Toxoplasma gondii at the Host Interface: Immune Modulation and Translational Strategies for Infection Control
Abstract
1. Introduction
Systematic Literature Search Methodology
2. Life Cycle of T. gondii
2.1. Routes of Infection
2.2. Acute and Chronic Infection
3. Host Immune Response to T. gondii
3.1. Innate Immune Response
3.2. Adaptive Immune Response
4. Immunopathology: Balancing Inflammation and Regulation
5. Strain-Specific Immune Responses
6. Programmed Cell Death in Host Defense
7. Subversion of Host Cell Death and Immune Pathways by T. gondii
8. Therapeutic and Vaccine Strategies
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Q.; Wang, Z.-D.; Huang, S.-Y.; Zhu, X.-Q. Diagnosis of Toxoplasmosis and Typing of Toxoplasma gondii. Parasites Vectors 2015, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. Outbreaks of Clinical Toxoplasmosis in Humans: Five Decades of Personal Experience, Perspectives and Lessons Learned. Parasites Vectors 2021, 14, 263. [Google Scholar] [CrossRef]
- McAuley, J.B. Congenital Toxoplasmosis. J. Pediatr. Infect. Dis. Soc. 2014, 3, S30–S35. [Google Scholar] [CrossRef]
- Wang, Z.-D.; Liu, H.-H.; Ma, Z.-X.; Ma, H.-Y.; Li, Z.-Y.; Yang, Z.-B.; Zhu, X.-Q.; Xu, B.; Wei, F.; Liu, Q. Toxoplasma gondii Infection in Immunocompromised Patients: A Systematic Review and Meta-Analysis. Front. Microbiol. 2017, 8, 389. [Google Scholar] [CrossRef]
- Park, Y.-H.; Nam, H.-W. Clinical Features and Treatment of Ocular Toxoplasmosis. Korean J. Parasitol. 2013, 51, 393–399. [Google Scholar] [CrossRef]
- Skariah, S.; McIntyre, M.K.; Mordue, D.G. Toxoplasma gondii: Determinants of Tachyzoite to Bradyzoite Conversion. Parasitol. Res. 2010, 107, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Lindsay, D.S.; Speer, C.A. Structures of Toxoplasma gondii Tachyzoites, Bradyzoites, and Sporozoites and Biology and Development of Tissue Cysts. Clin. Microbiol. Rev. 1998, 11, 267–299. [Google Scholar] [CrossRef]
- Weiss, L.M.; Ma, Y.F.; Takvorian, P.M.; Tanowitz, H.B.; Wittner, M. Bradyzoite Development in Toxoplasma gondii and the Hsp70 Stress Response. Infect. Immun. 1998, 66, 3295–3302. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.B.; Jensen, K.D.C.; Saeij, J.P.J. Toxoplasma gondii Effectors Are Master Regulators of the Inflammatory Response. Trends Parasitol. 2011, 27, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, A.; Blanchard, N.; Besteiro, S. The Bradyzoite: A Key Developmental Stage for the Persistence and Pathogenesis of Toxoplasmosis. Pathogens 2020, 9, 234. [Google Scholar] [CrossRef]
- Mahmoudvand, H.; Ziaali, N.; Ghazvini, H.; Shojaee, S.; Keshavarz, H.; Esmaeilpour, K.; Sheibani, V. Toxoplasma gondii Infection Promotes Neuroinflammation Through Cytokine Networks and Induced Hyperalgesia in BALB/c Mice. Inflammation 2016, 39, 405–412. [Google Scholar] [CrossRef]
- Prandovszky, E.; Gaskell, E.; Martin, H.; Dubey, J.P.; Webster, J.P.; McConkey, G.A. The Neurotropic Parasite Toxoplasma gondii Increases Dopamine Metabolism. PLoS ONE 2011, 6, e23866. [Google Scholar] [CrossRef]
- Tedford, E.; McConkey, G. Neurophysiological Changes Induced by Chronic Toxoplasma gondii Infection. Pathogens 2017, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Castaño Barrios, L.; Da Silva Pinheiro, A.P.; Gibaldi, D.; Silva, A.A.; Machado Rodrigues e Silva, P.; Roffê, E.; da Costa Santiago, H.; Tostes Gazzinelli, R.; Mineo, J.R.; Silva, N.M.; et al. Behavioral Alterations in Long-Term Toxoplasma gondii Infection of C57BL/6 Mice Are Associated with Neuroinflammation and Disruption of the Blood Brain Barrier. PLoS ONE 2021, 16, e0258199. [Google Scholar] [CrossRef]
