Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (221)

Search Parameters:
Keywords = warm and hot regions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4197 KB  
Article
Tree Rings in the High-Latitude Cold Regions of Northeastern China Reveal the Trend of Climate Warming Brought About by the Industrial Revolution Against the Backdrop of the Little Ice Age
by Ziyue Zhang, Long Ma, Bolin Sun, Tingxi Liu, Qiang Zhang, Xing Huang, Jiamei Yuan, Chang Lu and Shengxiang Mao
Hydrology 2025, 12(12), 328; https://doi.org/10.3390/hydrology12120328 - 11 Dec 2025
Viewed by 413
Abstract
Global warming has profoundly affected human socioeconomic development and ecological security. The high-latitude cold regions of China are among the most sensitive areas to global hydroclimatic changes, making it urgent to clarify the long-term climatic evolution in these regions. Based on tree-ring width [...] Read more.
Global warming has profoundly affected human socioeconomic development and ecological security. The high-latitude cold regions of China are among the most sensitive areas to global hydroclimatic changes, making it urgent to clarify the long-term climatic evolution in these regions. Based on tree-ring width data from 74 cores of Betula platyphylla collected from the northern slopes of the Greater Khingan Mountains, a 310-year (1715–2024) standardized chronology was established. Using this, the spring mean maximum temperature series for 1733–2024 (292 years) was reconstructed. The reconstructed temperature series shows good consistency with historical climate records, further revealing its evolutionary characteristics. The results show that the historical sequence of the average maximum temperature in spring in the study area has experienced 4 warm periods and 2 cold periods. The warming rate during the Little Ice Age (+0.042 °C/10 a) was significantly higher than that before the Industrial Revolution (+0.026 °C/10 a), indicating that atmospheric circulation anomalies such as AMO and PDO played a dominant role in the natural stage. In the early days of the Industrial Revolution, human activities against the backdrop of the Little Ice Age led to frequent climate fluctuations in this region. After 1958, the continuous intensification of human activities led to a sustained rise in temperature, with the warming rate soaring to +0.046 °C/10a (Cv = 18.7%). The temperature level in the middle of the 18th century was roughly the same as that in the early 21st century. This study reveals the characteristics of climate change in high-latitude cold regions, providing a reference for predicting extreme hot events in spring under the background of global warming. Full article
Show Figures

