Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China
Abstract
Featured Application
Abstract
1. Introduction
2. Geological Setting
3. Data and Methods
4. Results
4.1. Lithofacies Associations
4.1.1. FA1: Delta Plain Deposits
4.1.2. FA2: Delta Front Deposits
4.1.3. FA3: Shore–Shallow Lacustrine Deposits
4.1.4. FA4: Deep and Semi-Deep Lacustrine Deposits
4.1.5. FA5: Peat Swamp Deposits
4.2. Main Seismic Facies Types
4.2.1. Seismic Facies SF1
4.2.2. Seismic Facies SF2
4.2.3. Seismic Facies SF3
4.2.4. Seismic Facies SF4
4.3. Sequence Framework
4.3.1. Second-Order Sequence Boundaries
4.3.2. Third-Order Sequence Boundaries
4.3.3. Cyclic Structure
4.4. Evolution of Depositional Systems
4.4.1. Sedimentary Evolution Stage I
4.4.2. Sedimentary Evolution Stage II
4.4.3. Sedimentary Evolution Stage III
5. Discussion
5.1. Tectonism
5.2. Paleoclimate
5.3. Sedimentary Responses to the Paleoclimate
5.4. Coal Accumulation Patterns
6. Conclusions
- Fourteen lithofacies, five lithofacies associations, and four major seismic facies have been identified within the Lower–Middle Jurassic Ahe, Yangxia, and Kezilenuer Formations, which represent the following four sedimentary systems: braided river delta, meandering river delta, lacustrine, and swamp deposits.
- The Lower–Middle Jurassic can be divided into two second-order and nine third-order sequences (SQ1–SQ9) based on regional and local unconformity and correlative conformity sequence boundaries, and this cyclic architecture was validated through wavelet transform analysis.
- Three stages of the sedimentary evolution during the Lower–Middle Jurassic are recognized: Stage I (SQ1–SQ2) is characterized by braided river delta and shore–shallow lacustrine deposits; Stage II (SQ3–SQ5) begins with a transition from meandering river delta deposits (SQ3) to braided river delta deposits (SQ4), followed by the development of deep and semi-deep lacustrine deposits in SQ5; Stage III (SQ6–SQ9) is marked by regional lacustrine siltation and swamp formation (SQ6–SQ7), eventually shifting to meandering river delta and shore–shallow lacustrine deposits in SQ8–SQ9.
- The Early Jurassic uplift of the Tianshan Orogenic Belt was a primary driver of widespread thick braided river delta deposits during Stage I. Therewith, the tectonic activity weakened with the source area planation and sediment supply decreased, facilitating the deposition of fine-grained meandering river delta and swamp deposits. Geochemical proxies record climatic shifts during Stages II and III. Meandering river delta systems predominantly develop under warm and humid climatic conditions, whereas braided river delta systems prevail during arid phases. Hot and humid conditions associated with the Early Jurassic Toarcian Oceanic Anoxic Event may trigger regional lacustrine transgression during the SQ5 of Stage II. Warm and humid climate with limited detrital input provided favorable conditions for widespread swamp development in Stage III. Minimum orbital eccentricity minima during this period facilitated coal accumulation, whereas maximal eccentricity corresponded to coal formation termination.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vázquez-Urbez, M.; Arenas, C.; Pardo, G.; Pérez-Rivarés, J. The effect of drainage reorganization and climate on the sedimentologic evolution of intermontane lake systems: The final fill stage of the Tertiary Ebro Basin (Spain). J. Sediment. Res. 2013, 83, 562–590. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Lin, C.S.; Liu, Y.F.; Liu, J.Y.; Zhao, H.T.; Li, H.; Sun, Q.; Xia, H.; Ma, M.; Liang, Y. Lacustrine to fluvial depositional systems: The depositional evolution of an intracontinental depression and controlling factors, Lower Cretaceous, northern Tarim Basin, northwest China. Mar. Petrol. Geol. 2021, 126, 104904. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Li, Q.; Chen, H.H.; Li, J.; Zhang, W.P.; Liu, Y.; Yan, Z.H. Tectonic-geomorphological evolution and provenance-sedimentary response: Insights from the Middle Jurassic-Lower Cretaceous, Junggar Basin, China. Mar. Petrol. Geol. 2023, 158, 106514. [Google Scholar] [CrossRef]
- Mehmood, M.; Naseem, A.A.; Saleem, M.; Rehman, J.U.; Kontakiotis, G.; Janjuhah, H.T.; Khan, E.U.; Antonarakou, A.; Khan, I.; Rehman, A.U.; et al. Sedimentary Facies, Architectural Elements, and Depositional Environments of the Maastrichtian Pab Formation in the Rakhi Gorge, Eastern Sulaiman Ranges, Pakistan. J. Mar. Sci. Eng. 2023, 11, 726. [Google Scholar] [CrossRef]
