Strategies for Maximising Lung Utilisation in Donors After Brain and Cardiac Death: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of Brain Death on Lung Physiology
3.1.1. Blast Injury Theory
3.1.2. Inflammatory Cascade and Its Consequences: “Double-Hit Model” and “Triple-Hit Hypothesis”
3.1.3. Ventilator-Induced Lung Injury (VILI)
3.1.4. Apnoea Testing
3.1.5. Aspiration Pneumonia
3.2. Management of the DBD Lung
3.2.1. Protective Mechanical Ventilation
3.2.2. Recruitment Manoeuvres
3.2.3. Fluid Strategy in Potential Lung Donors
3.2.4. Bronchoscopy
3.2.5. Endotracheal Tube Management and Imaging
3.2.6. PaO2/FiO2 Ratio and the “40-100 Test” in Donor Lung Assessment
3.2.7. Pronation
3.3. Lung Transplantation from Donors After Controlled Cardiac Death (cDCD)
3.3.1. Lung Injury in cDCD—Potential Mechanisms
Warm Ischaemia
Prolonged Mechanical Ventilation
3.4. Management of Lungs from cDCD
3.4.1. Protective Mechanical Ventilation
3.4.2. Recruitment Manoeuvres
3.4.3. Pronation
3.4.4. Bronchoscopy
3.4.5. Endotracheal Tube Management
3.5. Lung Transplantation from Donors After Uncontrolled Cardiac Death (uDCD)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DBD | Donor after brain death |
DCD | Donor after circulatory death |
EVLP | Ex vivo lung perfusion |
VILI | Ventilator induced lung injury |
PEEP | Positive end expiratory pressure |
TV | Tidal volume |
ICU | Intensive care unit |
CPAP | Continuous positive airway pressure |
VAP | Ventilator-associated pneumonia |
MDR | Multidrug resistant |
References
- Courtwright, A.; Cantu, E. Evaluation and Management of the Potential Lung Donor. Clin. Chest Med. 2017, 38, 751–759. [Google Scholar] [CrossRef]
- Arjuna, A.; Mazzeo, A.T.; Tonetti, T.; Walia, R.; Mascia, L. Management of the Potential Lung Donor. Thorac. Surg. Clin. 2022, 32, 143–151. [Google Scholar] [CrossRef]
- Kang, C.H.; Anraku, M.; Cypel, M.; Sato, M.; Yeung, J.; Gharib, S.A.; Pierre, A.F.; de Perrot, M.; Waddell, T.K.; Liu, M.; et al. Transcriptional signatures in donor lungs from donation after cardiac death vs after brain death: A functional pathway analysis. J. Heart Lung Transplant. 2011, 30, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Meyfroidt, G.; Gunst, J.; Martin-Loeches, I.; Smith, M.; Robba, C.; Taccone, F.S.; Citerio, G. Management of the brain-dead donor in the ICU: General and specific therapy to improve transplantable organ quality. Intensive Care Med. 2019, 45, 343–353. [Google Scholar] [CrossRef]
- Smith, M. Physiologic changes during brain stem death—Lessons for management of the organ donor. J. Heart Lung Transplant. 2004, 23 (Suppl. S9), S217–S222. [Google Scholar] [CrossRef]