Figure 1

31 pages, 12067 KB  
Article
Research on Energy Consumption, Thermal Comfort, Economy, and Carbon Emissions of Residential Buildings Based on Transformer+NSGA-III Multi-Objective Optimization Algorithm
by Shurui Fan, Yixian Zhang, Yan Zhao and Yanan Liu
Buildings 2025, 15(21), 3939; https://doi.org/10.3390/buildings15213939 - 1 Nov 2025
Viewed by 712
Abstract
This study proposes a Transformer–NSGA-III multi-objective optimization framework for high-rise residential buildings in Haikou, a coastal city characterized by a hot summer and warm winter climate. The framework addresses four conflicting objectives: Annual Energy Demand (AED), Predicted Percentage of Dissatisfied (PPD), Global Cost [...] Read more.
This study proposes a Transformer–NSGA-III multi-objective optimization framework for high-rise residential buildings in Haikou, a coastal city characterized by a hot summer and warm winter climate. The framework addresses four conflicting objectives: Annual Energy Demand (AED), Predicted Percentage of Dissatisfied (PPD), Global Cost (GC), and Life Cycle Carbon (LCC) emissions. A localized database of 11 design variables was constructed by incorporating envelope parameters and climate data from 79 surveyed buildings. A total of 5000 training samples were generated through EnergyPlus simulations, employing jEPlus and Latin Hypercube Sampling (LHS). A Transformer model was employed as a surrogate predictor, leveraging its self-attention mechanism to capture complex, long-range dependencies and achieving superior predictive accuracy (R2 ≥ 0.998, MAPE ≤ 0.26%) over the benchmark CNN and MLP models. The NSGA-III algorithm subsequently conducted a global optimization of the four-objective space, with the Pareto-optimal solution identified using the TOPSIS multi-criteria decision-making method. The optimization resulted in significant reductions of 28.5% in the AED, 24.1% in the PPD, 20.6% in the GC, and 18.0% in the LCC compared to the base case. The synergistic control of the window solar heat gain coefficient and external sunshade length was identified as the central strategy for simultaneously reducing energy consumption, thermal discomfort, cost, and carbon emissions in this hot and humid climate. The TOPSIS-optimal solution (C = 0.647) effectively balanced low energy use, high thermal comfort, low cost, and low carbon emissions. By integrating the Energy Performance of Buildings Directive (EPBD) Global Cost methodology with Life Cycle Carbon accounting, this study provides a robust framework for dynamic economic–environmental trade-off analyses of ultra-low-energy buildings in humid regions. The work advances the synergy between the NSGA-III and Transformer models for high-dimensional building performance optimization. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 8409 KB  
Article
Climate Change vs. Human Activities: Conflicting Future Impacts on a High-Altitude Endangered Snake (Thermophis baileyi)
by Yuxue Pan, Ruiying Han, Fengbin Dai, Yu Liu, Tianjian Song, Yueheng Ren, Song Huang and Jiang Chang
Biology 2025, 14(11), 1531; https://doi.org/10.3390/biology14111531 - 31 Oct 2025
Viewed by 712
Abstract
Endemic ectotherms in high-altitude regions face dual threats from climate change and human activities, yet quantifiable indicators to disentangle these stressors remain limited. We developed a novel multi-scenario framework to disentangle the independent and synergistic impacts of climate change and anthropogenic landscape change [...] Read more.
Endemic ectotherms in high-altitude regions face dual threats from climate change and human activities, yet quantifiable indicators to disentangle these stressors remain limited. We developed a novel multi-scenario framework to disentangle the independent and synergistic impacts of climate change and anthropogenic landscape change on the habitat suitability of the Tibetan hot-spring snake (Thermophis baileyi) across the Tibetan Plateau. Our analysis was based on field survey data and species occurrence records, utilizing the species distribution model and the CA–Markov model. We identified temperature seasonality (41.8% contribution) as the primary environmental factor influencing its distribution, followed by precipitation of the coldest quarter (15.1%) and land cover (13.8%). The results showed that moderate climate warming would benefit the survival of the species, with a 24.03–38.55% gain in high-suitability habitat (HSH) area under climate change-only scenarios. However, extreme warming (exceeding SSP5-8.5) would surpass the thermal tolerance threshold of T. baileyi, reducing its HSH and triggering a northward shift in its distribution centroid. Landscape change reduced the HSH (5.98% reduction under land cover change-only scenario), and attenuated climate-driven gains by 4.99–11.31% under combined climate–landscape change scenarios. In addition, only one-fifth of the current HSH was covered by national natural reserves. Synergistic anthropogenic pressures critically offset climate benefits, demonstrating the need for integrated conservation strategies to address the challenges posed by both extreme climate warming and land cover change threats to mitigate future habitat degradation. The quantification of climate–land cover change impacts on T. baileyi offers critical insights for high-altitude ectotherm distributions under global changes and evidence-based conservation planning. Full article
Show Figures

Figure 1

22 pages, 17354 KB  
Article
Remote Sensing-Based Spatiotemporal Assessment of Heat Risk in the Guangdong–Hong Kong–Macao Greater Bay Area
by Zhoutong Yuan, Guotao Cui and Zhiqiang Zhang
ISPRS Int. J. Geo-Inf. 2025, 14(11), 421; https://doi.org/10.3390/ijgi14110421 - 29 Oct 2025
Viewed by 869
Abstract
Under the dual pressures of climate change and rapid urbanization, extreme heat events pose growing risks to densely populated megaregions. The Guangdong–Hong Kong–Macao Greater Bay Area (GBA), a densely populated and economically vital region, serves as a critical hotspot for heat risk aggregation. [...] Read more.
Under the dual pressures of climate change and rapid urbanization, extreme heat events pose growing risks to densely populated megaregions. The Guangdong–Hong Kong–Macao Greater Bay Area (GBA), a densely populated and economically vital region, serves as a critical hotspot for heat risk aggregation. This study develops a high-resolution multi-dimensional framework to assess the spatiotemporal evolution of its heat risk profile from 2000 to 2020. A Heat Risk Index (HRI) integrating heat hazard and vulnerability components to measure potential heat-related impacts is calculated as the product of the Heat Hazard Index (HHI) and Heat Vulnerability Index (HVI) for 1 km grids in GBA. The HHI integrates the frequency of hot days and hot nights. HVI incorporates population density, GDP, remote-sensing nighttime light data, and MODIS-based landscape indicators (e.g., NDVI, NDWI, and NDBI), with weights determined objectively using the static Entropy Weight Method to ensure spatiotemporal comparability. The findings reveal an escalation of heat risk, expanding at an average rate of 342 km2 per year (p = 0.008), with the proportion of areas classified as high-risk or above increasing from 21.8% in 2000 to 33.3% in 2020. This trend was characterized by (a) a pronounced asymmetric warming pattern, with nighttime temperatures rising more rapidly than daytime temperatures; (b) high vulnerability dominated by the concentration of population and economic assets, as indicated by high EWM-based weights; and (c) isolated high-risk hotspots (Guangzhou and Hong Kong) in 2000, which have expanded into a high-risk belt across the Pearl River Delta’s industrial heartland, like Foshan seeing their high-risk area expand from 3.4% to 27.0%. By combining remote sensing and socioeconomic data, this study provides a transferable framework that moves beyond coarse-scale assessments to identify specific intra-regional risk hotspots. The resulting high-resolution risk maps offer a quantitative foundation for developing spatially explicit climate adaptation strategies in the GBA and other rapidly urbanizing megaregions. Full article
Show Figures

