Spatial Heterogeneity in Temperature Elasticity of Agricultural Economic Production in Xinjiang Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Modeling Approach and Setting
3. Results
3.1. Changes in Annual Mean Temperature and Precipitation
3.2. Results for the Empirical Model
3.3. Assessing the Spatial Heterogeneity in Temperature Elasticiy
3.4. Explaining Spatial Heterogeneity in Temperature Elasticity
3.5. Impacts of Factors on Temperature Elasticity
3.6. Robust Check
4. Discussion
4.1. Spatial Heterogeneity in Temperature Elasticity
4.2. The Impacts of Factors on the Spatial Heterogeneity in Temperature Elasticity
4.3. Limitations and Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FGLS | Feasible generalized least squares |
PCSE | Panel-Corrected standard errors |
RF | Random forests |
SHAP | SHapley Additive exPlanations |
DML | Double machine learning |
ML | Machine learning |
CDF | Cobb–Douglas production function |
TPF | Translog production function |
LM | Lagrange Multiplier |
GDP | Gross Domestic Product |
CNY | China Yuan |
OLS | Ordinary least squares |
References
- Burke, M.; Hsiang, S.M.; Miguel, E. Global non-linear effect of temperature on economic production. Nature 2015, 527, 235–239. [Google Scholar] [CrossRef]
- Kotz, M.; Levermann, A.; Wenz, L. The effect of rainfall changes on economic production. Nature 2022, 601, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Seppanen, O.; Fisk, W.J.; Lei, Q. Effect of Temperature on Task Performance in Office Environment. 2006. Available online: https://escholarship.org/uc/item/45g4n3rv (accessed on 1 September 2024).
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.; Platts, P.J.; Brereton, T.; Chapman, J.W.; Dytham, C.; Fox, R.; Pearce-Higgins, J.W.; Roy, D.B.; Hill, J.K.; Thomas, C.D. Climate change, climatic variation and extreme biological responses. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160144. [Google Scholar] [CrossRef]
- Agnolucci, P.; Rapti, C.; Alexander, P.; De Lipsis, V.; Holland, R.A.; Eigenbrod, F.; Ekins, P. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat. Food 2020, 1, 562–571. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef]
- Alboghdady, M.; El-Hendawy, S.E. Economic impacts of climate change and variability on agricultural production in the Middle East and North Africa region. Int. J. Clim. Change Strateg. Manag. 2016, 8, 463–472. [Google Scholar] [CrossRef]
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Damania, R.; Desbureaux, S.; Zaveri, E. Does rainfall matter for economic growth? Evidence from global sub-national data (1990–2014). J. Environ. Econ. Manag. 2020, 102, 102335. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Li, N.; Bai, K.; Zhang, Z.; Feng, J.; Chen, X.; Liu, L. The nonlinear relationship between temperature changes and economic development for individual provinces in China. Theor. Appl. Climatol. 2019, 137, 2477–2486. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Li, H.; Zhang, Z.; Xu, L.; Yue, X. Glaciers in Xinjiang, China: Past changes and current status. Water 2020, 12, 2367. [Google Scholar] [CrossRef]
- Van Passel, S.; Massetti, E.; Mendelsohn, R. A Ricardian Analysis of the Impact of Climate Change on European Agriculture. Environ. Resour. Econ. 2016, 67, 725–760. [Google Scholar] [CrossRef]
- Wu, J.-Z.; Zhang, J.; Ge, Z.-M.; Xing, L.-W.; Han, S.-Q.; Chen, S.; Kong, F.-T. Impact of climate change on maize yield in China from 1979 to 2016. J. Integr. Agric. 2021, 20, 289–299. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, X.; Khanal, S.; Wilson, R.; Leng, G.; Toman, E.M.; Wang, X.; Li, Y.; Zhao, K. Climate change impacts on crop yields: A review of empirical findings, statistical crop models, and machine learning methods. Environ. Model. Softw. 2024, 179, 106119. [Google Scholar] [CrossRef]
- Bebber, D.P.; Ramotowski, M.A.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Yan, Y.; Li, Y.; Wang, W.-J.; He, J.-S.; Yang, R.-H.; Wu, H.-J.; Wang, X.-L.; Jiao, L.; Tang, Z.; Yao, Y.-J. Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biol. Conserv. 2017, 206, 143–150. [Google Scholar] [CrossRef]