- Mascia, L. Acute lung injury in patients with severe brain injury: A double hit model. Neurocrit. Care 2009, 11, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Sandiumenge, A.; Bello, I.; Coll-Torres, E.; Gomez-Brey, A.; Franco-Jarava, C.; Miñambres, E.; Pérez-Redondo, M.; Mosteiro, F.; Sánchez-Moreno, L.; Crowley, S.; et al. Systemic Inflammation Differences in Brain-vs. Circulatory-Dead Donors: Impact on Lung Transplant Recipients. Transpl. Int. 2024, 37, 12512. [Google Scholar] [CrossRef]
- Lisman, T.; Leuvenink, H.G.; Porte, R.J.; Ploeg, R.J. Activation of hemostasis in brain dead organ donors: An observational study. J. Thromb. Haemost. 2011, 9, 1959–1965. [Google Scholar] [CrossRef]
- Hang, C.H.; Shi, J.X.; Li, J.S.; Wu, W.; Yin, H.X. Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats. World J. Gastroenterol. 2003, 9, 2776–2781. [Google Scholar] [CrossRef]
- Ziaka, M.; Exadaktylos, A. Pathophysiology of acute lung injury in patients with acute brain injury: The triple-hit hypothesis. Crit. Care. 2024, 28, 71. [Google Scholar] [CrossRef] [PubMed]
- Mascia, L.; Zavala, E.; Bosma, K.; Pasero, D.; Decaroli, D.; Andrews, P.; Isnardi, D.; Davi, A.; Arguis, M.J.; Berardino, M.; et al. Brain IT group. High tidal volume is associated with the development of acute lung injury after severe brain injury: An international observational study. Crit. Care Med. 2007, 35, 1815–1820. [Google Scholar] [CrossRef]
- Denny, J.T.; Burr, A.; Tse, J.; Denny, J.E.; Chyu, D.; Cohen, S.; Patel, A.N. A new technique for avoiding barotrauma-induced complications in apnea testing for brain death. J. Clin. Neurosci. 2015, 22, 1021–1024. [Google Scholar] [CrossRef]
- Ramendra, R.; Sage, A.T.; Yeung, J.; Fernandez-Castillo, J.C.; Cuesta, M.; Aversa, M.; Liu, M.; Cypel, M.; Keshavjee, S.; Martinu, T. Triaging donor lungs based on a microaspiration signature that predicts adverse recipient outcome. J. Heart Lung Transplant. 2023, 42, 456–465. [Google Scholar] [CrossRef]
- Nunley, D.R.; Gualdoni, J.; Ritzenthaler, J.; Bauldoff, G.S.; Howsare, M.; Reynolds, K.G.; van Berkel, V.; Roman, J. Evaluation of Donor Lungs for Transplantation: The Efficacy of Screening Bronchoscopy for Detecting Donor Aspiration and Its Relationship to the Resulting Allograft Function in Corresponding Recipients. Transplant. Proc. 2023, 55, 1487–1494. [Google Scholar] [CrossRef]
- Mascia, L.; Pasero, D.; Slutsky, A.S.; Arguis, M.J.; Berardino, M.; Grasso, S.; Munari, M.; Boifava, S.; Cornara, G.; Della Corte, F.; et al. Effect of a lung protective strategy for organ donors on eligibility and availability of lungs for transplantation: A randomized controlled trial. JAMA 2010, 304, 2620–2627. [Google Scholar] [CrossRef]
- Ministerio de Sanidad y Consumo. Organización Nacional de Trasplantes. Protocolo de Manejo del Donante Torácico: Estrategias Para Mejorar el Aprovechamiento de Órganos. Available online: https://www.smtrasplantes.org/tcardiaco/pdfs/protocoloManejoDonanteToracico.pdf (accessed on 11 November 2024).