- Cleary, M.D.; Singh, U.; Blader, I.J.; Brewer, J.L.; Boothroyd, J.C. Toxoplasma gondii Asexual Development: Identification of Developmentally Regulated Genes and Distinct Patterns of Gene Expression. Eukaryot. Cell 2002, 1, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Boothroyd, J.C.; Grigg, M.E. Population Biology of Toxoplasma gondii and Its Relevance to Human Infection: Do Different Strains Cause Different Disease? Curr. Opin. Microbiol. 2002, 5, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Genova, B.M.D.; Wilson, S.K.; Dubey, J.P.; Knoll, L.J. Intestinal Delta-6-Desaturase Activity Determines Host Range for Toxoplasma Sexual Reproduction. PLoS Biol. 2019, 17, e3000364. [Google Scholar] [CrossRef]
- Farhat, D.C.; Swale, C.; Dard, C.; Cannella, D.; Ortet, P.; Barakat, M.; Sindikubwabo, F.; Belmudes, L.; De Bock, P.-J.; Couté, Y.; et al. A MORC-Driven Transcriptional Switch Controls Toxoplasma Developmental Trajectories and Sexual Commitment. Nat. Microbiol. 2020, 5, 570–583. [Google Scholar] [CrossRef]
- Antunes, A.V.; Shahinas, M.; Swale, C.; Farhat, D.C.; Ramakrishnan, C.; Bruley, C.; Cannella, D.; Robert, M.G.; Corrao, C.; Couté, Y.; et al. In Vitro Production of Cat-Restricted Toxoplasma Pre-Sexual Stages. Nature 2024, 625, 366–376. [Google Scholar] [CrossRef]
- Dubey, J.P.; Frenkel, J.K. Feline Toxoplasmosis from Acutely Infected Mice and the Development of Toxoplasma Cysts. J. Protozool. 1976, 23, 537–546. [Google Scholar] [CrossRef]
- Martorelli Di Genova, B.; Knoll, L.J. Comparisons of the Sexual Cycles for the Coccidian Parasites Eimeria and Toxoplasma. Front. Cell Infect. Microbiol. 2020, 10, 604897. [Google Scholar] [CrossRef]
- Sanchez, S.G.; Besteiro, S. The Pathogenicity and Virulence of Toxoplasma gondii. Virulence 2021, 12, 3095–3114. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, K.; Bahia-Oliveira, L.; Dixon, B.; Dumètre, A.; de Wit, L.A.; VanWormer, E.; Villena, I. Environmental Transmission of Toxoplasma gondii: Oocysts in Water, Soil and Food. Food Waterborne Parasitol. 2019, 15, e00049. [Google Scholar] [CrossRef]
- Dubey, J.P.; Jones, J.L. Toxoplasma gondii Infection in Humans and Animals in the United States. Int. J. Parasitol. 2008, 38, 1257–1278. [Google Scholar] [CrossRef]
- Hill, D.; Dubey, J.P. Toxoplasma gondii: Transmission, Diagnosis and Prevention. Clin. Microbiol. Infect. 2002, 8, 634–640. [Google Scholar] [CrossRef]
- Robbins, J.R.; Zeldovich, V.B.; Poukchanski, A.; Boothroyd, J.C.; Bakardjiev, A.I. Tissue Barriers of the Human Placenta to Infection with Toxoplasma gondii. Infect. Immun. 2012, 80, 418–428. [Google Scholar] [CrossRef]
- Hampton, M.M. Congenital Toxoplasmosis: A Review. Neonatal Netw. 2015, 34, 274–278. [Google Scholar] [CrossRef]
- Gregg, B.; Taylor, B.C.; John, B.; Tait-Wojno, E.D.; Girgis, N.M.; Miller, N.; Wagage, S.; Roos, D.S.; Hunter, C.A. Replication and Distribution of Toxoplasma gondii in the Small Intestine after Oral Infection with Tissue Cysts. Infect. Immun. 2013, 81, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Unno, A.; Suzuki, K.; Xuan, X.; Nishikawa, Y.; Kitoh, K.; Takashima, Y. Dissemination of Extracellular and Intracellular Toxoplasma gondii Tachyzoites in the Blood Flow. Parasitol. Int. 2008, 57, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Denkers, E.Y. From Cells to Signaling Cascades: Manipulation of Innate Immunity by Toxoplasma gondii. FEMS Immunol. Med. Microbiol. 2003, 39, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Pittman, K.J.; Aliota, M.T.; Knoll, L.J. Dual Transcriptional Profiling of Mice and Toxoplasma gondii during Acute and Chronic Infection. BMC Genom. 2014, 15, 806. [Google Scholar] [CrossRef] [PubMed]