- Hendrix, M.S.; Graham, S.A.; Carroll, A.R.; Sober, E.R.; Mcknight, C.L.; Shulein, B.J.; Wang, Z.X. Sedimentary record and climatic implication of recurrent deformation of the Tien Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar and Turpan basins. Geol. Soc. Am. Bull. 1992, 104, 53–79. [Google Scholar] [CrossRef]
- Allen, J.R.L.; Friend, P.F. Deposition of Catskill facies, Appalachian Region: With some notes on some other Old Red sandstone Basins. In Late Palaeozoic and Mesozoic Continental Sedimentation, Northeastern North America; de Klein, G.V., Ed.; The Geological Society of America: Boulder, CO, USA, 1968; Volume 106, pp. 21–74. [Google Scholar]
- Qin, Y.; Zhu, X.M.; Zhu, S.F.; McElroy, B. Impact of deep-time palaeoclimate on the sedimentary records and morphology of lacustrine shoal-water deltas, Upper Eocene Dongying Depression, Bohai Bay Basin, China. Sedimentology 2021, 68, 3253–3278. [Google Scholar] [CrossRef]
- Yang, W.; Wan, M.L.; Crowley, J.L.; Wang, J.; Luo, X.R.; Tabor, N.; Angielczyk, K.D.; Gastaldo, R.; Geissman, J.; Liu, F.; et al. Paleoenvironmental and paleoclimatic evolution and cyclo- and chrono-stratigraphy of upper Permian-Lower Triassic fluvial-lacustrine deposits in Bogda Mountains, NW China—Implications for diachronous plant evolution across the Permian-Triassic boundary. Earth-Sci. Rev. 2021, 222, 103741. [Google Scholar] [CrossRef]
- Lin, C.F.; Liu, S.F.; Tian, C.; Zhuang, Q.T.; Li, R.W.; Tan, M.J.; Steel, R.J. Tectonic and climatic controls on the Late Jurassic-Early Cretaceous stratigraphic architecture of the Xuanhua basin, North China. Basin Res. 2022, 34, 190–219. [Google Scholar] [CrossRef]
- Pszonka, J.; Zecova, K.; Wendorff, M. Oligocene turbidite fans of the Dukla Basin: New age data from the calcareous nannofossils and paleoenvironmental conditions (Cergowa beds, Polish–Slovakian borderland). Geol. Carpathica 2019, 70, 311–324. [Google Scholar] [CrossRef]
- Pszonka, J.; Wendorff, M.; Godlewski, P. Sensitivity of marginal basins in recording global icehouse and regional tectonic controls on sedimentation. Example of the Cergowa Basin, (Oligocene) Outer Carpathians. Sediment. Geol. 2023, 444, 106326. [Google Scholar] [CrossRef]
- Xu, Q.L.; Liu, B.; Ma, Y.S.; Song, X.M.; Wang, Y.J.; Xin, X.K.; Chen, Z.X. Controlling factors and dynamical formation models of lacustrine organic matter accumulation for the Jurassic Da’anzhai Member in the central Sichuan Basin, southwestern China. Mar. Petrol. Geol. 2017, 86, 1391–1405. [Google Scholar] [CrossRef]
- Jin, X.; Shi, Z.; Baranyi, V.; Kemp, D.B.; Han, Z.; Luo, G.; Hu, J.; He, F.; Chen, L.; Preto, N. The Jenkyns Event (early Toarcian OAE) in the Ordos Basin, North China. Glob. Planet. Change 2020, 193, 103273. [Google Scholar] [CrossRef]
- Liu, M.; Sun, P.; Them II, T.R.; Li, Y.; Sun, S.; Gao, X.; Huang, X.; Tang, Y. Organic geochemistry of a lacustrine shale across the Toarcian Oceanic Anoxic Event (Early Jurassic) from NE China. Glob. Planet. Change 2020, 191, 103214. [Google Scholar] [CrossRef]
- Bohacs, K.M.; Carroll, A.R.; Neal, J.E. Lessons from large lake systems-thresholds, nonlinearity, and strange attractions. In Extreme Depositional Environments: Mega End Members in Geological Time; Chan, M.A., Archer, A.W., Eds.; The Geological Society of America: Boulder, CO, USA, 2003; Volume 370, pp. 75–90. [Google Scholar]
- Smith, M.E.; Carroll, A.R.; Scott, J.J.; Singer, B.S. Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima: Green River Formation of Wyoming. Earth Planet. Sci. Lett. 2014, 403, 393–406. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Fan, M.J.; Lu, Y.C.; Liu, H.M.; Hao, Y.Q.; Xie, Z.H.; Peng, L.; Du, X.B.; Hu, H.Y. Middle Eocene paleohydrology of the Dongying Depression in eastern China from sedimentological and geochemical signatures of lacustrine mudstone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 479, 16–33. [Google Scholar] [CrossRef]