- Knox, J.; Daccache, A.; Hess, T.; Haro, D. Meta-analysis of climate impacts and uncertainty on crop yields in Europe. Environ. Res. Lett. 2016, 11, 113004. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Xu, J. Impacts of climate change on agriculture: Evidence from China. J. Environ. Econ. Manag. 2016, 76, 105–124. [Google Scholar] [CrossRef]
- Pickson, R.B.; Gui, P.; Chen, A.; Boateng, E. Empirical analysis of rice and maize production under climate change in China. Environ. Sci. Pollut. Res. 2022, 29, 70242–70261. [Google Scholar] [CrossRef]
- Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, aad9837. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Umer Arshad, M.; Yunfeng, Z.; Hanif, S.; Fatima, F. Impact of climate change and technological advancement on cotton production: Evidence from Xinjiang region, China. J. Agric. Sci. Technol. 2022, 24, 1519–1531. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, F.; Xin, Q.; Li, Y.; Lin, Z. Historical variability of cotton yield and response to climate and agronomic management in Xinjiang, China. Sci. Total Environ. 2024, 912, 169327. [Google Scholar] [CrossRef]
- Li, N.; Lin, H.; Wang, T.; Li, Y.; Liu, Y.; Chen, X.; Hu, X. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crops Res. 2020, 247, 107590. [Google Scholar] [CrossRef]
- Gao, X.; Liu, J.; Lin, H.; Javed, T.; Yin, F.; Chen, R.; Wen, Y.; Zhang, J.; Yi, K.; Wang, Z. Using machine learning techniques to evaluate the impact of climate change and project future on wheat yields in Xinjiang, China. Agric. Water Manag. 2025, 317, 109646. [Google Scholar] [CrossRef]
- Gao, X.; Liu, J.; Wen, Y.; Lin, H.; Liang, Y.; Liu, M.; Zhou, Z.; Zhang, J.; Wang, Z. Estimating future climate change impacts on wheat yield and water demand in Xinjiang, Northwest China using the DSSAT-CERES-Wheat model. Comput. Electron. Agric. 2025, 237, 110604. [Google Scholar] [CrossRef]
- Cobb, C.W.; Douglas, P.H. A theory of production. Am. Econ. Rev. 1928, 18, 139–165. [Google Scholar]
- Christensen, L.R. Conjugate duality and the transcendental logarithmic prodcution function. Econometrica 1971, 39, 255–256. [Google Scholar]
- Lobell, D.B.; Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 2017, 12, 015001. [Google Scholar] [CrossRef]
- Blanc, É. Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models. Agric. For. Meteorol. 2017, 236, 145–161. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Pyo, S.; Choi, S.O. Regional innovation and economic growth: Empirical insights from FGLS, FE-DKSE, and XGBoost-SHAP approach. J. Open Innov. Technol. Mark. Complex. 2025, 11, 100524. [Google Scholar] [CrossRef]
- Xi, S.; Wang, X.; Lin, K. The Impact of Carbon Emissions Trading Pilot Policies on High-Quality Agricultural Development: An Empirical Assessment Using Double Machine Learning. Sustainability 2025, 17, 1912. [Google Scholar] [CrossRef]
- Nie, X.; Wager, S. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika 2021, 108, 299–319. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/debiased machine learning for treatment and structural parameters. Econ. J. 2018, 21, C1–C68. [Google Scholar] [CrossRef]
- Li, C.; Wang, R.; Ning, H.; Luo, Q. Characteristics of meteorological drought pattern and risk analysis for maize production in Xinjiang, Northwest China. Theor. Appl. Climatol. 2017, 133, 1269–1278. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Cucchi, M.; Weedon, G.P.; Amici, A.; Bellouin, N.; Lange, S.; Müller Schmied, H.; Hersbach, H.; Buontempo, C. WFDE5: Bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 2020, 12, 2097–2120. [Google Scholar] [CrossRef]
- Lange, S.; Menz, C.; Gleixner, S.; Cucchi, M.; Weedon, G.P.; Amici, A.; Bellouin, N.; Schmied, H.M.; Hersbach, H.; Buontempo, C. WFDE5 over Land Merged with ERA5 over the Ocean (W5E5 v2. 0). 2021. Available online: https://publications.pik-potsdam.de/pubman/faces/ViewItemFullPage.jsp?itemId=item_26192_1 (accessed on 1 May 2022).
- Ramírez Villegas, J.; Jarvis, A. Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis Working Paper No. 1. 2010. Available online: https://cgspace.cgiar.org/items/be581996-2f4f-4a0c-95da-255bac0d1f93 (accessed on 1 March 2018).