- Derouin, F.; Pelloux, H. Prevention of Toxoplasmosis in Transplant Patients. Clin. Microbiol. Infect. 2008, 14, 1089–1101. [Google Scholar] [CrossRef] [PubMed]
- Sibley, D.L.; Charron, A.; Håkansson, S.; Mordue, D. Invasion and Intracellular Survival by Toxoplasma. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Hu, X.; Binns, D.; Reese, M.L. The Coccidian Parasites Toxoplasma and Neospora Dysregulate Mammalian Lipid Droplet Biogenesis. J. Biol. Chem. 2017, 292, 11009–11020. [Google Scholar] [CrossRef]
- Kemp, L.E.; Yamamoto, M.; Soldati-Favre, D. Subversion of Host Cellular Functions by the Apicomplexan Parasites. FEMS Microbiol. Rev. 2013, 37, 607–631. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, M.-A.; Bougdour, A. Toxoplasma’s Ways of Manipulating the Host Transcriptome via Secreted Effectors. Curr. Opin. Microbiol. 2015, 26, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.S.; Lodoen, M.B. Mechanisms of Human Innate Immune Evasion by Toxoplasma gondii. Front. Cell Infect. Microbiol. 2019, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Mammari, N.; Halabi, M.A.; Yaacoub, S.; Chlala, H.; Dardé, M.-L.; Courtioux, B. Toxoplasma gondii Modulates the Host Cell Responses: An Overview of Apoptosis Pathways. Biomed. Res. Int. 2019, 2019, 6152489. [Google Scholar] [CrossRef] [PubMed]
- Ahmadpour, E.; Babaie, F.; Kazemi, T.; Mehrani Moghaddam, S.; Moghimi, A.; Hosseinzadeh, R.; Nissapatorn, V.; Pagheh, A.S. Overview of Apoptosis, Autophagy, and Inflammatory Processes in Toxoplasma gondii Infected Cells. Pathogens 2023, 12, 253. [Google Scholar] [CrossRef]
- Besteiro, S. Toxoplasma Control of Host Apoptosis: The Art of Not Biting Too Hard the Hand That Feeds You. Microb. Cell 2015, 2, 178–181. [Google Scholar] [CrossRef]
- Dunay, I.R.; Diefenbach, A. Group 1 Innate Lymphoid Cells in Toxoplasma gondii Infection. Parasite Immunol. 2018, 40, e12516. [Google Scholar] [CrossRef]
- Park, E.; Patel, S.; Wang, Q.; Andhey, P.; Zaitsev, K.; Porter, S.; Hershey, M.; Bern, M.; Plougastel-Douglas, B.; Collins, P.; et al. Toxoplasma gondii Infection Drives Conversion of NK Cells into ILC1-like Cells. eLife 2019, 8, e47605. [Google Scholar] [CrossRef] [PubMed]
- Sasai, M.; Yamamoto, M. Innate, Adaptive, and Cell-Autonomous Immunity against Toxoplasma gondii Infection. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Sher, A.; Tosh, K.; Jankovic, D. Innate Recognition of Toxoplasma gondii in Humans Involves a Mechanism Distinct from That Utilized by Rodents. Cell Mol. Immunol. 2017, 14, 36–42. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. TLR Signaling. Cell Death Differ. 2006, 13, 816–825. [Google Scholar] [CrossRef]
- Yarovinsky, F.; Zhang, D.; Andersen, J.F.; Bannenberg, G.L.; Serhan, C.N.; Hayden, M.S.; Hieny, S.; Sutterwala, F.S.; Flavell, R.A.; Ghosh, S.; et al. TLR11 Activation of Dendritic Cells by a Protozoan Profilin-like Protein. Science 2005, 308, 1626–1629. [Google Scholar] [CrossRef]
- Koblansky, A.A.; Jankovic, D.; Oh, H.; Hieny, S.; Sungnak, W.; Mathur, R.; Hayden, M.S.; Akira, S.; Sher, A.; Ghosh, S. Recognition of Profilin by Toll-like Receptor 12 Is Critical for Host Resistance to Toxoplasma gondii. Immunity 2013, 38, 119–130. [Google Scholar] [CrossRef]
- Raetz, M.; Kibardin, A.; Sturge, C.R.; Pifer, R.; Li, H.; Burstein, E.; Ozato, K.; Larin, S.; Yarovinsky, F. Cooperation of TLR12 and TLR11 in the IRF8-Dependent IL-12 Response to Toxoplasma gondii Profilin. J. Immunol. 2013, 191, 4818–4827. [Google Scholar] [CrossRef]