- Noorbergen, L.J.; Abels, H.A.; Hilgen, F.J.; Robson, B.E.; de Jong, E.; Dekkers, M.J.; Krijgsman, W.; Smit, J.; Collinson, M.E.; Kuiper, K.F.; et al. Conceptual models for short-eccentricity-scale climate control on peat formation in a lower Palaeocene fluvial system, north-eastern Montana (USA). Sedimentology 2018, 65, 775–808. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, T.T.; Ramezani, J.; Lv, D.W.; Wang, C.S. Climate forcing of terrestrial carbon sink during the Middle Jurassic greenhouse climate: Chronostratigraphic analysis of the Yan’an Formation, Ordos Basin, North China. GSA Bull. 2021, 133, 1723–1733. [Google Scholar] [CrossRef]
- Liang, D.G.; Zhang, S.C.; Chen, J.P.; Wang, F.Y.; Wang, P.R. Organic geochemistry of oil and gas in the Kuqa depression, Tarim Basin, NW China. Org. Geochem. 2003, 34, 873–888. [Google Scholar] [CrossRef]
- Zhang, S.C.; Zhang, B.; Zhu, G.Y.; Wang, H.T.; Li, Z.X. Geochemical evidence for coal-derived hydrocarbons and their charge history in the Dabei Gas Field, Kuqa Thrust Belt, Tarim Basin, NW China. Mar. Petrol. Geol. 2011, 28, 1364–1375. [Google Scholar] [CrossRef]
- Tang, X.Y.; Yang, S.C.; Hu, S.B. Thermal and maturation history of Jurassic source rocks in the Kuqa foreland depression of Tarim Basin, NW China. J. Asian Earth Sci. 2014, 89, 1–9. [Google Scholar] [CrossRef]
- He, H.; Guo, J.H.; Gao, Y.F. Jurassic sequence stratigraphy and sedimentary facies in Kuqa Depression of Tarim Basin. J. Jianghan Pet. Inst. 2002, 24, 110–113+120, (In Chinese with English abstract). [Google Scholar]
- Wu, C.D.; Lin, C.S.; Shen, Y.P.; Xie, X.J.; Xiao, J.X.; Liu, J.Y.; Shi, Y.L. Sequence Stratigraphy and Depositional Environments of the Kuche Depression. Acta Sedimentol. Sin. 2002, 20, 400–407, (In Chinese with English abstract). [Google Scholar]
- Xu, Q.; Qin, M.K.; Huang, S.H.; Yang, Y.; Li, J.; Liu, Z.Y.; He, Z.B.; Guo, Q.; Song, J.Y. Sedimentary facies characteristics of early and middle Jurassic in northern monoclinal zone of western Kuqa Depression and uranium metallogenic conditions. Uranium Geol. 2019, 35, 129–136, (In Chinese with English abstract). [Google Scholar]
- Zhang, R.H.; Yang, H.J.; Wei, H.X.; Yu, C.F.; Yang, Z.; Wu, J. The sandstone characteristics and hydrocarbon exploration signification of Lower Jurassic in middle-eastern section of northern tectonic belt in Kuqa Depression, Tarim Basin. Nat. Gas Geosci. 2019, 30, 1243–1252, (In Chinese with English abstract). [Google Scholar]
- Jia, J.H.; Xue, L.Q. Pattern and evolution of Mesozoic continental sequence stratigraphy in the Kuqa depression. Chin. J. Geol. 2002, 37 (Suppl. S1), 121–128, (In Chinese with English abstract). [Google Scholar]
- Lin, C.S.; Yu, B.S.; Liu, J.Y. Sequence Stratigraphy and Tectono-Geography of Superimposed Basins: Case study on the Tarim Basin in Northwest China; Science Press: Beijing, China, 2011; pp. 200–260. (In Chinese) [Google Scholar]
- Lin, C.S.; Liu, J.Y.; Zhang, Y.M.; Xiao, J.X.; Chen, J.Q.; Ji, Y.L. Depositional architecture of the Tertiary tectonic sequences and their response to foreland tectonism in the Kuqa depression, the Tarim Basin. Sci. China Ser. D 2002, 45, 250–258. [Google Scholar] [CrossRef]
- Zhang, H.L.; Shou, J.F.; Chen, Z.L.; Wang, S.Y.; Yang, X.N.; Pi, X.J.; Cai, Z.Z. Sedimentary Characteristics and Sandstone Body Distribution of the Lower Jurassic in Kuqa Depression. J. Palaeogeogr. 2002, 4, 47–58, (In Chinese with English abstract). [Google Scholar]
- Liu, J.Y.; Wang, Q.H.; Lin, C.S.; Zhang, L.J.; Lei, Y.P.; Hu, G.C.; Hu, B. Sequence and systems tract of Paleogene Kumugeliemu Group in Western Kuqa Depression, Tarim Basin. Pet. Explor. Dev. 2008, 35, 651–656, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Huang, W.K.; Zeng, L.F.; Pan, C.C.; Xiao, Z.Y.; Zhang, H.Z.; Huang, Z.B.; Zhao, Q.; Yu, S.; Xu, H.; Chen, C.S.; et al. Petroleum generation potentials and kinetics of coaly source rocks in the Kuqa Depression of Tarim Basin, northwest China. Org. Geochem. 2019, 133, 32–52. [Google Scholar] [CrossRef]
- Jia, C.Z.; Gu, J.Y.; Zhang, G.Y. Geological constraints of giant and medium-sized gas fields in Kuqa depression. Chin. Sci. Bull. 2002, 47 (Suppl. S1), 49–55. (In Chinese) [Google Scholar] [CrossRef]
- Yu, H.B.; Qi, J.F.; Yang, X.Z.; Liu, Q.Y.; Cao, S.J.; Fan, S.; Sun, T.; Yang, X.Y. Analysis of Mesozoic prototype basin in Kuqa Depression, Tarim Basin. Xinjiang Petrol. Geol. 2016, 37, 644–653, (In Chinese with English abstract). [Google Scholar]
- Zhang, T.; Zhang, C.M.; Qu, J.H.; Zhu, R.; Yuan, R.; Pan, J.; Tao, J.Y. A research on relative lacustrine level changes of the Lower Triassic Baikouquan Formation in Mahu Sag of Junggar Basin. Acta Sedimentol. Sin. 2018, 36, 684–694, (In Chinese with English abstract). [Google Scholar]