- Lee, J.; Nadolnyak, D.A.; Hartarska, V.M. Impact of Climate Change on Agricultural Production in Asian Countries: Evidence from Panel Study. 2012. Available online: https://ageconsearch.umn.edu/record/119808/?v=pdf (accessed on 1 May 2020).
- Belloumi, M. Investigating the Impact of Climate Change on Agricultural Production in Eastern and Southern African Countries; International Food Policy Research Institute: Washington, DC, USA, 2014; Volume 3. [Google Scholar]
- Greene, W.H. Econometric Analysis, 8th ed.; Pearson: New York, NY, USA, 2018. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Pesaran, M.H. General diagnostic tests for cross section dependence in panels. Cambridge Working Papers. Economics 2004, 1240, 1. [Google Scholar]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics Using Stata; Stata Press: College Station, TX, USA, 2010; Volume 2. [Google Scholar]
- Liu, Y.; Dong, K.; Jiang, Q. Assessing energy vulnerability and its impact on carbon emissions: A global case. Energy Econ. 2023, 119, 106557. [Google Scholar] [CrossRef]
- Famanta, M.; Randhawa, A.A.; Yajing, J. The impact of green FDI on environmental quality in less developed countries: A case study of load capacity factor based on PCSE and FGLS techniques. Heliyon 2024, 10, e28217. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, X.; Long, A.; Hai, Y.; Li, Y.; Wang, H.; Xu, H. Impact of Social Factors in Agricultural Production on the Crop Water Footprint in Xinjiang, China. Water 2018, 10, 1145. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Chen, Y.; Deng, M.; Li, Q.; Wufu, A.; Wang, D.; Ma, L. Estimation of regional irrigation water requirements and water balance in Xinjiang, China during 1995–2017. PeerJ 2020, 8, e8243. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Liu, S.; Wang, J.; Lei, Y.; Zhang, Y.; Han, Y.; Wang, G.; Feng, L.; Li, X.; Li, Y. Climate variation explains more than half of cotton yield variability in China. Ind. Crops Prod. 2022, 190, 115905. [Google Scholar] [CrossRef]
- Han, F.-Y.; Zhang, J.-B.; Cheng, L.-L.; Tong, Q.-M.; Liu, Y. Impact of climate change on rice yield and its regional heterogeneity in China. J. Ecol. Rural Environ. 2019, 35, 283–289. [Google Scholar]
- Ye, Z.; Qiu, X.; Chen, J.; Cammarano, D.; Ge, Z.; Ruane, A.C.; Liu, L.; Tang, L.; Cao, W.; Liu, B. Impacts of 1.5 C and 2.0 C global warming above pre-industrial on potential winter wheat production of China. Eur. J. Agron. 2020, 120, 126149. [Google Scholar] [CrossRef]
- Luo, Q. Temperature thresholds and crop production: A review. Clim. Change 2011, 109, 583–598. [Google Scholar] [CrossRef]
- Ottman, M.; Kimball, B.; White, J.; Wall, G. Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agron. J. 2012, 104, 7–16. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Q.; Deng, M.; Su, L.; Wei, K.; Guo, Y.; Zhang, J. Assessing the influence of water fertilizer, and climate factors on seed cotton yield under mulched drip irrigation in Xinjiang Agricultural Regions. Eur. J. Agron. 2024, 152, 127034. [Google Scholar] [CrossRef]
- Wang, H.; Yin, Z.; Zhang, L.; Zhao, F.; Huang, W.; Wang, X.; Gao, Y. Irrigation modulates the effect of increasing temperatures under climate change on cotton production of drip irrigation under plastic film mulching in southern Xinjiang. Front. Plant Sci. 2022, 13, 1069190. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, L.; Luo, Q.; Chen, H.; Yang, Y. Spatial optimization of cotton cultivation in Xinjiang: A climate change perspective. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103523. [Google Scholar] [CrossRef]