- Mashayekhi, M.; Sandau, M.M.; Dunay, I.R.; Frickel, E.M.; Khan, A.; Goldszmid, R.S.; Sher, A.; Ploegh, H.L.; Murphy, T.L.; Sibley, L.D.; et al. CD8α+ Dendritic Cells Are the Critical Source of Interleukin-12 That Controls Acute Infection by Toxoplasma gondii Tachyzoites. Immunity 2011, 35, 249–259. [Google Scholar] [CrossRef]
- Sanecka, A.; and Frickel, E.-M. Use and Abuse of Dendritic Cells by Toxoplasma gondii. Virulence 2012, 3, 678–689. [Google Scholar] [CrossRef]
- Scanga, C.A.; Aliberti, J.; Jankovic, D.; Tilloy, F.; Bennouna, S.; Denkers, E.Y.; Medzhitov, R.; Sher, A. Cutting Edge: MyD88 Is Required for Resistance to Toxoplasma gondii Infection and Regulates Parasite-Induced IL-12 Production by Dendritic Cells. J. Immunol. 2002, 168, 5997–6001. [Google Scholar] [CrossRef]
- LaRosa, D.F.; Stumhofer, J.S.; Gelman, A.E.; Rahman, A.H.; Taylor, D.K.; Hunter, C.A.; Turka, L.A. T Cell Expression of MyD88 Is Required for Resistance to Toxoplasma gondii. Proc. Natl. Acad. Sci. USA 2008, 105, 3855–3860. [Google Scholar] [CrossRef]
- Mahmoudzadeh, S.; Nozad Charoudeh, H.; Marques, C.S.; Bahadory, S.; Ahmadpour, E. The Role of IL-12 in Stimulating NK Cells against Toxoplasma gondii Infection: A Mini-Review. Parasitol. Res. 2021, 120, 2303–2309. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Kastelein, R.; Hunter, C.A. Interleukin-18 (IL-18) Enhances Innate IL-12-Mediated Resistance to Toxoplasma gondii. Infect. Immun. 2000, 68, 6932–6938. [Google Scholar] [CrossRef]
- Andrade, W.A.; Souza, M.d.C.; Ramos-Martinez, E.; Nagpal, K.; Dutra, M.S.; Melo, M.B.; Bartholomeu, D.C.; Ghosh, S.; Golenbock, D.T.; Gazzinelli, R.T. Combined Action of Nucleic Acid-Sensing Toll-like Receptors and TLR11/TLR12 Heterodimers Imparts Resistance to Toxoplasma gondii in Mice. Cell Host Microbe 2013, 13, 42–53. [Google Scholar] [CrossRef]
- Kim, L.; Butcher, B.A.; Lee, C.W.; Uematsu, S.; Akira, S.; Denkers, E.Y. Toxoplasma gondii Genotype Determines MyD88-Dependent Signaling in Infected Macrophages. J. Immunol. 2006, 177, 2584–2591. [Google Scholar] [CrossRef]
- Scharton-Kersten, T.M.; Wynn, T.A.; Denkers, E.Y.; Bala, S.; Grunvald, E.; Hieny, S.; Gazzinelli, R.T.; Sher, A. In the Absence of Endogenous IFN-Gamma, Mice Develop Unimpaired IL-12 Responses to Toxoplasma gondii While Failing to Control Acute Infection. J. Immunol. 1996, 157, 4045–4054. [Google Scholar] [CrossRef] [PubMed]
- Wallet, P.; Benaoudia, S.; Mosnier, A.; Lagrange, B.; Martin, A.; Lindgren, H.; Golovliov, I.; Michal, F.; Basso, P.; Djebali, S.; et al. IFN-γ Extends the Immune Functions of Guanylate Binding Proteins to Inflammasome-Independent Antibacterial Activities during Francisella Novicida Infection. PLoS Pathog. 2017, 13, e1006630. [Google Scholar] [CrossRef]
- Tretina, K.; Park, E.-S.; Maminska, A.; MacMicking, J.D. Interferon-Induced Guanylate-Binding Proteins: Guardians of Host Defense in Health and Disease. J. Exp. Med. 2019, 216, 482–500. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.O.; Khaminets, A.; Hunn, J.P.; Howard, J.C. Disruption of the Toxoplasma gondii Parasitophorous Vacuole by IFNgamma-Inducible Immunity-Related GTPases (IRG Proteins) Triggers Necrotic Cell Death. PLoS Pathog. 2009, 5, e1000288. [Google Scholar] [CrossRef]
- Praefcke, G.J.K. Regulation of Innate Immune Functions by Guanylate-Binding Proteins. Int. J. Med. Microbiol. 2018, 308, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Matsuura, T.; Fonseka, S.; Kasper, L.H. Production of Nitric Oxide (NO) Is Not Essential for Protection against Acute Toxoplasma gondii Infection in IRF-1-/- Mice. J. Immunol. 1996, 156, 636–643. [Google Scholar] [CrossRef]