- Xia, H.; Lin, C.S.; Liu, Y.F.; Li, H.; Sun, Q.; Zhao, H.T.; Su, Z. A research on relative lacustrine level changes of Cretaceous Shushanhe Formation in the Yingmaili area of Tarim Basin. Nat. Gas Geosci. 2019, 30, 1579–1589, (In Chinese with English abstract). [Google Scholar]
- Prokoph, A.; Agterberg, F.P. Wavelet analysis of well-logging data from oil source rock, Egret Member, offshore eastern Canada. AAPG Bull. 2000, 84, 1617–1632. [Google Scholar]
- Yuan, X.X.; Guo, Y.H.; Shen, Y.L.; Shao, Y.B. Study on sequence stratigraphic division by using Milankovitch cycles as constraints. Coal Sci. Technol. 2013, 41, 105–109, (In Chinese with English abstract). [Google Scholar]
- von Eynatten, H.; Barceló-Vidal, C.; Pawlowsky-Glahn, V. Modelling compositional change: The example of chemical weathering of granitoid rocks. Math. Geol. 2003, 35, 231–251. [Google Scholar] [CrossRef]
- Montero-Serrano, J.C.; Föllmi, K.B.; Adatte, T.; Spangenberg, J.E.; Tribovillard, N.; Fantasia, A.; Suan, G. Continental weathering and redox conditions during the early Toarcian oceanic anoxic event in the northwestern Tethys: Insight from the Posidonia shale section in the Swiss Jura Mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 429, 83–99. [Google Scholar] [CrossRef]
- Jiang, H.C.; Guo, G.X.; Cai, X.M.; Thompson, J.A.; Xu, H.Y.; Zhong, N. Geochemical evidence of windblown origin of the late Cenozoic lacustrine sediments in Beijing and implications for weathering and climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 446, 342–443. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Fan, M.J.; Lu, Y.C.; Liu, H.M.; Hao, Y.Q.; Xie, Z.H.; Liu, Z.H.; Peng, L.; Du, X.B.; Hu, H.Y. Climate-driven paleolimnological change controls lacustrine mudstone depositional process and organic matter accumulation: Constraints from lithofacies and geochemical studies in the Zhanhua Depression, eastern China. Int. J. Coal Geol. 2016, 167, 103–118. [Google Scholar] [CrossRef]
- Miall, A.D. Lithofacies types and vertical profile models in braided river deposits, a summary. In Fluvial Sedimentology; Miall, A.D., Ed.; Geological Survey of Canada: Calgary, AB, Canada, 1978; Volume 5, pp. 597–604. [Google Scholar]
- Zhu, X.M.; Zeng, H.L.; Li, S.L.; Dong, Y.L.; Zhu, S.F.; Zhao, D.N.; Huang, W. Sedimentary characteristics and seismic geomorphologic responses of a shallow-water delta in the Qingshankou Formation from the Songliao Basin, China. Mar. Petrol. Geol. 2017, 79, 131–148. [Google Scholar] [CrossRef]
- Miall, A.D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Sci. Rev. 1985, 22, 261–308. [Google Scholar] [CrossRef]
- Miall, A.D. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology; Springer: Berlin/Heidelberg, Germany, 1996; pp. 57–98. [Google Scholar]
- Noda, A.; Takeuchi, M.; Adachi, M. Fan deltaic-to-fluvial sedimentation of the Middle Jurassic Murihiku Terrane, Southland, New Zealand. N. Z. J. Geol. Geophys. 2002, 45, 297–312. [Google Scholar] [CrossRef]
- Wright, V.P.; Marriott, S.B. The sequence stratigraphy of fluvial depositional systems: The role of floodplain sediment storage. Sediment. Geol. 1993, 86, 203–210. [Google Scholar] [CrossRef]
- Gao, M.; Fan, M.J. Depositional environment, sediment provenance and oxygen isotope paleoaltimetry of the early Paleogene greater Green River Basin, southwestern Wyoming, USA. Am. J. Sci. 2018, 318, 1018–1055. [Google Scholar] [CrossRef]
- Roberts, E.M. Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah. Sediment. Geol. 2007, 197, 207–233. [Google Scholar] [CrossRef]
- Bridge, J.S. Fluvial facies models: Recent developments. In Facies Models Revisited; Posamentier, H., Walker, R.G., Eds.; SEPM Society for Sedimentary Geology: Claremore, OK, USA, 2006; Volume 84, pp. 85–170. [Google Scholar]
- Midwinter, D.; Hadlari, T.; Dewing, K. Lower Triassic river-dominated deltaic successions from the Sverdrup Basin, Canadian Arctic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 476, 55–67. [Google Scholar] [CrossRef]
- Lü, Q.Q.; Luo, S.S.; Fu, J.H.; Niu, X.B.; Xu, L.M.; Feng, S.B.; Li, S.X. Detailed study of lake fine grained deposition characteristics: A case study from Chang 7 of Yanhe section, Ordos Basin. Geoscience 2018, 32, 364–373, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.; Chen, S.Y. Meandering river sand body architecture and heterogeneity: A case study of permian meandering river outcrop in palougou, baode, shanxi province. Pet. Explor. Dev. 2016, 43, 230–240. [Google Scholar] [CrossRef]