- Manni, M.; Di Giuseppe, A.; Petrozzi, A.; Nicolini, A.; Rossi, F.; Cotana, F. High-Reflective Mulching Membrane for a Sustainable Development: Monitoring Campaign. In Proceedings of the E3S Web of Conferences, Rostovon-Don, Russia, 26–28 February 2020; p. 08012. [Google Scholar]
- Wang, H.; Cao, H.; Jiang, F.; Wang, X.; Gao, Y. Analysis of soil moisture, temperature, and salinity in cotton field under non-mulched drip irrigation in South Xinjiang. Agriculture 2022, 12, 1589. [Google Scholar] [CrossRef]
- Chen, S.; Gong, B. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Yanan, S.; Yiling, H.; Rui, M.; Rongrong, S.; Wenjun, M.; Cunrui, H. The impact of hot weather on labor productivity in the context of climate change. J. Environ. Hyg. 2018, 8, 399–405. [Google Scholar]
- Li, Y.; Liu, C.; Song, Y. Research progress of the impact of frequent high temperature heat waves on economic system. Adv. Clim. Change Res. 2021, 17, 121. [Google Scholar]
- Yulong, Y.; Qingfeng, M.; Hao, Y.; Qingsong, Z.; Ye, L.; Cui, Z. Climate change increases nitrogen concentration in rice with low nitrogen use efficiency. Earth’s Future 2021, 9, e2020EF001878. [Google Scholar] [CrossRef]
- Li, S.; Zhang, W.; Zheng, X.; Li, Y.; Han, S.; Wang, R.; Wang, K.; Yao, Z.; Liu, C.; Zhang, C. Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields. Biogeosciences 2022, 19, 3001–3019. [Google Scholar] [CrossRef]
- Ao, Y.; Zhang, W.; Tian, Y.; Li, X.; Ge, R.; Yin, B.; Zhu, Z. Effects of urea-ammonium mixed nitrogen fertilizer on ammonia volatilization and nitrogen use efficiency in paddy field of Taihu Lake region. Soils 2016, 48, 248–253. [Google Scholar]
- Keane, M.; Neal, T. Comparing deep neural network and econometric approaches to predicting the impact of climate change on agricultural yield. Econom. J. 2020, 23, S59–S80. [Google Scholar] [CrossRef]
- Crane-Droesch, A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environ. Res. Lett. 2018, 13, 114003. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, M.; Wu, Y.; Guo, S.; Wang, S.; Li, P.; Zhang, Z.; Pan, Z.; Li, X.; Li, J. Impacts of extreme temperatures on cotton yields in the context of climate warming: A case study of Xinjiang Provinc. Chin. J. Eco-Agric. 2025, 33, 1348–1359. [Google Scholar]
- He, D.; Fang, S.; Liang, H.; Wang, E.; Wu, D. Contrasting yield responses of winter and spring wheat to temperature rise in China. Environ. Res. Lett. 2020, 15, 124038. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Huang, G.; Sun, J. Probabilistic assessment of crop yield loss to drought time-scales in Xinjiang, China. Int. J. Climatol. 2021, 41, 4077–4094. [Google Scholar] [CrossRef]
- Gao, X.; Ye, B.; Zhang, S.; Qiao, C.; Zhang, X. Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River Basin, China. Sci. China Earth Sci. 2010, 53, 880–891. [Google Scholar] [CrossRef]
- Wu, H.; Xu, M.; Peng, Z.; Chen, X. Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia. Agric. Water Manag. 2022, 269, 107639. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, S.; Xiao, C.; Feng, C.; Li, C. Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin of China: An Input–Output Analysis. Sustainability 2021, 13, 7589. [Google Scholar] [CrossRef]
- Huang, Z.; Hejazi, M.; Li, X.; Tang, Q.; Vernon, C.; Leng, G.; Liu, Y.; Döll, P.; Eisner, S.; Gerten, D. Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns. Hydrol. Earth Syst. Sci. 2018, 22, 2117–2133. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.; Zheng, D.; Zhang, L.; Zhu, G. Estimation of Global Irrigation Water Use by the Integration of Multiple Satellite Observations. Water Resour. Res. 2022, 58, e2021WR030031. [Google Scholar] [CrossRef]
Variables | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Agricultural production (CNY/ha) | 2520 | 18,810.95 | 21,948.99 | 1242.58 | 346,688.00 |