- Dincel, G.C.; Atmaca, H.T. Nitric Oxide Production Increases during Toxoplasma gondii Encephalitis in Mice. Exp. Parasitol. 2015, 156, 104–112. [Google Scholar] [CrossRef]
- Denkers, E.Y.; Gazzinelli, R.T. Regulation and Function of T-Cell-Mediated Immunity during Toxoplasma gondii Infection. Clin. Microbiol. Rev. 1998, 11, 569–588. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Sa, Q.; Gehman, M.; Ochiai, E. Interferon-Gamma- and Perforin-Mediated Immune Responses for Resistance in the Brain against Toxoplasma gondii. Expert. Rev. Mol. Med. 2011, 13, e31. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.T.M.; Oliveira-Scussel, A.C.M.; Sousa, R.A.P.; Gomes, B.Q.; Félix, J.E.; Silva, R.J.; Millian, I.B.; Assunção, T.S.F.; Teixeira, S.C.; Gomes, M.d.L.M.; et al. Macrophage Migration Inhibitory Factor Contributes to Drive Phenotypic and Functional Macrophages Activation in Response to Toxoplasma gondii Infection. Immunobiology 2023, 228, 152357. [Google Scholar] [CrossRef]
- Suzuki, Y.; Orellana, M.A.; Schreiber, R.D.; Remington, J.S. Interferon-γ: The Major Mediator of Resistance Against Toxoplasma gondii. Science 1988, 240, 516–518. [Google Scholar] [CrossRef] [PubMed]
- Scharton-Kersten, T.M.; Yap, G.; Magram, J.; Sher, A. Inducible Nitric Oxide Is Essential for Host Control of Persistent but Not Acute Infection with the Intracellular Pathogen Toxoplasma gondii. J. Exp. Med. 1997, 185, 1261–1274. [Google Scholar] [CrossRef]
- Halonen, S.K.; Weiss, L.M. Investigation into the Mechanism of Gamma Interferon-Mediated Inhibition of Toxoplasma gondii in Murine Astrocytes. Infect. Immun. 2000, 68, 3426–3430. [Google Scholar] [CrossRef]
- Khan, I.A.; Green, W.R.; Kasper, L.H.; Green, K.A.; Schwartzman, J.D. Immune CD8+ T Cells Prevent Reactivation of Toxoplasma gondii Infection in the Immunocompromised Host. Infect. Immun. 1999, 67, 5869–5876. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, S.; Konstantinou, E.K.; Young, L.H.; Gold, D.A.; Saeij, J.P.J. The Human Immune Response to Toxoplasma: Autophagy versus Cell Death. PLoS Pathog. 2017, 13, e1006176. [Google Scholar] [CrossRef]
- Suzuki, Y.; Wang, X.; Jortner, B.S.; Payne, L.; Ni, Y.; Michie, S.A.; Xu, B.; Kudo, T.; Perkins, S. Removal of Toxoplasma gondii Cysts from the Brain by Perforin-Mediated Activity of CD8+ T Cells. Am. J. Pathol. 2010, 176, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.B.; Denkers, E.Y. Border Maneuvers: Deployment of Mucosal Immune Defenses against Toxoplasma gondii. Mucosal Immunol. 2014, 7, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Israelski, D.M.; Remington, J.S. Toxoplasmic Encephalitis in Patients with AIDS. Infect. Dis. Clin. N. Am. 1988, 2, 429–446. [Google Scholar] [CrossRef]
- Belkaid, Y.; Sun, C.M.; Bouladoux, N. Parasites and Immunoregulatory T Cells. Curr. Opin. Immunol. 2006, 18, 406–412. [Google Scholar] [CrossRef]
- Mahamed, D.A.; Toussaint, L.E.; Bynoe, M.S. CD73-Generated Adenosine Is Critical for Immune Regulation during Toxoplasma gondii Infection. Infect. Immun. 2015, 83, 721–729. [Google Scholar] [CrossRef]
- Heimesaat, M.M.; Escher, U.; Grunau, A.; Fiebiger, U.; Bereswill, S. Peroral Low-Dose Toxoplasma gondii Infection of Human Microbiota-Associated Mice—A Subacute Ileitis Model to Unravel Pathogen–Host Interactions. Eur. J. Microbiol. Immunol. 2018, 8, 53–61. [Google Scholar] [CrossRef]
- Toxoplasmosis—American Association for Pediatric Ophthalmology and Strabismus. Available online: https://www.aapos.org/glossary/toxoplasmosis (accessed on 21 May 2025).