- Collinson, J.D. Alluvial sediments. In Sedimentary Environments: Processes, Facies and Stratigraphy; Reading, H.G., Ed.; Blackwell Science: Oxford, UK, 1996; pp. 36–82. [Google Scholar]
- Lin, C.S.; Jiang, J.; Shi, H.S.; Zhang, Z.T.; Liu, J.Y.; Qin, C.G.; Li, H.; Ran, H.J.; Wei, A.; Tian, H.X.; et al. Sequence architecture and depositional evolution of the northern continental slope of the South China Sea: Responses to tectonic processes and changes in sea level. Basin Res. 2018, 30, 568–595. [Google Scholar] [CrossRef]
- Deng, Q.J.; Hu, M.Y.; Wu, Y.K.; Huang, M.Z.; Lu, K.N.; Cai, Q.S.; Hu, Z.G.; Du, J.B.; Yuan, L.; Qian, Z.T.; et al. Lacustrine to deltaic depositional systems: Sedimentary evolution and controlling factors of an Upper Cretaceous continental depression and implications for petroleum exploration. Mar. Petrol. Geol. 2025, 173, 107234. [Google Scholar] [CrossRef]
- Ghazi, S.; Mountney, N.P. Facies and architectural element analysis of a meandering fluvial succession: The Permian Warchha Sandstone, Salt Range, Pakistan. Sediment. Geol. 2009, 221, 99–126. [Google Scholar] [CrossRef]
- Tineo, D.E. Facies model of a sedimentary record for a Pantanal-like inland wetland. Sedimentology 2020, 67, 3683–3717. [Google Scholar] [CrossRef]
- Sellwood, B.W. The genesis of some sideritic beds in the Yorkshire Lias (England). J. Sediment. Petrol. 1971, 41, 854–858. [Google Scholar] [CrossRef]
- Hou, Y.C.; Wang, H.Y.; Fan, T.L.; Zhang, H.A.; Yang, R.Z.; Li, Y.F.; Long, S.F. Rift-related sedimentary evolution and its response to tectonics and climate changes: A case study of the Guaizihu sag, Yingen-Ejinaqi Basin, China. J. Asian Earth Sci. 2020, 195, 104370. [Google Scholar] [CrossRef]
- Deng, S.H.; Lu, Y.Z.; Fan, R.; Fang, L.H.; Li, X.; Liu, L. Structural controls on facies distribution in a small half-graben basin: Luanping Basin, Northeast China. Basin Res. 2010, 22, 33–44. [Google Scholar]
- Jiang, Z.X.; Liu, H.; Zhang, S.W.; Su, X.; Jiang, Z.L. Sedimentary characteristics of large-scale lacustrine beach-bars and their formation in the Eocene Boxing sag of Bohai Bay Basin, east China. Sedimentology 2011, 58, 1087–1112. [Google Scholar] [CrossRef]
- Oesterlen, P.M.; Lepper, J. The Lower Karoo coal (k2-3) of the Mid-Zambezi basin, Zimbabwe: Depositional analysis, coal genesis and palaeogeographic implications. Int. J. Coal Geol. 2005, 61, 97–118. [Google Scholar] [CrossRef]
- Bohacs, K.; Suter, J. Sequence stratigraphic distribution of coaly rocks: Fundamental controls and paralic examples. Am. Assoc. Pet. Geol. Bull. 1997, 81, 1612–1639. [Google Scholar]
- Catuneanu, O.; Abreu, V.; Bhattacharya, J.P.; Blum, M.D.; Dalrymple, R.W.; Eriksson, P.G.; Fielding, C.R.; Fisher, W.L.; Galloway, W.E.; Gibling, M.R.; et al. Towards the standardization of sequence stratigraphy. Earth-Sci. Rev. 2009, 92, 1–33. [Google Scholar] [CrossRef]
- Lin, C.S. Sequence and depositional architecture of sedimentary basin and process responses. Acta Sedimentol. Sin. 2009, 27, 849–861, (In Chinese with English abstract). [Google Scholar]
- Wu, G.K.; Lin, C.S.; Yang, H.J.; Liu, J.Y.; Liu, Y.F.; Li, H.; Yang, X.Z.; Jiang, J.; He, Q.L.; Gao, D.K. Major unconformities in the Mesozoic sedimentary sequences in the Kuqa-Tabei region, Tarim Basin, NW China. J. Asian Earth Sci. 2019, 183, 103957. [Google Scholar] [CrossRef]
- Lin, X.X.; Hou, Z.J. A semiquantitative analytical method for base level changes of high resolution sequence and its application to study of member 4 of Lower Cretaceous Quantou Formation in Songliao Basin. J. Chengdu Univ. Technol. Sci. Technol. Ed. 2014, 41, 157–170, (In Chinese with English abstract). [Google Scholar]
- Li, Z.; Wang, D.X.; Lin, W.; Wang, Q.C. Mesozoic-Cenozoic clastic composition in Kuqa depression, Northwest China: Implication for provenance types and tectonic attributes. Acta Petrol. Sin. 2004, 20, 655–666, (In Chinese with English abstract). [Google Scholar]