- Solidoro, P.; Schreiber, A.; Boffini, M.; Braido, F.; Di Marco, F. Improving donor lung suitability: From protective strategies to ex-vivo reconditioning. Minerva Med. 2016, 107 (Suppl. S1), 7–11. [Google Scholar]
- Miñambres, E.; Coll, E.; Duerto, J.; Suberviola, B.; Mons, R.; Cifrian, J.M.; Ballesteros, M.A. Effect of an intensive lung donor-management protocol on lung transplantation outcomes. J. Heart Lung Transplant. 2014, 33, 178–184. [Google Scholar] [CrossRef]
- Kumar, L. Brain death and care of the organ donor. J. Anaesthesiol. Clin. Pharmacol. 2016, 32, 146–152. [Google Scholar] [CrossRef]
- Pennefather, S.H.; Bullock, R.E.; Dark, J.H. The effect of fluid therapy on alveolar arterial oxygen gradient in brain-dead organ donors. Transplantation. 1993, 56, 1418–1422. [Google Scholar] [CrossRef]
- Shah, U.; Rahulan, V.; Kumar, P.; Dutta, P.; Attawar, S. Donor lung management: Changing perspectives. Lung India 2021, 38, 466–473. [Google Scholar] [CrossRef]
- Dahyot-Fizelier, C.; Lasocki, S.; Kerforne, T.; Perrigault, P.F.; Geeraerts, T.; Asehnoune, K.; Cinotti, R.; Launey, Y.M.; Cottenceau, V.; Laffon, M.; et al. PROPHY-VAP Study Group and the ATLANREA Study Group. Ceftriaxone to prevent early ventilator-associated pneumonia in patients with acute brain injury: A multicentre, randomised, double-blind, placebo-controlled, assessor-masked superiority trial. Lancet Respir. Med. 2024, 12, 375–385. [Google Scholar] [CrossRef]
- Bunsow, E.; Los-Arcos, I.; Martin-Gómez, M.T.; Bello, I.; Pont, T.; Berastegui, C.; Ferrer, R.; Nuvials, X.; Deu, M.; Peghin, M.; et al. Donor-derived bacterial infections in lung transplant recipients in the era of multidrug resistance. J. Infect. 2020, 80, 190–196. [Google Scholar] [CrossRef]
- Abdulqawi, R.; Saleh, R.A.; Alameer, R.M.; Aldakhil, H.; AlKattan, K.M.; Almaghrabi, R.S.; Althawadi, S.; Hashim, M.; Saleh, W.; Yamani, A.H.; et al. Donor respiratory multidrug-resistant bacteria and lung transplantation outcomes. J. Infect. 2024, 88, 139–148. [Google Scholar] [CrossRef]
- Kotloff, R.M.; Blosser, S.; Fulda, G.J.; Malinoski, D.; Ahya, V.N.; Angel, L.; Byrnes, M.C.; DeVita, M.A.; Grissom, T.E.; Halpern, S.D.; et al. Society of Critical Care Medicine/American College of Chest Physicians/Association of Organ Procurement Organizations Donor Management Task Force. Management of the Potential Organ Donor in the ICU: Society of Critical Care Medicine/American College of Chest Physicians/Association of Organ Procurement Organizations Consensus Statement. Crit. Care Med. 2015, 43, 1291–1325. [Google Scholar] [CrossRef]
- Bulleri, E.; Fusi, C.; Bambi, S.; Pisani, L.; Galesi, A.; Rizzello, E.; Lucchini, A.; Merlani, P.; Pagnamenta, A. Efficacy of endotracheal tube clamping to prevent positive airways pressure loss and pressure behavior after reconnection: A bench study. Intensive Care Med. Exp. 2023, 11, 36. [Google Scholar] [CrossRef]
- Turbil, E.; Terzi, N.; Schwebel, C.; Cour, M.; Argaud, L.; Guérin, C. Does endo-tracheal tube clamping prevent air leaks and maintain positive end-expiratory pressure during the switching of a ventilator in a patient in an intensive care unit? A bench study. PLoS ONE. 2020, 15, e0230147. [Google Scholar] [CrossRef]
- Marklin, G.F.; O’Sullivan, C.; Dhar, R. Ventilation in the prone position improves oxygenation and results in more lungs being transplanted from organ donors with hypoxemia and atelectasis. J. Heart Lung Transplant. 2021, 40, 120–127. [Google Scholar] [CrossRef]
- Son, E.; Jang, J.; Cho, W.H.; Kim, D.; Yeo, H.J. Successful lung transplantation after prone positioning in an ineligible donor: A case report. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 1352–1355. [Google Scholar] [CrossRef]
- Mendez, M.A.; Fesmire, A.J.; Johnson, S.S.; Neel, D.R.; Markham, L.E.; Olson, J.C.; Ott, M.; Sangha, H.; Vasquez, D.G.; Whitt, S.P.; et al. A 360° Rotational Positioning Protocol of Organ Donors May Increase Lungs Available for Transplantation. Crit. Care Med. 2019, 47, 1058–1064. [Google Scholar] [CrossRef]
- Ministero Della Salute, Protocolli e Linee di Indirizzo Trapianti. Available online: https://www.trapianti.salute.gov.it/imgs/C_17_cntPubblicazioni_545_allegato.pdf (accessed on 11 November 2024).
- Ghimessy, Á.K.; Farkas, A.; Gieszer, B.; Radeczky, P.; Csende, K.; Mészáros, L.; Török, K.; Fazekas, L.; Agócs, L.; Kocsis, Á.; et al. Donation After Cardiac Death, a Possibility to Expand the Donor Pool: Review and the Hungarian Experience. Transplant. Proc. 2019, 51, 1276–1280. [Google Scholar] [CrossRef]
- Egan, T.M.; Haithcock, B.E.; Lobo, J.; Mody, G.; Love, R.B.; Requard, J.J., 3rd; Espey, J.; Ali, M.H. Donation after circulatory death donors in lung transplantation. J. Thorac. Dis. 2021, 13, 6536–6549. [Google Scholar] [CrossRef]
- Cantador, B.; Moreno, P.; González, F.J.; Ruiz, E.; Fernández, A.M.; Álvarez, A. Influence of Donor Type-Donation After Brain Death Versus Donation After Circulatory Death-on Lung Transplant Outcomes. Transpl. Transplant. Proc. 2023, 55, 2292–2294. [Google Scholar] [CrossRef]
- Sampson, B.G.; O’Callaghan, G.P.; Russ, G.R. Is donation after cardiac death reducing the brain-dead donor pool in Australia? Crit. Care Resusc. 2013, 15, 21–27. [Google Scholar] [CrossRef]
- Elgharably, H.; Shafii, A.E.; Mason, D.P. Expanding the donor pool: Donation after cardiac death. Thorac. Surg. Clin. 2015, 25, 35–46. [Google Scholar] [CrossRef]
- Len, O.; Garzoni, C.; Lumbreras, C.; Molina, I.; Meije, Y.; Pahissa, A.; Grossi, P. ESCMID Study Group of Infection in Compromised Hosts. Recommendations for screening of donor and recipient prior to solid organ transplantation and to minimize transmission of donor-derived infections. Clin. Microbiol. Infect. 2014, 20 (Suppl. S7), 10–18. [Google Scholar] [CrossRef]
- Niman, E.; Miyoshi, K.; Shiotani, T.; Toji, T.; Igawa, T.; Otani, S.; Okazaki, M.; Sugimoto, S.; Yamane, M.; Toyooka, S. Lung recruitment after cardiac arrest during procurement of atelectatic donor lungs is a protective measure in lung transplantation. J. Thorac. Dis. 2022, 14, 2802–2811. [Google Scholar] [CrossRef]
- Watanabe, Y.; Galasso, M.; Watanabe, T.; Ali, A.; Qaqish, R.; Nakajima, D.; Taniguchi, Y.; Pipkin, M.; Caldarone, L.; Chen, M.; et al. Donor prone positioning protects lungs from injury during warm ischemia. Am. J. Transplant. 2019, 19, 2746–2755. [Google Scholar] [CrossRef]
- Lazzeri, C.; Bonizzoli, M.; Di Valvasone, S.; Peris, A. Uncontrolled Donation after Circulatory Death Only Lung Program: An Urgent Opportunity. J. Clin. Med. 2023, 12, 6492. [Google Scholar] [CrossRef]
- Egan, T.M.; Lambert, C.J., Jr.; Reddick, R.; Ulicny, K.S., Jr.; Keagy, B.A.; Wilcox, B.R. A strategy to increase the donor pool: Use of cadaver lungs for transplantation. Ann. Thorac. Surg. 1991, 52, 1113–1120. [Google Scholar] [CrossRef]
- Egan, T.M.; Requard, J.J. 3rd Uncontrolled donation after circulatory determination of death donors (uDCDDs) as a source of lungs for transplant. Am. J. Transpl. 2015, 15, 2031–2036. [Google Scholar] [CrossRef]
- Valenza, F.; Citerio, G.; Palleschi, A.; Vargiolu, A.; Safaee Fakhr, B.; Confalonieri, A.; Nosotti, M.; Gatti, S.; Ravasi, S.; Vesconi, S.; et al. Successful transplantation of lungs from an uncontrolled donor after circulatory death preserved in situ by alveolar recruitment maneuvers and assessed by ex vivo lung perfusion. Am. J. Transpl. 2016, 16, 1312–1318. [Google Scholar] [CrossRef]
- Suzuki, Y.; Tiwari, J.L.; Lee, J.; Diamond, J.M.; Blumenthal, N.P.; Carney, K.; Borders, C.; Strain, J.; Alburger, G.W.; Jackson, D.; et al. Should we reconsider lung transplantation through uncontrolled donation after circulatory death? Am. J. Transpl. 2014, 14, 966–971. [Google Scholar] [CrossRef]
- Valdivia, D.; de Antonio, G.D.; Hoyos, L.; de la Cruz, C.-C.J.L.; Romero, A.; de Ugarte, V.A. Expanding the horizons: Uncontrolled donors after circulatory death for lung transplantation—First comparison with brain death donors. Clin. Transplant. 2019, 33, e13561. [Google Scholar] [CrossRef]
- Healey, A.; Watanabe, Y.; Mills, C.; Stoncious, M.; Lavery, S.; Johnson, K.; Sanderson, R.; Humar, A.; Yeung, J.; Donahoe, L.; et al. Initial lung transplantation experience with uncontrolled donation after cardiac death in North America. Am. J. Transplant. 2020, 20, 1574–1581. [Google Scholar] [CrossRef]
- Venema, L.H.; Brat, A.; Nijkamp, D.M.; Krikke, C.; Leuvenink, H.G.D.; de Jongh, W.C.; Van Der Vliet, J.A.; Bens, B.W.J.; Erasmus, J.A. Factors that complicated the implementation of a program of donation after unexpected circulatory death of lungs and kidneys. Lessons learnt from a regional trial in The Netherlands. Transplantation. 2019, 103, e256–e262. [Google Scholar] [CrossRef]
- Lazzeri, C.; Bonizzoli, M.; Ghinolfi, D.; Li Marzi, V.; Luzzi, L.; Entani Santini, L.; Peris, A. Uncontrolled donation after circulatory death in the Tuscany region: Evolving paradigms and potentials. An 8-year experience. Minerva Anestesiol. 2025, 91, 184–190. [Google Scholar] [CrossRef]
- Gamez, P.; Cordoba, M.; Usetti, P.; Carreno, M.C.; Alfageme, F.; Madrigal, L.; Nunez, J.R.; Ramos, M.; Salas, C.; Varela, A. Lung Transplantation from Out-of-Hospital Non-Heart-Beating Lung Donors. One-Year Experience and Results. J. Heart Lung Transpl. 2005, 24, 1098–1102. [Google Scholar] [CrossRef]
- Suberviola, B.; Mons, R.; Ballesteros, M.A.; Mora, V.; Delgado, M.; Naranjo, S.; Iturbe, D.; Minambres, E. Excellent long-term outcome with lungs obtained from uncontrolled donation after circulatory death. Am. J. Transpl. 2019, 19, 1195–1201. [Google Scholar] [CrossRef]
- Gomez-de-Antonio, D.; Campo-Cañaveral, J.L.; Crowley, S.; Valdivia, D.; Cordoba, M.; Moradiellos, J.; Naranjo, J.M.; Ussetti, P.; Varela, A. Clinical lung transplantation from uncontrolled non-heart-beating donors revisited. J. Heart Lung Transpl. 2012, 31, 349–353. [Google Scholar] [CrossRef]
Mechanism | Description |
---|---|
Blast Injury Theory | Combination of hydrostatic and high-permeability mechanisms leading to neurogenic pulmonary oedema |
Double-Hit Model | Initial injury from catecholamine surge and systemic inflammation, followed by secondary insults like ventilation and infections |
Triple-Hit Hypothesis | Involvement of gut-lung axis through intestinal permeability changes, microbiome alterations, and immune modulation |
Ventilator-Induced Lung Injury (VILI) | Volutrauma, barotrauma, and atelectrauma contributing to lung injury via overdistension and repetitive collapse |
Apnoea Testing | Risk of auto-PEEP development, leading to barotrauma and increased airway pressure |
Aspiration Pneumonia | Inflammation from aspiration linked to reduced transplant suitability, with conflicting evidence on its impact on outcomes |
Inclusion Criteria | Exclusion Criteria | Relative Contraindication |
---|---|---|
Age 18–65 years | Unidentified donor | BMI > 40 kg/m2 |
Witnessed cardiac arrest | Failure to manage airways | Smoking |
Identified donor | Ab ingestis pneumonia | Chronic heart disease |
Managed airways (intubation or laryngeal mask) | Chest trauma | |
Airway bleeding |
DBD | cDCD | uDCD | |
---|---|---|---|
Pathophysiology | Inflammatory and catecholaminergic response with maintained ventilation and oxygenation | 1. Prolonged mechanical ventilation: VILI and infection 2. Warm ischemia | Unexpected cardiac arrest, prolonged warm ischemia, and increased hypoxia during transport to ICU or operating room. No previous lungprotective strategies |
Donor | Ventilation | Recruitment Manoeuvres | Timing for Prone Position | Timing for Bronchoscopy | ||
---|---|---|---|---|---|---|
TV | PEEP | FiO2 | ||||
DBD | 8 mL/kg | 8 cm H2O | the lowest to keep SpO2 > 95% | to be performed regularly to improve oxygenation | routinely when PaO2/FiO2 < 300 mmHg or in case of atelectasis or pulmonary oedema; lateral semi-recumbent position as an alternative | routinely to assess airway integrity and guide antimicrobial treatment |
cDCD | 6–8 mL/kg | 8–10 cm H2O | the lowest to keep SpO2 > 95% | prior to cardiac arrest, according to donor status | pre-retrieval or post-withdrawal, depending on clinical status | |
uDCD | 6–8 mL/kg | 10 cm H2O | 50% | to be considered during EVLP | at the beginning of retrieval |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pergolizzi, C.; Lazzeri, C.; Marianello, D.; Biuzzi, C.; Irene, C.; Puddu, A.; Bargagli, E.; Bennett, D.; Catelli, C.; Luzzi, L.; et al. Strategies for Maximising Lung Utilisation in Donors After Brain and Cardiac Death: A Narrative Review. J. Clin. Med. 2025, 14, 5380. https://doi.org/10.3390/jcm14155380
Pergolizzi C, Lazzeri C, Marianello D, Biuzzi C, Irene C, Puddu A, Bargagli E, Bennett D, Catelli C, Luzzi L, et al. Strategies for Maximising Lung Utilisation in Donors After Brain and Cardiac Death: A Narrative Review. Journal of Clinical Medicine. 2025; 14(15):5380. https://doi.org/10.3390/jcm14155380
Chicago/Turabian StylePergolizzi, Carola, Chiara Lazzeri, Daniele Marianello, Cesare Biuzzi, Casagli Irene, Antonella Puddu, Elena Bargagli, David Bennett, Chiara Catelli, Luca Luzzi, and et al. 2025. "Strategies for Maximising Lung Utilisation in Donors After Brain and Cardiac Death: A Narrative Review" Journal of Clinical Medicine 14, no. 15: 5380. https://doi.org/10.3390/jcm14155380
APA StylePergolizzi, C., Lazzeri, C., Marianello, D., Biuzzi, C., Irene, C., Puddu, A., Bargagli, E., Bennett, D., Catelli, C., Luzzi, L., Montagnani, F., Gallegos, F. D. R., Scolletta, S., Peris, A., & Franchi, F. (2025). Strategies for Maximising Lung Utilisation in Donors After Brain and Cardiac Death: A Narrative Review. Journal of Clinical Medicine, 14(15), 5380. https://doi.org/10.3390/jcm14155380