- Smigiel, K.S.; Srivastava, S.; Stolley, J.M.; Campbell, D.J. Regulatory T Cell Homeostasis: Steady-State Maintenance and Modulation during Inflammation. Immunol. Rev. 2014, 259, 40–59. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Schmidt-Bleek, K.; Dienelt, A.; Reinke, P.; Volk, H.-D. Regulatory T Cell-Mediated Anti-Inflammatory Effects Promote Successful Tissue Repair in Both Indirect and Direct Manners. Front. Pharmacol. 2015, 6, 184. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Wan, Y.Y. Intricacies of TGF-β Signaling in Treg and Th17 Cell Biology. Cell Mol. Immunol. 2023, 20, 1002–1022. [Google Scholar] [CrossRef] [PubMed]
- Gazzinelli, R.T.; Wysocka, M.; Hieny, S.; Scharton-Kersten, T.; Cheever, A.; Kühn, R.; Müller, W.; Trinchieri, G.; Sher, A. In the Absence of Endogenous IL-10, Mice Acutely Infected with Toxoplasma gondii Succumb to a Lethal Immune Response Dependent on CD4+ T Cells and Accompanied by Overproduction of IL-12, IFN-Gamma and TNF-Alpha. J. Immunol. 1996, 157, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Huang, S.; Kasper, L.H. Interleukin-10 and Pathogenesis of Murine Ocular Toxoplasmosis. Infect. Immun. 2003, 71, 7159–7163. [Google Scholar] [CrossRef]
- Sanjabi, S.; Zenewicz, L.A.; Kamanaka, M.; Flavell, R.A. Anti- and Pro-Inflammatory Roles of TGF-β, IL-10, and IL-22 In Immunity and Autoimmunity. Curr. Opin. Pharmacol. 2009, 9, 447–453. [Google Scholar] [CrossRef]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β Signaling in Health, Disease and Therapeutics. Signal Transduct. Target. Ther. 2024, 9, 1–40. [Google Scholar] [CrossRef]
- Ricci-Azevedo, R.; Mendonça-Natividade, F.C.; Santana, A.C.; Alcoforado Diniz, J.; Roque-Barreira, M.C. Microneme Proteins 1 and 4 From Toxoplasma gondii Induce IL-10 Production by Macrophages Through TLR4 Endocytosis. Front. Immunol. 2021, 12, 655371. [Google Scholar] [CrossRef]
- Saeij, J.P.J.; Boyle, J.P.; Boothroyd, J.C. Differences among the Three Major Strains of Toxoplasma gondii and Their Specific Interactions with the Infected Host. Trends Parasitol. 2005, 21, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Howe, D.K.; Sibley, L.D. Toxoplasma gondii Comprises Three Clonal Lineages: Correlation of Parasite Genotype with Human Disease. J. Infect. Dis. 1995, 172, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.D.C.; Camejo, A.; Melo, M.B.; Cordeiro, C.; Julien, L.; Grotenbreg, G.M.; Frickel, E.-M.; Ploegh, H.L.; Young, L.; Saeij, J.P.J. Toxoplasma gondii Superinfection and Virulence during Secondary Infection Correlate with the Exact ROP5/ROP18 Allelic Combination. mBio 2015, 6, e02280-14. [Google Scholar] [CrossRef]
- Niedelman, W.; Gold, D.A.; Rosowski, E.E.; Sprokholt, J.K.; Lim, D.; Arenas, A.F.; Melo, M.B.; Spooner, E.; Yaffe, M.B.; Saeij, J.P.J. The Rhoptry Proteins ROP18 and ROP5 Mediate Toxoplasma gondii Evasion of the Murine, But Not the Human, Interferon-Gamma Response. PLOS Pathog. 2012, 8, e1002784. [Google Scholar] [CrossRef]
- Etheridge, R.D.; Alaganan, A.; Tang, K.; Lou, H.J.; Turk, B.E.; Sibley, L.D. The Toxoplasma Pseudokinase ROP5 Forms Complexes with ROP18 and ROP17 Kinases That Synergize to Control Acute Virulence in Mice. Cell Host Microbe 2014, 15, 537–550. [Google Scholar] [CrossRef]
- Galal, L.; Hamidović, A.; Dardé, M.L.; Mercier, M. Diversity of Toxoplasma gondii Strains at the Global Level and Its Determinants. Food Waterborne Parasitol. 2019, 15, e00052. [Google Scholar] [CrossRef]
- Ye, K.; Chen, Z.; Xu, Y. The Double-Edged Functions of Necroptosis. Cell Death Dis. 2023, 14, 163. [Google Scholar] [CrossRef]
- Labbé, K.; Saleh, M. Cell Death in the Host Response to Infection. Cell Death Differ. 2008, 15, 1339–1349. [Google Scholar] [CrossRef]