- Li, Z.; Peng, S.T. Detrital zircon geochronology and its provenance implications: Responses to Jurassic through Neogene basin-range interactions along northern margin of the Tarim Basin, Northwest China. Basin Res. 2010, 22, 126–138. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.J.; Liu, K. Continuous denudation and pediplanation of the Chinese Western Tianshan orogen during Triassic to Middle Jurassic: Integrated evidence from detrital zircon age and heavy mineral chemical data. J. Asian Earth Sci. 2015, 113, 310–324. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Zhu, R.K.; Feng, J.R.; Li, X.P.; Zhao, X.S.; Guo, M.L. Jurassic-Neogene conglomerate characteristics in Kuqa Depression and their response to tectonic uplifting of Tianshan Mountains. Oil Gas Geol. 2015, 36, 534–544, (In Chinese with English abstract). [Google Scholar]
- Liu, H.X.; Qin, T.X.; Yang, Z.Y. Sedimentary facies of the Triassic-Jurassic strata in the Tarim Basin, Xinjiang. Sediment. Geol. Tethyan Geol. 2003, 23, 37–44, (In Chinese with English abstract). [Google Scholar]
- Li, B.L.; Chen, Z.X.; Lei, Y.L.; Zhang, C.J. Structural geology correlation of foreland thrust-folded belts between the southern and northern edges of the Tianshan Mountain and some suggestions for hydrocarbon exploration. Acta Pet. Sin. 2011, 32, 395–403, (In Chinese with English abstract). [Google Scholar]
- Jolivet, M.; Dominguez, S.; Charreau, J.; Chen, Y.; Li, Y.G.; Wang, Q.C. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation. Tectonics 2010, 29, 391–420. [Google Scholar] [CrossRef]
- Liu, D.D.; Jolivet, M.; Yang, W.; Zhang, Z.Y.; Cheng, F.; Bei, Z.; Guo, Z.J. Latest Paleozoic-early Mesozoic basin-range interactions in South Tian Shan (Northwest China) and their tectonic significance: Constraints from detrital zircon U-Pb ages. Tectonophysics 2013, 599, 197–213. [Google Scholar] [CrossRef]
- Yang, Y.T.; Song, C.C.; He, S. Jurassic tectonostratigraphic evolution of the Junggar basin, NW China: A record of Mesozoic intraplate deformation in Central Asia. Tectonics 2015, 34, 86–115. [Google Scholar] [CrossRef]
- Khattak, S.A.; Khan, N.; Khan, W.; Dhas, S.S.J.; Kontakiotis, G.; Islam, I.; Janjuhah, H.T.; Antonarakou, A. Sedimentology and reservoir characterisation of Lower Jurassic clastic sedimentary rocks, Salt and Trans Indus Ranges, Pakistan: Evidence from petrography, scanning electron microscopy and petrophysics. Depos. Rec. 2025, 11, 698–717. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Rizwan, M.; Janjuhah, H.T.; Islam, I.; Kontakiotis, G.; Bilal, A.; Arif, M. An integrated petrographical and geochemical study of the Tredian Formation in the Salt and Trans-Indus Surghar ranges, North-West Pakistan: Implications for palaeoclimate. Depos. Rec. 2024, 10, 33–50. [Google Scholar] [CrossRef]
- Morin, J.; Jolivet, M.; Robin, C.; Heilbronn, G.; Barrier, L.; Bourquin, S.; Jia, Y.Y. Jurassic paleogeography of the Tian Shan: An evolution driven by far-field tectonics and climate. Earth Sci. Rev. 2018, 187, 286–313. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, Y.L.; Qiu, N.S.; Li, C.X. Uplift and exhumation in the Tianshan, western China: New insights from detrital zircon morphology and thermochronology. Sci. Sin. Terrae 2022, 65, 449–461. (In Chinese) [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Fedo, C.M.; Grant, G.M.; Nesbitt, H.W. Paleoclimatic control on the composition of the Paleoproterozoic Serpent formation, Huronian Supergroup, Canada: A greenhouse to icehouse transition. Precambrian Res. 1997, 86, 201–223. [Google Scholar] [CrossRef]
- Yan, D.T.; Chen, D.Z.; Wang, Q.C.; Wang, J.G. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south China. Geology 2010, 38, 599–602. [Google Scholar] [CrossRef]
- Wang, P.; Du, Y.S.; Yu, W.C.; Algeo, T.J.; Zhou, Q.; Xu, Y.; Qi, L.; Yuan, L.J.; Pan, W. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth Sci. Rev. 2020, 201, 103032. [Google Scholar] [CrossRef]
- Li, Y.Y.; Guo, S.B. Sedimentary response and restoration of paleoshoreline of Taiyuan-Shanxi Formations in North China basin. Mar. Petrol. Geol. 2023, 152, 1–23. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. In Processes Controlling the Composition of Clastic Sediments; Johnsson, M.J., Basu, A., Eds.; The Geological Society of America: Boulder, CO, USA, 1993; Volume 284, pp. 21–40. [Google Scholar]
- Xu, W.; Ruhl, M.; Jenkyns, H.C.; Hesselbo, S.P.; Riding, J.B.; Selby, D.; Naafs, B.D.A.; Weijers, J.W.H.; Pancost, R.D.; Tegelaar, E.W.; et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event. Nat. Geosci. 2017, 10, 129–134. [Google Scholar] [CrossRef]
