Donors After Brain and Cardiac Death: A Narrative Review
by Carola Pergolizzi, Chiara Lazzeri, Daniele Marianello, Cesare Biuzzi, Casagli Irene, Antonella Puddu, Elena Bargagli, David Bennett, Chiara Catelli, Luca Luzzi, Francesca Montagnani, Francisco Del Rio Gallegos, Sabino Scolletta, Adriano Peris and Federico Franchi
J. Clin. Med. 2025, 14(15), 5380; https://doi.org/10.3390/jcm14155380 - 30 Jul 2025
Viewed by 273
Abstract
Lung transplantation remains the standard of care for end-stage lung disease, yet a persistent gap exists between donor lung availability and growing clinical demand. Expanding the donor pool and optimising donor lung management are therefore critical priorities. However, no universally accepted management protocols [...] Read more.
Lung transplantation remains the standard of care for end-stage lung disease, yet a persistent gap exists between donor lung availability and growing clinical demand. Expanding the donor pool and optimising donor lung management are therefore critical priorities. However, no universally accepted management protocols are currently in place. This narrative review examines evidence-based strategies to improve lung utilisation across three donor categories: donors after brain death (DBD), controlled donors after circulatory death (cDCD), and uncontrolled donors after circulatory death (uDCD). A systematic literature search was conducted to identify interventions targeting lung preservation and function, including protective ventilation, recruitment manoeuvres, fluid and hormonal management, and ex vivo lung perfusion (EVLP). Distinct pathophysiological mechanisms—sympathetic storm and systemic inflammation in DBD, ischaemia–reperfusion injury in cDCD, and prolonged warm ischaemia in uDCD—necessitate tailored approaches to lung preservation. In DBD donors, early application of protective ventilation, bronchoscopy, and infection surveillance is essential. cDCD donors benefit from optimised pre- and post-withdrawal management to mitigate lung injury. uDCD donor lungs, uniquely vulnerable to ischaemia, require meticulous post-mortem evaluation and preservation using EVLP. Implementing structured, evidence-based lung management strategies can significantly enhance donor lung utilisation and expand the transplantable organ pool. The integration of such practices into clinical protocols is vital to addressing the global shortage of suitable lungs for transplantation. Full article
(This article belongs to the Section Respiratory Medicine)
25 pages, 873 KiB  
Article
Optimization Method for Reliability–Redundancy Allocation Problem in Large Hybrid Binary Systems
by Florin Leon and Petru Cașcaval
Mathematics 2025, 13(15), 2450; https://doi.org/10.3390/math13152450 - 29 Jul 2025
Viewed by 252
Abstract
This paper addresses a well-known research topic in the design of complex systems, specifically within the class of reliability optimization problems (ROPs). It focuses on optimal reliability–redundancy allocation problems (RRAPs) for large binary systems with hybrid structures. Two main objectives are considered: (1) [...] Read more.
This paper addresses a well-known research topic in the design of complex systems, specifically within the class of reliability optimization problems (ROPs). It focuses on optimal reliability–redundancy allocation problems (RRAPs) for large binary systems with hybrid structures. Two main objectives are considered: (1) to maximize system reliability under cost and volume constraints, and (2) to achieve the required reliability at minimal cost under a volume constraint. The system reliability model includes components with only two states: normal operating or failed. High reliability can result from directly improving component reliability, allocating redundancy, or using both approaches together. Several redundancy strategies are covered: active, passive, hybrid standby with hot, warm, or cold spares, static redundancy such as TMR and 5MR, TMR structures with control logic and spares, and reconfigurable TMR/Simplex structures. The proposed method uses a zero–one integer programming formulation that applies log-transformed reliability functions and binary decision variables to represent subsystem configurations. The experimental results validate the approach and confirm its efficiency. Full article
Show Figures

Figure 1

Back to TopTop