Temperature (°C) | 2520 | 7.7 | 4.2 | −2.5 | 15.5 |
Precipitation (mm/a) | 2520 | 89.3 | 64.6 | 4.6 | 366.6 |
Sowing area (ha) | 2520 | 39,319.62 | 32,284.05 | 1200.60 | 226,750.00 |
Machinery (kw/ha) | 2520 | 3.50 | 2.28 | 0.33 | 25.01 |
Labor (capita/ha) | 2520 | 1.23 | 0.88 | 0.01 | 7.76 |
Fertilizers (kg/ha) | 2520 | 240.30 | 156.69 | 4.83 | 1522.59 |
GDPP (CNY/capita) | 2520 | 16,303.81 | 24,689.81 | 269.00 | 362,590.00 |
Group-Wise Heteroscedasticity | Autocorrelation Within Panel | Cross-Sectional Correlation | ||
---|---|---|---|---|
Statistic | Wald’s χ2 | Wald’s F | BPLM test’s F | Pesaran’s test |
Value | 1800.73 *** | 40.26 *** | 16,010.10 *** | 61.94 *** |
Variables | Model (1) 1 | Model (2) 2 | Model (3) 3 | Model (4) 4 | ||||
---|---|---|---|---|---|---|---|---|
Coef. | z-Value | Coef. | z-Value | Coef. | z-Value | Coef. | z-Value | |
Input factors | ||||||||
Ln(machinery) | 0.2601 *** (0.0037) | 71.05 | 0.2556 *** (0.0029) | 88.41 | 0.2599 *** (0.0527) | 4.93 | 0.2566 *** (0.0519) | 4.95 |
Ln(labor) | 0.0663 *** (0.0021) | 30.94 | 0.0676 *** (0.0011) | 63.74 | 0.0660 *** (0.0581) | 1.13 | 0.0671 (0.0569) | 1.18 |
Ln(fertilizers) | 0.1627 *** (0.0011) | 150.23 | 0.1643 *** (0.0011) | 150.97 | 0.1631 *** (0.0233) | 7.00 | 0.1647 *** (0.0231) | 7.12 |
Ln(GDPP) | 0.2902 *** (0.0013) | 220.47 | 0.2869 *** (0.0022) | 128.14 | 0.2909 *** (0.0524) | 5.55 | 0.2894 *** (0.0509) | 5.68 |
Climatic factors | ||||||||
Temperature | 0.0138 *** (0.0022) | 6.36 | 0.0138 (0.0401) | 0.34 | ||||
Temperature 2 | −0.0005 *** (0.0001) | −3.55 | −0.0005 (0.0017) | −0.29 | ||||
Precipitation | −0.0002 *** (<0.0001) | −5.58 | −0.0002 (0.0008) | −0.21 | ||||
Precipitation 2 | <0.0001 (<0.0001) | 0.79 | <0.0001 (<0.0001) | 0.02 | ||||
Trend | 0.0212 *** (0.0003) | 62.89 | 0.0217 *** (0.0004) | 52.84 | 0.0211 *** (0.0080) | 2.63 | 0.0213 *** (0.0079) | 2.71 |
Cons | 5.4359 *** (0.0109) | 497.9 | 5.4039 *** (0.0206) | 261.72 | 5.4229 *** (0.3949) | 13.73 | 5.3747 *** (0.4510) | 11.92 |
Chi-square | 504,844.89 *** | 434,121.07 *** | 331.75 *** | 315.92 *** | ||||
R-squared | 0.8692 | 0.8666 |
Temperature | ||
---|---|---|
Model (2) 1 | Model (4) 2 | |
Elasticities | 0.0447 (0.0258) | 0.0491 (0.3667) |
Name | Original Effects | New Effects | Result | ||
---|---|---|---|---|---|
θ1 | θ2 | θ1 | θ2 | ||
Add random common cause | 0.0336 | −0.0016 | 0.0327 | −0.0015 | Pass (Not changed effect) |
Data subsets validation | 0.0380 | −0.0018 | Pass (Partially sensitive to data subsets) | ||
Add unobserved common cause | 0.0440 | −0.0023 | Fail (Sensitive to confounder) | ||
Placebo treatment | 0.0002 | <0.0001 | Pass (Almost zero effect) | ||
Dummy outcome | 0.0014 | <0.0001 | Pass (Almost zero effect) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Yue, Y.; Wang, L.; Yang, Y. Spatial Heterogeneity in Temperature Elasticity of Agricultural Economic Production in Xinjiang Province, China. Sustainability 2025, 17, 7724. https://doi.org/10.3390/su17177724
Liu S, Yue Y, Wang L, Yang Y. Spatial Heterogeneity in Temperature Elasticity of Agricultural Economic Production in Xinjiang Province, China. Sustainability. 2025; 17(17):7724. https://doi.org/10.3390/su17177724
Chicago/Turabian StyleLiu, Shiwei, Yongyu Yue, Lei Wang, and Yang Yang. 2025. "Spatial Heterogeneity in Temperature Elasticity of Agricultural Economic Production in Xinjiang Province, China" Sustainability 17, no. 17: 7724. https://doi.org/10.3390/su17177724
APA StyleLiu, S., Yue, Y., Wang, L., & Yang, Y. (2025). Spatial Heterogeneity in Temperature Elasticity of Agricultural Economic Production in Xinjiang Province, China. Sustainability, 17(17), 7724. https://doi.org/10.3390/su17177724