Figure 1

19 pages, 934 KB  
Article
Impact of Rainfall and Air Temperature Before Harvest on Content and Response of Carotenoids, Tocopherols, and Vitamin C to Postharvest Thermal Processing of Tomato
by Hussein G. Daood, Szilvia Ráth, Abdulnabi A. Abushita, Monika Máté and Lajos Helyes
Horticulturae 2025, 11(10), 1245; https://doi.org/10.3390/horticulturae11101245 - 15 Oct 2025
Viewed by 1232
Abstract
This research aimed to explore the influence of climate factors, especially in the three weeks prior to harvest, on the reaction of key phytonutrients in industrial tomatoes used for juice thermal processing and their stability. The cultivation was performed in two areas with [...] Read more.
This research aimed to explore the influence of climate factors, especially in the three weeks prior to harvest, on the reaction of key phytonutrients in industrial tomatoes used for juice thermal processing and their stability. The cultivation was performed in two areas with differing climatic conditions. In the region with higher temperatures and rainfall, the levels and stability of carotenoids were lower compared to the area characterized by warm temperatures and minimal rainfall during both the growth and harvest phases of the tomatoes. The extraction of cold-break (CBE) tomatoes from relatively cool and wet environments resulted in a loss of total carotenoids, particularly lycopene, amounting to 66% and 58% of the initial raw tomato content in 2018 and 2019, respectively, while a markedly reduced loss of 10% was observed after the CBE of tomatoes from the warmer and drier region in both years (36% and 35%). In contrast, hot-break extraction (HBE) demonstrated a higher stability of lycopene compared to CBE, with losses of 43% and 53% in 2018 and 2019, respectively. Additionally, the stability of lycopene in HBE did not show significant differences between the cultivation sites. Climatic conditions influenced the accumulation of geometrical isomers and oxidized forms of lycopene and β-carotene, especially in tomatoes grown in areas with higher rainfall and lower temperatures. A similar trend in response was noted for β-carotene, lutein, phytoene, and phytofluene, as well as total and individual tocopherols. Regarding vitamin C, the environmental factors had no meaningful impact on the vitamin content in tomato fruits; however, its stability during processing, especially with hot-break extraction, was considerably influenced by the climatic conditions of the cultivation site, with p values ranging from <0.01 to <0.001 across different products in various years. The content and stability of phytonutrients in pomace, the by-product from tomato juice processing, were also assessed. In conclusion, tomato fruits and processed products that boast high phytonutrient levels and stability during thermal processing can be achieved through cultivation in conditions of low rainfall and relatively high temperatures, particularly in the three weeks leading up to harvest. Full article
(This article belongs to the Special Issue Advanced Postharvest Technology in Processed Horticultural Products)
Show Figures