- Li, Q.; Wu, S.H.; Xia, D.L.; You, X.L.; Zhang, H.M.; Lu, H. Major and trace element geochemistry of the lacustrine organic-rich shales from the Upper Triassic Chang 7 Member in the southwestern Ordos Basin, China: Implications for paleoenvironment and organic matter accumulation. Mar. Petrol. Geol. 2020, 111, 852–867. [Google Scholar] [CrossRef]
- Liu, Z.S. Jurassic palynological assemblages from the northern margin in the Tarim Basin of Xinjiang, NW China. Acta Micropalaeontologica Sin. 1998, 15, 144–165, (In Chinese with English abstract). [Google Scholar]
- Huang, K.N.; Zhan, J.Z.; Zou, Y.S.; Wang, Z.; Zhou, C.M.; Xiao, J.N. Sedimentary environments and palaeoclimate of the Triassic and Jurassic in Kuqa river area, Xinjiang. J. Palaeogeogr. 2003, 5, 197–208, (In Chinese with English abstract). [Google Scholar]
- Joral, F.G.; Gómez, J.J.; Goy, A. Mass extinction and recovery of the Early Toarcian (Early Jurassic) brachiopods linked to climate change in northern and Central Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 302, 367–380. [Google Scholar] [CrossRef]
- Them, T.R.; Gill, B.C.; Selby, D.; Gröcke, D.R.; Friedman, R.M.; Owens, J.D. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Sci. Rep. 2017, 7, 7–10. [Google Scholar] [CrossRef]
- Yang, K.; Zhou, D.; Yang, B.; Tong, J.S.; Luo, S.; Chen, Y.H.; He, N.X.; Liu, H.L.; Luo, P. The depositional evolution and controlling factors of the Lower Triassic Baikouquan Formation, Northern Mahu Slope, Junggar Basin, NW China. Geol. J. 2021, 56, 2720–2735. [Google Scholar] [CrossRef]
- Lou, Z.H.; Zhu, R.; Tang, Z.H.; Liu, Z.G.; Zhao, X.F.; Chen, Z.C. Sedimentary environments of the Cangfanggou Group in Junggar Basin, Xinjiang, in response to climate and tectonic regime. Acta Geol. Sin. Engling Ed. 2000, 74, 795–806. [Google Scholar]
- Min, W.W.; Deng, H.W.; Xia, S.Q.; Ye, D.Q. The transition from meandering river delta to braided river delta: Depositional characteristics and controlling factors from the second member of Shanxi Formation to the eighth member of Lower Shihezi Formation in Southeastern Ordos Basin transition from meandering river delta to braided river delta. Geol. J. 2020, 55, 8122–8140. [Google Scholar]
- Liu, H.L.; Zou, C.N.; Qiu, Z.; Pan, S.Q.; Zhang, W.Z.; Jing, Z.H.; Hao, J.H.; Yin, S.; Wu, S.T.; Li, S.X.; et al. Sedimentary enrichment factors of extraordinarily high organic matter in the sub-member 3 of Member 7 of Yanchang Formation, Ordos Basin. Acta Pet. Sin. 2022, 43, 1520–1541, (In Chinese with English abstract). [Google Scholar]
- Flores, R.M.; Sykes, R. Depositional controls on coal distribution and quality in the Eocene Brunner Coal Measures, Buller Coalfield, South Island, New Zealand. Int. J. Coal Geol. 1996, 29, 291–336. [Google Scholar] [CrossRef]
- Einsele, G.; Hinderer, M. Quantifying denudation and sediment–accumulation systems (open and closed lakes): Basic concepts and first results. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 140, 7–21. [Google Scholar] [CrossRef]
- Liu, B.Q.; Wang, M.; Wang, D.D.; Cao, Y.P.; Yan, Z.M. Composition characteristics and genetic mechanism of ultra thick coal seams: A case study of the Middle Jurassic in the Yuqia area, northern Qaidam Basin. Coal Sci. Technol. 2024, 52, 176–190, (In Chinese with English abstract). [Google Scholar]
- Deng, S.H.; Lu, Y.Z.; Fan, R.; Fang, L.H.; Li, X.; Liu, L. Toarcian (Early Jurassic) Oceanic Anoxic Event and the Responses in Terrestrial Ecological System. Earth Sci. J. China Univ. Geosci. 2012, 37 (Suppl. S2), 23–38, (In Chinese with English abstract). [Google Scholar]
- Chen, L.; Da, X.J.; Zhu, Z.X.; Xu, G.W.; Mao, W.C.; Huang, W.K.; Xia, F.; Yang, P.L.; Luo, Y.H.; Liao, X.J. Response to carbon cycle perturbation during the Toarcian oceanic anoxic event in terrestrial strata of China. J. Palaeogeogr. 2025, 27, 528–540, (In Chinese with English abstract). [Google Scholar]
- Tang, W.Q.; Zhang, D.W.; Zhou, Y.X.; Liu, Y.Y.; Wu, K.Y.; Zhang, P.C.; Han, Q.C.; Li, F.J.; Ma, C. Astronomical forcing in the coal-bearing Middle Jurassic Dameigou Formation, Qaidam Basin, northwestern China. Ore Geol. Rev. 2023, 161, 105663. [Google Scholar] [CrossRef]
Faces/Code | Lithology | Sedimentary Structures | Description | Interpretation |
---|---|---|---|---|