- Vutova, P.; Wirth, M.; Hippe, D.; Gross, U.; Schulze-Osthoff, K.; Schmitz, I.; Lüder, C.G.K. Toxoplasma gondii Inhibits Fas/CD95-Triggered Cell Death by Inducing Aberrant Processing and Degradation of Caspase 8. Cell. Microbiol. 2007, 9, 1556–1570. [Google Scholar] [CrossRef]
- Hippe, D.; Lytovchenko, O.; Schmitz, I.; Lüder, C.G.K. Fas/CD95-Mediated Apoptosis of Type II Cells Is Blocked by Toxoplasma gondii Primarily via Interference with the Mitochondrial Amplification Loop. Infect. Immun. 2008, 76, 2905–2912. [Google Scholar] [CrossRef]
- Nash, P.B.; Purner, M.B.; Leon, R.P.; Clarke, P.; Duke, R.C.; Curiel, T.J. Toxoplasma gondii-Infected Cells Are Resistant to Multiple Inducers of Apoptosis1. J. Immunol. 1998, 160, 1824–1830. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Tomita, T.; Weiss, L.M.; Orlofsky, A. Toxoplasma gondii Inhibits Granzyme B-Mediated Apoptosis by the Inhibition of Granzyme B Function in Host Cells. Int. J. Parasitol. 2011, 41, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Shapira, S.; Speirs, K.; Gerstein, A.; Caamano, J.; Hunter, C.A. Suppression of NF-κB Activation by Infection with Toxoplasma gondii. J. Infect. Dis. 2002, 185, S66–S72. [Google Scholar] [CrossRef] [PubMed]
- Ewald, S.E.; Chavarria-Smith, J.; Boothroyd, J.C. NLRP1 Is an Inflammasome Sensor for Toxoplasma gondii. Infect. Immun. 2014, 82, 460–468. [Google Scholar] [CrossRef]
- McKee, A.S.; Dzierszinski, F.; Boes, M.; Roos, D.S.; Pearce, E.J. Functional Inactivation of Immature Dendritic Cells by the Intracellular Parasite Toxoplasma gondii. J. Immunol. 2004, 173, 2632–2640. [Google Scholar] [CrossRef]
- Lüder, C.G.K.; Lang, T.; Beuerle, B.; Gross, U. Down-Regulation of MHC Class II Molecules and Inability to up-Regulate Class I Molecules in Murine Macrophages after Infection with Toxoplasma gondii. Clin. Exp. Immunol. 1998, 112, 308–316. [Google Scholar] [CrossRef]
- Lüder, C.G.K.; Walter, W.; Beuerle, B.; Maeurer, M.J.; Gross, U. Toxoplasma gondii Down-Regulates MHC Class II Gene Expression and Antigen Presentation by Murine Macrophages via Interference with Nuclear Translocation of STAT1α. Eur. J. Immunol. 2001, 31, 1475–1484. [Google Scholar] [CrossRef]
- Rosowski, E.E.; Lu, D.; Julien, L.; Rodda, L.; Gaiser, R.A.; Jensen, K.D.C.; Saeij, J.P.J. Strain-Specific Activation of the NF-κB Pathway by GRA15, a Novel Toxoplasma gondii Dense Granule Protein. J. Exp. Med. 2011, 208, 195–212. [Google Scholar] [CrossRef]
- Du, J.; An, R.; Chen, L.; Shen, Y.; Chen, Y.; Cheng, L.; Jiang, Z.; Zhang, A.; Yu, L.; Chu, D.; et al. Toxoplasma gondii Virulence Factor ROP18 Inhibits the Host NF-κB Pathway by Promoting P65 Degradation*. J. Biol. Chem. 2014, 289, 12578–12592. [Google Scholar] [CrossRef] [PubMed]
- Gay, G.; Braun, L.; Brenier-Pinchart, M.-P.; Vollaire, J.; Josserand, V.; Bertini, R.-L.; Varesano, A.; Touquet, B.; De Bock, P.-J.; Coute, Y.; et al. Toxoplasma gondii TgIST Co-Opts Host Chromatin Repressors Dampening STAT1-Dependent Gene Regulation and IFN-γ–Mediated Host Defenses. J. Exp. Med. 2016, 213, 1779–1798. [Google Scholar] [CrossRef]
- Zimmermann, S.; Murray, P.J.; Heeg, K.; Dalpke, A.H. Induction of Suppressor of Cytokine Signaling-1 by Toxoplasma gondii Contributes to Immune Evasion in Macrophages by Blocking IFN-γ Signaling1. J. Immunol. 2006, 176, 1840–1847. [Google Scholar] [CrossRef]