Graphical abstract

19 pages, 6415 KB  
Article
Combustion and Heat-Transfer Characteristics of a Micro Swirl Combustor-Powered Thermoelectric Generator: A Numerical Study
by Kenan Huang, Jiahao Zhang, Guoneng Li, Yiyuan Zhu, Chao Ye and Ke Li
Aerospace 2025, 12(10), 916; https://doi.org/10.3390/aerospace12100916 - 11 Oct 2025
Viewed by 606
Abstract
Micro-combustion-powered thermoelectric generators (μ-CPTEGs) combine the high energy density of hydrocarbons with solid-state conversion, offering compact and refuelable power for long-endurance electronics. Such characteristics make μ-CPTEGs particularly promising for aerospace systems, where conventional batteries face serious limitations. Their achievable performance [...] Read more.
Micro-combustion-powered thermoelectric generators (μ-CPTEGs) combine the high energy density of hydrocarbons with solid-state conversion, offering compact and refuelable power for long-endurance electronics. Such characteristics make μ-CPTEGs particularly promising for aerospace systems, where conventional batteries face serious limitations. Their achievable performance hinges on how a swirl-stabilized flame transfers heat into the hot ends of thermoelectric modules. This study uses a conjugate CFD framework coupled with a lumped parameter model to examine how input power and equivalence ratio shape the flame/flow structure, temperature fields, and hot-end heating in a swirl combustor-powered TEG. Three-dimensional numerical simulations were performed for the swirl combustor-powered TEG, varying the input power from 1269 to 1854 W and the equivalence ratio from φ = 0.6 to 1.1. Results indicate that the combustor exit forms a robust “annular jet with central recirculation” structure that organizes a V-shaped region of high modeled heat release responsible for flame stabilization and preheating. At φ = 1.0, increasing Qin from 1269 to 1854 W strengthens the V-shaped hot band and warms the wall-attached recirculation. Heating penetrates deeper into the finned cavity, and the central-plane peak temperature rises from 2281 to 2339 K (≈2.5%). Consistent with these field changes, the lower TEM pair near the outlet heats more strongly than the upper module (517 K to 629 K vs. 451 K to 543 K); the inter-row gap widens from 66 K to 86 K, and the incremental temperature gains taper at the highest power, while the axial organization of the field remains essentially unchanged. At fixed Qin = 1854 W, raising φ from 0.6 to 1.0 compacts and retracts the reaction band toward the exit and weakens axial penetration; the main-zone temperature increases up to φ = 0.9 and then declines for richer mixtures (peak 2482 K at φ = 0.9 to 2289 K at φ = 1.1), cooling the fin section due to reduced transport, thereby identifying φ = 0.9 as the operating point that best balances axial penetration against dilution/convective-cooling losses and maximizes the TEM hot-end temperature at the fixed power. Full article
(This article belongs to the Special Issue Advances in Thermal Fluid, Dynamics and Control)
Show Figures

Figure 1

19 pages, 2029 KB  
Article
Research on the Distribution of the Energy-Saving Benefits of Building Geometric Parameters Under Different Climate Conditions
by Dun Cao, Xiaona Li, Xiaoming Su, Yanqiang Di, Yanyi Li, Tingting Tang and Yansu Chen
Buildings 2025, 15(17), 3176; https://doi.org/10.3390/buildings15173176 - 4 Sep 2025
Viewed by 651
Abstract
Building geometric parameters are key factors influencing energy-efficient building design. However, the systematic influence of building geometric parameters on energy use intensity (EUI) across varying climate regions and building envelope thermal performance levels remains incompletely elucidated, hindering the quantitative assessment of their energy-saving [...] Read more.
Building geometric parameters are key factors influencing energy-efficient building design. However, the systematic influence of building geometric parameters on energy use intensity (EUI) across varying climate regions and building envelope thermal performance levels remains incompletely elucidated, hindering the quantitative assessment of their energy-saving benefits in diverse regions and operational scenarios. This study employs a zonal sensor-optimized coupled daylighting–thermal simulation to analyze the impact of building geometric parameters and their values on annual total EUI across different climate regions and building envelope thermal performance levels. The interquartile range (IQR), sensitivity analysis (SA), and energy saving rate (ESR) analysis are utilized. The results showed the following: (1) The energy-saving benefits of geometric parameters were the greatest in severe cold (SevC) and temperate regions (TRs), with IQRs ranging from 28.50 to 39.87 kWh/m2, followed by hot summer–warm winter (HS-WW), cold (Cld), and hot summer–cold winter (HS-CW) regions. While high-performance building envelopes significantly reduce EUI, the energy-saving benefits associated with geometric parameters remain undiminished. (2) The WWR is the parameter most sensitive to EUI, with SA reaching a maximum of 41.19%, notably exceeding 20% in HS-CW regions, HS-WW regions, and TRs; floor height has the lowest sensitivity, with SA reaching a maximum of 5.65%. (3) In different climate regions, the influence of floor height and building footprint area on the ESR shifts between positive and negative correlations, while the WWR and window sill height consistently exhibit positive correlations with the ESR in all climate regions. This study provides a quantitative decision-making basis for optimizing building geometric parameters in different climate regions to achieve high-performance building shapes during the early stages of architectural design. Full article
(This article belongs to the Special Issue Advanced Technologies in Building Energy Saving and Carbon Reduction)
Show Figures