Gm | Massive, clast-supported conglomerate | Massive | Poorly sorted, moderate rounding, oriented in the long-axis direction, underlain by erosional surfaces | Lag deposits |
Sh | Fine-to-coarse sandstone | Parallel bedding | Well cemented, well sorted, widely developed | Distributary channel, subaqueous channel, mouth bar deposits |
Sm | Medium-coarse sandstone | Massive | Well cemented, moderately sorted, showing gray–brown and gray–white colors | Distributary channel deposits |
Smg | Pebbly sandstone | Massive | Gravels are small, with grain sizes from 0.5 to 1 cm, predominantly black or gray–white, and appear randomly within the sandstone | Distributary channel deposits |
Sp | Fine-to-coarse sandstone | Planar cross-bedding | Larger in scale, with a thickness of 5–10 m, and commonly developed | Distributary channel, subaqueous channel, mouth bar deposits |
St | Medium-to-coarse sandstone or conglomeratic sandstone | Trough cross-bedding | Common in outcrops, with a larger scale | Distributary channel deposits |
Fl | Mudstone to siltstone | Horizontal bedding | Interbedded thin layer | Distal bar, lacustrine, floodplain deposits |
Fmg | Muddy siltstone to fine sandstone | Massive | Containing irregular mud clasts | Delta subaqueous channel deposits |
Fm | Mudstone to muddy siltstone | Massive | Gray or gray–black, interbedded thin layer | Subaqueous interdistributary bay, lacustrine, floodplain deposits |
Fr | Muddy siltstone to siltstone | Ripple bedding | Well sorted, small ripple amplitude | Shore–shallow lacustrine, subaqueous interdistributary bay, floodplain deposits |
M | Mudstone | Massive or horizontal bedding | Relatively pure | Deep and semi-deep lacustrine, peat swamp |
Mc | Carbonaceous mudstone | Massive | Thin, interbedded with mudstones or coal seams | Peat swamp, floodplain deposits |
C | Coal | No sedimentary structures | In outcrops, thin in thickness, 0.2–1 m; in boreholes, significant thickness variations at different layers | Peat swamp or floodplain deposits |
R | Muddy siltstone to siltstone | No sedimentary structures | Development of plant root and paleosols, brown in color, thin in thickness, coexisting with coal seams | Floodplain deposits |
Seismic Faces | Seismic Facies Characteristics | Depositional interpretation | Sample | |||||
---|---|---|---|---|---|---|---|---|
External Geometry | Amplitude | Frequency | Continuity | Internal Reflection | ||||
SF1 | SF1-1 | Slab/Sheet | Moderate to high | Low to moderate | High | Parallel to sub-parallel | Swamp | |
SF1-2 | Sheet | Moderate to high | Low to moderate | High | Parallel to sub-parallel | Deep and semi-deep lacustrine | ||
SF1-3 | Slab/Sheet | Low to moderate | Low to moderate | Moderate to high | Parallel to sub-parallel, with small scale lens | Delta plain | ||
SF2 | Sheet/Wedge | Low to moderate | Moderate | Low to moderate | Parallel or sub-parallel to divergent | Shore–shallow lacustrine and meandering river delta plain | ||
SF3 | SF3-1 | Lens | Moderate | Moderate | Low | Imbricated progradational reflection | Braided river delta front | |
SF3-2 | Sheet | Moderate | Moderate to high | Moderate to high | Sigmoid or sigmoid-to- oblique progradational refection | Meandering river delta front | ||
SF4 | SF4-1 | “W” or “U”-Shaped Concave | Moderate to high | High | Low to moderate | ———— | Large scale incised river channel | |
SF4-2 | Lens | Moderate to high | High | Low | ———— | Small scale channel sand bodies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Lin, C.; Liu, Y.; Li, H.; Yuan, W.; Liu, J.; Shi, C.; Zhang, M.; Xu, F. Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China. Appl. Sci. 2025, 15, 7783. https://doi.org/10.3390/app15147783
Ma M, Lin C, Liu Y, Li H, Yuan W, Liu J, Shi C, Zhang M, Xu F. Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China. Applied Sciences. 2025; 15(14):7783. https://doi.org/10.3390/app15147783
Chicago/Turabian StyleMa, Ming, Changsong Lin, Yongfu Liu, Hao Li, Wenfang Yuan, Jingyan Liu, Chaoqun Shi, Manli Zhang, and Fan Xu. 2025. "Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China" Applied Sciences 15, no. 14: 7783. https://doi.org/10.3390/app15147783
APA StyleMa, M., Lin, C., Liu, Y., Li, H., Yuan, W., Liu, J., Shi, C., Zhang, M., & Xu, F. (2025). Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China. Applied Sciences, 15(14), 7783. https://doi.org/10.3390/app15147783