- Alaganan, A.; Fentress, S.J.; Tang, K.; Wang, Q.; Sibley, L.D. Toxoplasma GRA7 Effector Increases Turnover of Immunity-Related GTPases and Contributes to Acute Virulence in the Mouse. Proc. Natl. Acad. Sci. USA 2014, 111, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Dunay, I.R.; Gajurel, K.; Dhakal, R.; Liesenfeld, O.; Montoya, J.G. Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice. Clin. Microbiol. Rev. 2018, 31, e00057-17. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, M.; Mehrzadi, S.; Sharif, M.; Sarvi, S.; Tanzifi, A.; Aghayan, S.A.; Daryani, A. Drug Resistance in Toxoplasma gondii. Front. Microbiol. 2018, 9, 2587. [Google Scholar] [CrossRef]
- Lan, H.-W.; Lu, Y.-N.; Zhao, X.-D.; Jin, G.-N.; Lu, J.-M.; Jin, C.-H.; Ma, J.; Jin, X.; Xu, X.; Piao, L.-X. New Role of Sertraline against Toxoplasma gondii-Induced Depression-like Behaviours in Mice. Parasite Immunol. 2021, 43, e12893. [Google Scholar] [CrossRef]
- Brito, C.; Lourenço, C.; Magalhães, J.; Reis, S.; Borges, M. Nanoparticles as a Delivery System of Antigens for the Development of an Effective Vaccine against Toxoplasma gondii. Vaccines 2023, 11, 733. [Google Scholar] [CrossRef]
- Abdelhamid Elgendy, W.M.; Haggag, Y.A.; El-Nouby, K.A.; El-Kowrany, S.I.; El Marhoumy, S.M. Evaluation of the Effect of Guanabenz-Loaded Nanoparticles on Chronic Toxoplasmosis in Mice. Exp. Parasitol. 2023, 246, 108460. [Google Scholar] [CrossRef] [PubMed]
- Costa, I.N.; Ribeiro, M.; Silva Franco, P.; da Silva, R.J.; de Araújo, T.E.; Milián, I.C.B.; Luz, L.C.; Guirelli, P.M.; Nakazato, G.; Mineo, J.R.; et al. Biogenic Silver Nanoparticles Can Control Toxoplasma gondii Infection in Both Human Trophoblast Cells and Villous Explants. Front. Microbiol. 2021, 11, 623947. [Google Scholar] [CrossRef]
- Albalawi, A.E.; Alanazi, A.D.; Alyousif, M.S.; Sepahvand, A.; Ebrahimi, K.; Niazi, M.; Mahmoudvand, H. The High Potency of Green Synthesized Copper Nanoparticles to Prevent the Toxoplasma gondii Infection in Mice. Acta Parasitol. 2021, 66, 1472–1479. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Y.; Yolken, R.H.; Viscidi, R.P. PD-1 Immune Checkpoint Blockade Promotes Brain Leukocyte Infiltration and Diminishes Cyst Burden in a Mouse Model of Toxoplasma Infection. J. Neuroimmunol. 2018, 319, 55–62. [Google Scholar] [CrossRef]
- Buxton, D. Toxoplasmosis: The First Commercial Vaccine. Parasitol. Today 1993, 9, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, C.; Maier, S.; Walker, R.A.; Rehrauer, H.; Joekel, D.E.; Winiger, R.R.; Basso, W.U.; Grigg, M.E.; Hehl, A.B.; Deplazes, P.; et al. An Experimental Genetically Attenuated Live Vaccine to Prevent Transmission of Toxoplasma gondii by Cats. Sci. Rep. 2019, 9, 1474. [Google Scholar] [CrossRef]
- Dubey, J.P. Schizogony and Gametogony of Oocyst-Deficient T-263 Strain of Toxoplasma gondii. Vet. Parasitol. 2017, 245, 160–162. [Google Scholar] [CrossRef]
- Frenkel, J.K.; Pfefferkorn, E.R.; Smith, D.D.; Fishback, J.L. Prospective Vaccine Prepared from a New Mutant of Toxoplasma gondii for Use in Cats. Am. J. Vet. Res. 1991, 52, 759–763. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erazo Flores, B.J.; Knoll, L.J. Toxoplasma gondii at the Host Interface: Immune Modulation and Translational Strategies for Infection Control. Vaccines 2025, 13, 819. https://doi.org/10.3390/vaccines13080819
Erazo Flores BJ, Knoll LJ. Toxoplasma gondii at the Host Interface: Immune Modulation and Translational Strategies for Infection Control. Vaccines. 2025; 13(8):819. https://doi.org/10.3390/vaccines13080819
Chicago/Turabian StyleErazo Flores, Billy J., and Laura J. Knoll. 2025. "Toxoplasma gondii at the Host Interface: Immune Modulation and Translational Strategies for Infection Control" Vaccines 13, no. 8: 819. https://doi.org/10.3390/vaccines13080819
APA StyleErazo Flores, B. J., & Knoll, L. J. (2025). Toxoplasma gondii at the Host Interface: Immune Modulation and Translational Strategies for Infection Control. Vaccines, 13(8), 819. https://doi.org/10.3390/vaccines13080819