Figure 1

26 pages, 3617 KB  
Article
Change in Fatty Acid Composition in High-Temperature-Damaged Rice Grains and Its Effects on the Appearance and Physical Qualities of the Cooked Rice
by Sumiko Nakamura and Ken’ichi Ohtsubo
Foods 2025, 14(17), 3097; https://doi.org/10.3390/foods14173097 - 4 Sep 2025
Cited by 1 | Viewed by 1195
Abstract
Global warming has caused rice grains to ripen at high temperatures and become increasingly chalky, which also leads to a deterioration in the physicochemical and cooking properties of rice grains. In the present work, we first want to propose how to evaluate the [...] Read more.
Global warming has caused rice grains to ripen at high temperatures and become increasingly chalky, which also leads to a deterioration in the physicochemical and cooking properties of rice grains. In the present work, we first want to propose how to evaluate the palatability of rice from the high-temperature year 2022. We evaluated the qualities of 32 Japonica rice grains harvested in 2022. These showed no significant correlation with either amylose content or protein content, while the Mido score (=flavor score) showed a positive correlation with palmitic acid (r = 0.66, p < 0.01) and linoleic acid (r = 0.51, p < 0.01), in contrast to a negative correlation with oleic acid (r = −0.57, p < 0.01) and phosphorus content (r = −0.48, p < 0.01). And pasting temperatures (Pts) of polished rice flour showed significant positive correlation with the surface hardness of cooked rice grains (r = 0.53, p < 0.01) and significant negative correlation with their overall stickiness (r = −0.57, p < 0.01). In addition, Pts showed significant positive correlations with oleic acid and negative correlations with linoleic acid. Therefore, fatty acid composition could become one of the new indicators for evaluating the palatability of rice. Our second aim of this study was to determine the effects of high temperature on rice quality. It was found that oleic acid increased significantly and linoleic acid and palmitic acid decreased in 21 rice samples of the same varieties and growing regions in 2023, an abnormally hot year, compared to 2022, a normal hot year. In summary, both oleic acid content and pasting temperatures may lead to lower quality rice grains in 2023. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

16 pages, 777 KB  
Article
Life Cycle Analysis of Particleboard Made of Corn Stalk and Citric Acid at Laboratory Scale
by Lilik Astari, Robert H. Crawford, Kenji Umemura, Barbara Ozarska and Benoit Belleville
Appl. Sci. 2025, 15(17), 9705; https://doi.org/10.3390/app15179705 - 3 Sep 2025
Viewed by 1113
Abstract
Research on particleboard fabrication using non-wood biomass as an alternative to wood particles is steadily increasing due to environmental awareness. Information on the life cycle assessment (LCA) of particleboards made of non-wood biomass and non-formaldehyde adhesives is scarce. This research presents the life [...] Read more.
Research on particleboard fabrication using non-wood biomass as an alternative to wood particles is steadily increasing due to environmental awareness. Information on the life cycle assessment (LCA) of particleboards made of non-wood biomass and non-formaldehyde adhesives is scarce. This research presents the life cycle assessment (LCA) of particleboard fabrication made from corn stalk particles and citric acid in Indonesia and Australia at laboratory scale. Cradle-to-gate boundaries were applied with the fabrication steps involving particle preparation, citric acid solution preparation, the mixing of adhesive and particle, a hot-pressing process, and a final production process. The functional unit is a particleboard with 282 mm × 208 mm × 12 mm dimensions. The life cycle inventory data were obtained from particleboard sheet fabrication on a lab scale. Southeast Asia (Indonesia) and Southern Australia (Victoria) conditions were adopted for geographical background processes, using data from the Ecoinvent V.3.10 database. LCA calculation was conducted using the OpenLCA V.2.1.1 software. The environmental impacts were calculated using the ReCiPe Midpoint 2016 methodology. The results showed that oven drying and pre-treatment drying contributed the most to energy consumption in both regions, accounting for 97.14% at the Indonesian site and 96.49% at the Australian site. The environmental impacts in the Australian context showed higher values in 10 out of 18 categories. The five highest environmental impacts were terrestrial ecotoxicity (5.50 × 102 kg 1,4-DCB in Indonesia, 6.37 × 102 kg 1,4-DCB in Australia), global warming (2.72 × 102 kg CO2 eq in Indonesia, 2.49 × 102 kg CO2 eq in Australia), human non-carcinogenic toxicity (4.65 × 102 kg 1,4-DCB in Indonesia, 4.18 × 102 kg 1,4-DCB in Australia), water consumption (2.50 × 102 m3 in Indonesia, 4.62 × 102 m3 in Australia), and fossil resource scarcity (7.34 × 101 kg oil eq in Indonesia, 6.86 × 101 kg oil eq in Australia). Implementing solar drying and sourcing raw materials from farms closer to the production site could reduce energy consumption by up to 48.57% in Indonesia and 48.24% in Australia. These findings underscore the high energy demand of drying and the importance of site selection in particleboard production. Full article
Show Figures

Figure 1

24 pages, 21522 KB  
Article
Spatial Heterogeneity in Temperature Elasticity of Agricultural Economic Production in Xinjiang Province, China
by Shiwei Liu, Yongyu Yue, Lei Wang and Yang Yang
Sustainability 2025, 17(17), 7724; https://doi.org/10.3390/su17177724 - 27 Aug 2025
Viewed by 992
Abstract
Agricultural production is significantly impacted by climate change. Owing to its arid and warm climate, investigating the impacts of climate change on agricultural production in Xinjiang Province can help improve resilience and designate adaptive responses for the agricultural sector. On the basis of [...] Read more.
Agricultural production is significantly impacted by climate change. Owing to its arid and warm climate, investigating the impacts of climate change on agricultural production in Xinjiang Province can help improve resilience and designate adaptive responses for the agricultural sector. On the basis of agricultural output data at the county level in Xinjiang from 1990–2019, we used the feasible generalized least squares (FGLS), panel-corrected standard errors (PCSE), and double machine learning (DML) model to study the spatial heterogeneity in temperature elasticity of agricultural economic production. The results revealed that there is an inverted U-shape of temperature impact on agricultural economic production. The presented temperature elasticity in county level showed that regions with negative temperature elasticities are primarily located in the mainstream of the Tarim basin and the Turpan basin in southern Xinjiang. The SHapley Additive exPlanations (SHAP) analysis was further incorporated to elucidate the impact of different factors on the spatial heterogeneity in temperature elasticity. The results indicated that temperature is the most substantial factor influencing temperature elasticity, with labor and precipitation following in sequence. In particular, increased precipitation in arid and hot regions could alleviate the heat stress and lead to a positive temperature elasticity prediction. These findings provide a scientific basis for spatial heterogeneity in the response of agricultural economic production to climate change, and help identify priority regions for achieving Sustainable Development Goals (SDGs) 1 and 2. Full article
(This article belongs to the Special Issue Sustainability of Rural Areas and Agriculture under Uncertainties)
Show Figures

Figure 1

24 pages, 4982 KB  
Article
Climate Change in the Porto Region (Northern Portugal): A 148 Years Study of Temperature and Precipitation Trends (1863–2010)
by Leonel J. R. Nunes
Climate 2025, 13(9), 175; https://doi.org/10.3390/cli13090175 - 27 Aug 2025
Viewed by 3395
Abstract
This study presents a comprehensive analysis of climate evolution in the Porto region (Northern Portugal) using 148 years (1863–2010) of continuous meteorological data from the Serra do Pilar weather station (WMO station 08546). The research employs both traditional linear statistical methods and advanced [...] Read more.
This study presents a comprehensive analysis of climate evolution in the Porto region (Northern Portugal) using 148 years (1863–2010) of continuous meteorological data from the Serra do Pilar weather station (WMO station 08546). The research employs both traditional linear statistical methods and advanced non-linear analysis techniques, including polynomial trend fitting and multidecadal oscillation analysis, to accurately characterize long-term climate patterns. Results reveal that linear trend analysis is misleading for this dataset, as both temperature and precipitation follow parabolic (U-shaped) distributions with minima around 1910–1970. The early period (1863–1900) exhibited higher values than the recent period, contradicting linear trend interpretations. Advanced analysis shows that the mean temperature follows a parabolic pattern (R2 = 0.353) with the minimum around 1935, while precipitation exhibits similar behavior (R2 = 0.053) with the minimum around 1936. Multidecadal oscillations are detected with dominant periods of 46.7, 15.6, and 10.0 years for temperature, and 35.0, 17.5, and 4.5 years for precipitation. Maximum temperatures show complex oscillatory behavior with a severe drop around 1890. Seasonal analysis reveals distinct patterns across all seasons: winter (+0.065 °C/decade) and autumn (+0.059 °C/decade) show warming trends in maximum temperatures, while spring (−0.080 °C/decade) and summer (−0.079 °C/decade) demonstrate cooling trends in minimum temperatures, with no significant trends in spring (+0.012 °C/decade) and summer (+0.003 °C/decade) maximum temperatures or winter (−0.021 °C/decade) and autumn (−0.035 °C/decade) minimum temperatures. The study identifies a significant change point in mean temperature around 1980, which occurs approximately one decade earlier than the global warming acceleration typically observed in the 1990s, suggesting regional Atlantic influences may precede global patterns. Extreme event analysis indicates stable frequencies of hot days (averaging 3.6 days/year above 25.0 °C) and heavy precipitation events (averaging 1.2 days/year above 234.6 mm) throughout the study period. These findings demonstrate that the Porto region’s climate is characterized by natural multidecadal variability rather than monotonic trends, with the climate system showing oscillatory behavior typical of Atlantic-influenced coastal regions. The results contribute to understanding regional climate variability and provide essential baseline data for climate change adaptation strategies in Northern Portugal. The results align with broader patterns of natural climate variability in the Iberian Peninsula while highlighting the importance of non-linear analysis for comprehensive climate assessment. Full article
(This article belongs to the Special Issue The Importance of Long Climate Records (Second Edition))
Show Figures

Figure 1

14 pages, 1520 KB  
Article
Spatiotemporal Analysis of Ventilation Efficiency in Single-Span Plastic Greenhouses in Hot-Humid Regions of China: Using Validated CFD Modeling
by Song Wang, Naimin Kong, Lirui Liang, Yuexuan He, Wenjun Peng, Xiaohan Lu, Chi Qin, Zijing Luo, Wei Zhao, Chengyao Jiang, Mengyao Li, Yangxia Zheng and Wei Lu
Agriculture 2025, 15(16), 1792; https://doi.org/10.3390/agriculture15161792 - 21 Aug 2025
Viewed by 1003
Abstract
To characterize the spatiotemporal distribution of temperature and airflow in single-span plastic-film greenhouses, we coupled field experiments with three-dimensional computational fluid dynamics (CFD) simulations in a warm–temperate region of China. Model reliability and validity were evaluated against field measurements. The average and maximum [...] Read more.
To characterize the spatiotemporal distribution of temperature and airflow in single-span plastic-film greenhouses, we coupled field experiments with three-dimensional computational fluid dynamics (CFD) simulations in a warm–temperate region of China. Model reliability and validity were evaluated against field measurements. The average and maximum relative errors between simulated and measured values were 6% and 9%, respectively. Significant spatial heterogeneity in both temperature and airflow was observed. Vertically, temperature rose with height; horizontally, it declined from the center toward the sidewalls. Under prevailing meteorological conditions, the daily maxima occurred at distinct elevations above the fan-vent outlets. Airflow was most vigorous near the vents, whereas extensive stagnant zones aloft reduced overall ventilation efficiency. These findings provide a quantitative basis for designing single-span plastic film greenhouses in China’s hot–humid regions, informing ventilation improvements, and guiding future optimization efforts. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

17 pages, 1036 KB  
Review
Systematic Review of the Ovitrap Surveillance of Aedes Mosquitoes in Brazil (2012–2022)
by Raquel Fernandes Silva Chagas do Nascimento, Alexandre da Silva Xavier, Tania Ayllón Santiago, Daniel Cardoso Portela Câmara, Izabel Cristina dos Reis, Edson Delatorre, Patrícia Carvalho de Sequeira, Vitor Henrique Ferreira-de-Lima, Tamara Nunes Lima-Camara and Nildimar Alves Honório
Trop. Med. Infect. Dis. 2025, 10(8), 212; https://doi.org/10.3390/tropicalmed10080212 - 28 Jul 2025
Viewed by 3838
Abstract
Background: Arthropod-borne diseases primarily affect tropical and subtropical regions, exhibiting seasonal patterns that peak during hot and rainy months when conditions favor mosquito vector proliferation. Factors such as high temperatures, elevated humidity, rainfall, urbanization, and the abundance of natural and artificial breeding sites [...] Read more.
Background: Arthropod-borne diseases primarily affect tropical and subtropical regions, exhibiting seasonal patterns that peak during hot and rainy months when conditions favor mosquito vector proliferation. Factors such as high temperatures, elevated humidity, rainfall, urbanization, and the abundance of natural and artificial breeding sites influence Aedes vector dynamics. In this context, arboviruses pose significant public health challenges, likely worsened by global warming. In Brazil, Aedes (Stegomyia) aegypti (Linnaeus, 1762) is the primary vector for yellow fever, dengue, chikungunya, and Zika. Aedes (Stegomyia) albopictus (Skuse, 1894) is an important global arbovirus vector and is considered a potential vector in Brazil. Entomological surveillance of these species often uses oviposition traps targeting immature stages. Evaluating studies that use ovitraps to collect Ae. aegypti and Ae. albopictus egg is essential for improving mosquito surveillance strategies. This study systematically reviewed peer-reviewed articles on ovitrap-based surveillance of Aedes mosquitoes in Brazil, published in Portuguese and English from 2012 to 2022. The findings suggest that ovitraps are an effective method for detecting the presence or absence of Ae. aegypti and Ae. albopictus, serving as a reliable proxy for estimating mosquito abundance in Brazilian contexts. Full article
Show Figures

Figure 1

21 pages, 3084 KB  
Article
CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications
by Shehryar Ishaque, Muhammad Saeed, Qazi Shahzad Ali, Naveed Ullah, Jedd C. Junio and Man-Hoe Kim
Processes 2025, 13(8), 2398; https://doi.org/10.3390/pr13082398 - 28 Jul 2025
Viewed by 1852
Abstract
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components [...] Read more.
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components of these systems is the horizontal falling film evaporator, which is commonly employed due to its high thermal efficiency and low refrigerant charge. This study presents a preliminary design of a falling film evaporator to meet the target of the heat duty value of 2.2 MW. The phase-change dynamics inherent to the falling film evaporation process were critically analyzed using ANSYS Fluent (2024 R2). The low-global warming potential refrigerant R1336mzz(Z) was incorporated as a refrigerant on the shell side, while hot water was used in the tubes. The study identified key regions of film flow to maximize vapor production and design optimizations. The discussed performance parameters and operational mechanisms of the evaporator are prevailing features, particularly with the adoption of environmental regulations. Overall, the simulation results offer valuable insights into heat transfer mechanisms and evaporator effectiveness for advancing heat pump technologies in industrial applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

27 pages, 53601 KB  
Article
Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China
by Ming Ma, Changsong Lin, Yongfu Liu, Hao Li, Wenfang Yuan, Jingyan Liu, Chaoqun Shi, Manli Zhang and Fan Xu
Appl. Sci. 2025, 15(14), 7783; https://doi.org/10.3390/app15147783 - 11 Jul 2025
Viewed by 1187
Abstract
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence [...] Read more.
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence stratigraphy, depositional systems, and the controlling factors of the basin filling in the depression are systematically documented. Four primary depositional systems, including braided river delta, meandering river delta, lacustrine, and swamp deposits, are identified within the Ahe, Yangxia, and Kezilenuer Formations of the Lower–Middle Jurassic. The basin fills can be classified into two second-order and nine third-order sequences (SQ1–SQ9) confined by regional or local unconformities and their correlative conformities. This study shows that the sedimentary evolution has undergone the following three stages: Stage I (SQ1–SQ2) primarily developed braided river, braided river delta, and shallow lacustrine deposits; Stage II (SQ3–SQ5) primarily developed meandering river, meandering river delta, and extensive deep and semi-deep lacustrine deposits; Stage III (SQ6–SQ9) primarily developed swamp (SQ6–SQ7), meandering river delta, and shore–shallow lacustrine deposits (SQ8–SQ9). The uplift of the Tianshan Orogenic Belt in the Early Jurassic (Stage I) may have facilitated the development of braided fluvial–deltaic deposits. The subsequential expansion of the sedimentary area and the weakened sediment supply can be attributed to the planation of the source area and widespread basin subsidence, with the transition of the depositional environments from braided river delta deposits to meandering river delta and swamp deposits. The regional expansion or rise of the lake during Stage II was likely triggered by the hot and humid climate conditions, possibly associated with the Early Jurassic Toarcian Oceanic Anoxic Event. The thick swamp deposits formed during Stage III may be controlled by the interplay of rational accommodation, warm and humid climatic conditions, and limited sediment supply. Milankovitch cycles identified in Stage III further reveal that coal accumulation was primarily modulated by long-period eccentricity forcing. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop