Change in Fatty Acid Composition in High-Temperature-Damaged Rice Grains and Its Effects on the Appearance and Physical Qualities of the Cooked Rice
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurement of the Moisture Contents of Rice Flour
2.3. Preparation of Unpolished Rice Flour
2.4. Preparation of Starch Granules
2.5. Iodine Absorption Spectrum
2.6. Protein Content
2.7. Phosphorus Contents
2.8. Measurements of Textural Properties of Boiled Rice Grains
2.9. “Mido” (=Taste Degree) of Boiled Rice
2.10. α-Amylase Activity
2.11. Pasting Properties
2.12. Fatty Acid Composition
2.13. Statistical Analyses
3. Results and Discussion
3.1. Iodine Absorption Spectra of 32 Japonica Rice Starch Samples from 2022
3.2. Protein and Phosphorus Contents of 32 Unpolished Rice Samples from 2022
3.3. Textural Properties of Boiled Rice Grains of 32 Unpolished Japonica Rice Samples from 2022
3.4. Taste Degree of Boiled Rice of 32 Polished Japonica Rice Samples from 2022
3.5. α-Amylase Activities of 32 Polished Japonica Rice Samples from 2022
3.6. Pasting Properties of 32 Unpolished Rice Samples from 2022 and 21 Rice Samples from 2023
3.7. Fatty Acid Compositions of 32 Unpolished Rice Samples from 2022 and 21 Unpolished Rice Samples from 2023
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bergman, C.J. Rice end-use quality Analysis. In Rice-Chemistry and Technology, 4th ed.; Bao, J., Ed.; American Association Cereal Chemists Int.: St. Paul, MN, USA, 2019; pp. 273–337. [Google Scholar]
- Juliano, B.O. Grain quality evaluation. In Rice Chemistry and Quality; Philippine Rice Research Institute: Munos, Philippines, 2003; pp. 199–252. [Google Scholar]
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Horie, T. Global warming and rice production in Asia: Modeling, impact prediction and adaptation. Proc. Jpn. Acad. Ser. 2019, 95, 211–245. [Google Scholar] [CrossRef]
- Morita, S.; Shiratsuch, I.H.; Takahashi, J.; Fujita, K. Effect of temperature on grain ripening in rice plants. Jpn. Crop Sci. 2004, 73, 77–83. [Google Scholar] [CrossRef]
- Nevame, A.Y.M.; Emon, R.M.; Malek, M.A.; Hasan, M.M.; Alam, A.; Muharam, F.M.; Aslani, F.; Rafii, M.Y.; Ismail, M.R. Relationship between High Temperature and Formation of Chalkiness and Their Effects on Quality of Rice. BioMed Res. Int. 2018, 2018, 1653721. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Iqbal, N.; Masood, A.; Per, T.S.; Khan, N.A. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal. Behav. 2013, 8, e26374. [Google Scholar] [CrossRef] [PubMed]
- Patindol, J.; Wang, Y.-J. Fine structures and physicochemical properties of starches from chalky and translucent kernels. J. Agric. Food Chem. 2003, 51, 2777–2784. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Dhatt, B.K.; Sandhu, J.; Hussain, W.; Irvin, L.; Morota, G.; Staswick, P.; Walia, H. Divergent phenotypic response of rice accessions to transient heat stress during early seed development. Plant Direct. 2020, 4, e00196. [Google Scholar] [CrossRef] [PubMed]
- Juliano, B.O. Rice Chemistry and Quality; Philippine Rice Research Institute (PhilRice): Los Banos, Phillipines, 2003; pp. 112–129.
- Nakamura, S.; Katsura, J.; Maruyama, Y.; Ohtsubo, K. Relationship between fatty acid composition and starch properties of 30 japonica rice cultivars. Cereal Chem. 2019, 96, 228–242. [Google Scholar] [CrossRef]
- Mitsui, T.; Shiraya, T.; Kaneko, K.; Wada, K. Proteomics of rice grain under high temperature stress. Plant Prod. Sci. 2013, 4, 36. [Google Scholar] [CrossRef]
- Asaoka, M.; Okuno, K.; Sugimoto, Y.; Kawakami, J.; Fuwa, H. Effect of environmental temperature during development of rice plants on some properties of endosperm starch. Starch 1984, 31, 189–193. [Google Scholar] [CrossRef]
- Singh, N.; Sodhi, N.; Kaur, M.; Saxena, S. Physico-chemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kernels. Food Chem. 2003, 82, 433–439. [Google Scholar] [CrossRef]
- Nakamura, S.; Satoh, A.; Aizawa, M.; Ohtsubo, K. Characteristics of physicochemical properties of chalky grains of Japonica rice generated by high temperature during ripening. Foods 2022, 11, 97. [Google Scholar] [CrossRef]
- Okuda, M.; Iizuka, S.; Xu, Y.; Wang, D. Rice in brewing. In Rice; Elsevier: Amsterdam, The Netherlands, 2019; pp. 589–626. [Google Scholar]
- Kitadume, R.; Nakamura, S.; Kumagai, T.; Takahashi, H.; Ohtsubo, K. Characreristics of chalky rice grains and their influence on rice cracker processing. Nippon. Shokuhin Kagaku Kogaku Kaish. 2012, 59, 621–627. (In Japanese) [Google Scholar] [CrossRef]
- Kubo, S.; Saio, K. Classification of the Japanese lowland rice by the mineral contents of husked grain. Part 2. Correlation of phosphorus content of husked rice with ripening period and temperature. Rep. Food Res. Inst. 1961, 15, 22–27. [Google Scholar]
- Tabata, S.; Hizukuri, S. Phosphorus in starch. J. Jpn. Soc. Starch Sci. 1975, 22, 27–39. [Google Scholar] [CrossRef]
- Noda, T.; Takigawa, S.; Matsuura-Endo, C.; Iahiguro, K.; Nagasawa, K.; Jinno, M. Preparation of calcium-and magnesium-fortified potato starches with altered pasting properties. Molecules 2014, 19, 14556–14566. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.T.; Tran, T.T.; Tran, T.H. Effectiveness of germinated brown rice on metabolic syndrome: A randomized control trial in Vietnam. AIMS Public Health 2020, 7, 33–43. [Google Scholar]
- Sasagawa, A.; Naiki, Y.; Nagashima, S.; Yamakura, M.; Yamazaki, A.; Yamada, A. Process for producing brown rice with increased accumulation of GABA using high pressure treatment and properties of GABA-increased brown rice. J. Appl. Glycosci. 2006, 53, 27–33. [Google Scholar] [CrossRef]
- Hu, J.F.; Zhao, X.H.; Jia, J.B.; Parpia, B.; Campbell, T.C. Dietary calcium and bone density among middle-aged and elderly women in China. Am. J. Clin. Nutr. 1993, 58, 219–227. [Google Scholar] [CrossRef]
- Nakamura, S.; Ohtsubo, K. Effects of hard water boiling on chalky rice in term of texture improvement and Ca fortification. Foods 2023, 12, 2510. [Google Scholar] [CrossRef]
- Godber, J.S.; Juliano, B.O. Rice lipids. In Rice, 3rd ed.; Champagne, E.T., Ed.; AACC International: St. Paul, MN, USA, 2004; pp. 163–190. [Google Scholar]
- Yamashita, M.; Adachi, H.; Nakamura, T.; Taniguchi, H.; Onogi, S.; Hisamatsu, M. Characteristics of amylose forming complexes with glycerol monooleate and monostearate. J. Appl. Glycosci. 2003, 50, 37–39. [Google Scholar] [CrossRef]
- Morrison, W.R.; Nasir, A.M. Variation in the amylose and lipid contents and some physical properties of rice starches. J. Cereal Sci. 1987, 5, 35–44. [Google Scholar] [CrossRef]
- Taira, H.; Nakagahra, M.; Nagamine, T. Fatty acid composition of Indica, Sinica, Javanica, and Japonica groups of non-glutinous brown rice. J. Agric. Food Chem. 1988, 36, 45–47. [Google Scholar] [CrossRef]
- Nga, M.T.P.; Linh, N.T.T.; Nguet, T.T.A.; Nguyet, T.T.A.; Ngoe, T.H.N.; Anh, C.T.Q.; Huong, T.T.M. Natural variation in fatty acid composition of diverse Vietnamese rice germplasm. Vietnam J. Biotechnol. 2023, 21, 141–153. [Google Scholar] [CrossRef]
- Taira, H.; Taira, H.; Fujii, K. Influence of cropping season on lipid content and fatty acid composition of rice bran and milled rice. Jpn. J. Crop Sci. 1980, 49, 559–568. [Google Scholar] [CrossRef]
- Goffman, F.D.; Pinson, S.; Bergman, C. Genetic diversity for lipid content and fatty acid profile in rice bran. J. Am. Oil Chem. 2003, 80, 485–490. [Google Scholar] [CrossRef]
- Kitta, K.; Ebihara, M.; Iijuka, T.; Yoshikawa, R.; Isshiki, K.; Kawamoto, S. Variations in lipid content and fatty acid composition of major no-glutinous rice cultivars in Japan. J. Food Comp. Anal. 2005, 18, 269–278. [Google Scholar] [CrossRef]
- Park, J.K.; Kim, S.S.; Kim, K.O. Effect of milling on sensory properties of cooked rice and on physicochemical properties of milled, and cooked rice. Cereal Chem. 2001, 78, 151–156. [Google Scholar] [CrossRef]
- Guan, L.; Zhang, M. Formation and release of cooked rice aroma. J. Cereal Sci. 2022, 107, 103523. [Google Scholar] [CrossRef]
- Chale-Rush, A.; Burgess, J.R.; Mattes, R.D. Evidence for human orosensory (taste?) sensitivity to free fatty acid. Chem. Senses 2007, 32, 423–431. [Google Scholar]
- Kawai, T.; Fushiki, T. Importance of lipolysis in oral cavity for orosensory detection of fat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R447–R454. [Google Scholar] [CrossRef]
- Cartoni, C.; Yasumatsu, K.; Ohkuri, T.; Shigemura, N.; Yoshida, R.; Godinot, N.; Coutre, J.L.; Ninomiya, Y.; Damak, S. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 2010, 30, 8376–8382. [Google Scholar] [CrossRef]
- Shoji, I.; Kurasawa, F. Palatability evaluation and physico-chemical properties of rice produced in Fukushima prefecture by Mido Meter. J. Jpn. Soc. Home Econ. 1992, 43, 219–227. [Google Scholar]
- Mizuta, A.; Sano, K.; Oikawa, T.; Takahashi, H. Estimation of boiled rice taste by “Mido Meter”. Tohoku J. Crop Sci. 1996, 39, 63–64. [Google Scholar]
- Agriculture, Forestry and Fisheries Research Council Secretariat; Ohtsubo, K. Advancement of Comprehensive Taste Evaluation Technology; In Report of Research Project No. 384; Research Council for Agriculture, Forestry, and Fisheries: Tokyo, Japan, 2002.
- Yuki, K.; Sato, H.; Chuba, M.; Sakurada, H.; Sano, T.; Honma, T.; Watanabe, K.; Mitobe, M.; Miyano, H.; Chuba, R.; et al. Breeding of a new rice cultivar “Tsuyahime” (Yamagata97). Bull. Yamagata Pref. Agric. Res. 2010, 2, 19–40. [Google Scholar]
- Kasaneyama, S. Development of rice varieties in Niigata prefecture and breeding of late maturing new rice cultivar “Shinnosuke”. Hokuriku Crop Sci. 2018, 53, 62–64. [Google Scholar]
- Ohtsubo, K.; Nakamura, S. Palatability of rice. In Forefront of the Science of Palatability and Their Business; Toko, K., Kashiwayanagi, M., Eds.; CMC Publishing Co. Ltd.: Tokyo, Japan, 2017; pp. 228–235. [Google Scholar]
- Rice Taste Appraiser Association. Rice Taste Analysis and Appraisal Competition: International Competition 2024. Available online: https://www.syokumikanteisi.gr.jp/kon-26/result26.html (accessed on 25 May 2025).
- Yoon, M.R.; Lee, S.C.; Kang, M.Y. The lipid composition of rice cultivars with different eating qualities. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 291–295. [Google Scholar] [CrossRef]
- Ribas, F.B.T.; Gasparetto, H.; Salau, N.P.G. Rice bran oil valorization: A comprehensive review of minor compounds, extraction, advancements, and prospects. ACS Food Sci. Technol. 2025, 5, 877–897. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Chan, L.C. Rice bran: From waste to nutritious food ingredients. Nutrients 2023, 15, 2503. [Google Scholar] [CrossRef]
- Sato, H.; Jinnouchi, N.; Ogata, T.; Uchikawa, O.; Tanaka, K. Varietal differences and indicator characters of the palatability of rice under high air temperature conditions during the ripening period. Bull. Fukuoka Agric. Res. Cent. 2005, 24, 39–42. [Google Scholar]
- Wakamatsu, K.; Sasaki, O.; Uezono, I.; Tanak, A. Effect of the amount of nitrogen application on occurrence of white- back kernels during ripening high-temperature conditions. Jpn. J. Crop Sci. 2008, 77, 424–433. [Google Scholar] [CrossRef]
- Nakamura, S.; Hasegawa, M.; Kobayashi, Y.; Komata, C.; Katsura, J.; Maruyama, Y.; Ohtsubo, K. Palatability and bio-functionality of chalky grains generated by high-temperature ripening and development of formulae for estimating the degree of damage using a rapid visco analyzer of Japonica unpolished rice. Foods 2022, 11, 3422. [Google Scholar] [CrossRef]
- AMeDAS (Automated Meteorological Data Acquisition System, Japan). Available online: https://www.jma.go.jp/bosai/amedas/#area_type=japan&area_code=010000 (accessed on 2 September 2025).
- Yamamoto, K.; Sawada, S.; Onogaki, I. Effects of quality and quantity of alkali solution on the properties of rice starch. Denpun Kagaku 1981, 28, 241–244. (In Japanese) [Google Scholar]
- Juliano, B.O. A simplified assay for milled-rice amylose. Cereal Sci. Today 1971, 12, 334–360. [Google Scholar]
- Nakamura, S.; Satoh, H.; Ohtsubo, K. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch. Biosci. Biotechnol. Biochem. 2015, 79, 443–455. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists. Crude protein in cereal grains and oil seeds. In AOAC Official Methods of Analysis, 18th ed.; Int. 992.23-1992; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Pulliainen, T.K.; Wallin, H.C. Determination of total phosphorus in foods by colorimetric measurement of phosphorus as molybdenum blue after dry-ashing: NMKI. Interlaboratory study. J. AOAC Int. 1994, 77, 1557–1561. [Google Scholar] [CrossRef]
- Okadome, H.; Toyoshima, H.; Ohtsubo, K. Multiple measurements of physical properties of individual cooked rice grains with a single apparatus. Cereal Chem. 1999, 76, 855–860. [Google Scholar] [CrossRef]
- Roy, P.; Orikasa, T.; Okadome, H.; Nakamura, N.; Shiina, T. Processing conditions, rice properties, health and environment. Int. J. Environ. Res. Public Health 2011, 8, 1957–1976. [Google Scholar] [CrossRef]
- Miura, E.; Takahashi, H.; Watanabe, A.; Ueda, K.; Kawamoto, T.; Sakurai, K.; Akagi, H. Pleiotropic effects of the rice qLTG3-1 allele: Enhancing low-temperature germinability while reducing brown rice appearance quality. Euphytica 2024, 220, 134. [Google Scholar] [CrossRef]
- Toyoshima, H.; Okadome, H.; Ohtsubo, K.; Suto, M.; Horisue, N.; Inatsu, O.; Narizuka, A.; Aizaki, M.; Inouchi, N.; Fuwa, H. Cooperative test on the small-scale rapid method for the gelatinization properties test of rice flours with a rapid visco analyser. Nippon. Shokuhin Kogakukaishi 1997, 44, 579–584. (In Japanese) [Google Scholar] [CrossRef]
- Nakamura, S.; Katsura, J.; Kato, K.; Ohtsubo, K. Development of formulae for estimating amylose content and resistant starch content based on the pasting properties measured by RVA of Japonica polished rice and starch. Biosci. Biotechnol. Biochem. 2016, 80, 329–340. [Google Scholar] [CrossRef] [PubMed]
- American Oil Chemists’ Society. AOCS Official Method Ce2-66; American Oil Chemists’ Society: Urbana, IL, USA, 1997. [Google Scholar]
- Inouchi, N.; Ando, H.; Asaoka, M.; Okuno, K.; Fuwa, H. The effect of environmental temperature on distribution of unit chains of rice amylopectin. Starch/Strake 2000, 52, 8–12. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Jiang, Y.; Zhang, H.; Wang, S.; Wang, F.; Zhu, Y. Genetic control and high temperature effects on starch biosynthesis and grain quality in rice. Front. Plant Sci. 2021, 12, 757997. [Google Scholar] [CrossRef]
- Umemoto, T.; Terashima, K.; Nakamura, Y.; Satoh, H. Differences in amylopectin structure between two rice varieties in relation to the effects of temperature during grain-filling. Starch-Stärke 1999, 51, 58–62. [Google Scholar] [CrossRef]
- Nishi, A.; Nakamura, Y.; Tanaka, N.; Satoh, H. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 2001, 127, 459–472. [Google Scholar] [CrossRef]
- Cuili, W.; Wen, G.; Peisong, H.; Xiangjin, W.; Shaoqing, T.; Guiai, J. Differences of physicochemical properties between chalky and translucent parts of rice grains. Rice Sci. 2022, 29, 577–588. [Google Scholar] [CrossRef]
- Xu, Y.; Guan, X.; Han, Z.; Zhou, L.; Zhang, Y.; Asad, M.A.U.; Wang, Z.; Jin, R.; Pan, G.; Cheng, F. Combined effect of nitrogen fertilizer application and high temperature on grain quality properties of cooked rice. Front. Plant Sci. 2022, 13, 874033. [Google Scholar] [CrossRef]
- Tail Lim, S.; Kasemsuwan, T.; Lin Jane, J. Characterization of phosphorus in starch by 31P-Nuclear Magnetic Resonance Spectroscopy. Cereal Chem. 1994, 71, 488–493. [Google Scholar]
- Nakamura, S.; Katsura, J.; Suda, A.; Maruyama, Y.; Ohtsubo, K. Effects of binding between Ca in hard water and phosphorus in amylopectin on the qualities of boiled rice and rice noodle prepared by soaking and boiling in hard water. Foods 2024, 13, 2094. [Google Scholar] [CrossRef]
- Fujisawa, M.; Takahashi, M. Variation of eating quality with temperature fluctuation during ripening period. Tohoku Agric. Res. 1995, 48, 25–26. [Google Scholar]
- Itayagoshi, S.; Ishibashi, T.; Matsui, T.; Hashimoto, N.; Kasaneyama, H.; Fukushima, R. Relationship among sensory evaluation of eating quality, the gelatinization temperature, and the physical properties of highly palatable rice. Hokuriku Crop Sci. 2021, 56, 77–81. [Google Scholar]
- Hakata, M.; Kuroda, M.; Miyashita, T.; Yamaguchi, T.; Kojima, M.; Sakakibara, H.; Mitsui, T.; Yamakawa, H. Suppression of α- amylase genes improve quality of rice grain ripened under high temperature. Plant Biotechnol. J. 2012, 10, 1110–1117. [Google Scholar] [CrossRef]
- Nakata, M.; Fukamatsu, Y.; Miyashita, T.; Hakata, M.; Kimura, R.; Nakata, Y.; Kuroda, M.; Yamaguchi, T.; Yamakawa, H. High temperature-induced expression of rice α- amylase in developing endosperm produces chalky grains. Front. Plant Sci. 2017, 8, 2089. [Google Scholar] [CrossRef]
- Blakeney, A.B.; Welsh, L.A.; Bannon, D.R. Rice quality analysis using a computer controlled RVA. In Cereals International; Martin, D.J., Wrigley, C.W., Eds.; Aust. Chem. Inst.: Melbourne, Australia, 1991; pp. 180–182. [Google Scholar]
- Champagne, E.T.; Bett, K.L.; Vinyard, B.T.; McClung, A.M.; Barton, F.E.; Moldenhauer, K.; Linscombe, S.; Mckenzie, K. Correlation between cooked rice texture and rapid visco analyzer measurements. Cereal Chem. 1999, 76, 764–771. [Google Scholar] [CrossRef]
- Kobayashi, A.; Machida, Y.; Watanabe, S.; Morozumi, Y.; Nakaoka, F.; Hayashi, T.; Tomita, K. Effects of temperature during ripening on amylopectin chain-length distribution of ‘Koshihikari’ and ‘Ichihomare’. Plant Prod. Sci. 2022, 25, 250–259. [Google Scholar] [CrossRef]
- Cameron, D.K.; Wang, Y.J. A better understanding of factors that affet the hardness and stickiness of long-grain rice. Cereal Chem. 2005, 82, 113–119. [Google Scholar] [CrossRef]
- Tong, C.; Bao, J. Rice lipids and rice bran oil. In Rice-Chemistry and Technology, 4th ed.; Bao, J., Ed.; American Association Cereal Chemists Int.: St. Paul, MN, USA, 2019; pp. 131–168. [Google Scholar]
- Yoon, M.R.; Koh, H.J.; Kang, M.Y. Pasting and amylose content characteristics of seven rice cultivars. J. Korean Soc. Appl. Biochem. 2009, 52, 63–69. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, X.; Chen, D.; Chen, K.; Ye, C.; Liu, J.; Liu, S.; Chen, Y.; Chen, G.; Liu, C. Effect of Fat Content on Rice Taste Quality through Transcriptome Analysis. Genes 2024, 15, 81. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, Y.; Dong, Y.; Xie, T.; Sun, W.; Yu, S. Natural variation of fatty acid desaturase gene affects linolenic acid content and starch pasting viscosity in rice grains. Int. J. Mol. Sci. 2022, 23, 12055. [Google Scholar] [CrossRef]
- Kawashima, H. Effects of arachidonic acid-supplementation brain functions. Jpn. Oil Chem. Soc. 2009, 9, 433–441. [Google Scholar]
- Ball, K.P.; Cranford, M.A.; Hassam, A.G.; Rivers, J.P. Essential fatty acids and the vulnerability of the artery during growth. Postgrad. Med. J. 1978, 54, 149–155. [Google Scholar] [CrossRef]
- McCloy, U.; Ryan, M.A.; Pencharz, P.B.; Ross, R.J.; Cunnane, S.C. A comparison of the metabolism of eighteen-carbon 13C-unsaturated fatty acids in healthy women. J. Lipid Res. 2004, 45, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.M.; Godoy, G.; Curi, R.; Visentainer, J.V.; Bazotte, R.B. The myristic acid: Docosahexaenoic acid ratio versus the n-6 polyunsaturated fatty acid:n-3 polyunsaturated fatty acid ratio as nonalcoholic fatty liver disease biomarkers. Metab. Syndr. Relat. Disord. 2022, 20, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; El-Sayed, R.; Khater, S.I.; Said, E.N. Changing dietary n-6:n-3 ratio using different oil sources affects performance, behavior, cytokines mRNA expression and meat fatty acid profile of broiler chickens. Anim. Nutr. 2018, 4, 44–51. [Google Scholar] [CrossRef] [PubMed]
AAC | λmax | Aλmax | Fb3(37 > DP) | λmax/Aλmax | |
---|---|---|---|---|---|
(%) | (nm) | (%) | |||
Gohyakukawa | 16.4 ± 0.7 b | 564.5 ± 3.5 b | 0.289 ± 0.003 a | 12.1 ± 0.1 b | 1953.3 ± 6.9 c |
Kazesayaka | 16.3 ± 0.6 b | 564.0 ± 2.8 b | 0.288 ± 0.002 a | 12.1 ± 0.1 b | 1961.8 ± 4.6 c |
Sasanishiki | 16.7 ± 0.6 b | 566.0 ± 2.8 b | 0.294 ± 0.002 a | 12.3 ± 0.1 b | 1928.5 ± 4.3 d |
Ginganoshizuku | 17.7 ± 0.2 a | 570.5 ± 0.7 a | 0.295 ± 0.001 a | 12.4 ± 0.0 b | 1937.2 ± 2.3 d |
Hatsushimo | 15.9 ± 0.3 b | 562.0 ± 1.4 b | 0.220 ± 0.000 d | 12.2 ± 0.0 b | 1937.9 ± 4.9 d |
Koshiibuki | 15.4 ± 0.2 c | 559.5 ± 0.7 c | 0.289 ± 0.002 a | 12.1 ± 0.1 b | 1939.4 ± 11.8 d |
Haenuki | 16.4 ± 0.4 b | 564.5 ± 2.1 b | 0.287 ± 0.002 a | 12.0 ± 0.1 b | 1970.4 ± 7.2 c |
Tsugaruroman | 18.1 ± 0.4 a | 572.5 ± 2.1 a | 0.300 ± 0.001 a | 12.6 ± 0.1 a | 1908.4 ± 16.1 e |
Aichinokaori | 17.2 ± 0.6 b | 568.0 ± 2.8 b | 0.303 ± 0.001 a | 12.7 ± 0.0 a | 1877.7 ± 13.7 f |
Yuudai21 | 15.8 ± 0.4 b | 561.5 ± 2.1 b | 0.271 ± 0.001 b | 11.3 ± 0.0 b | 2075.8 ± 2.4 b |
Akitakomachi (Ibaraki) | 14.1 ± 0.0 c | 553.0 ± 0.0 c | 0.301 ± 0.002 a | 12.7 ± 0.1 a | 1840.3 ± 13.0 f |
Akitakomachi (Chiba) | 14.1 ± 0.1 c | 553.5 ± 0.7 c | 0.281 ± 0.001 b | 11.8 ± 0.1 b | 1969.8 ± 12.4 c |
Akitakomachi (Akita) A | 16.6 ± 0.1 b | 565.5 ± 0.7 b | 0.287 ± 0.004 a | 12.1 ± 0.2 a | 1970.6 ± 31.6 c |
Akitakomachi (Akita) B | 17.6 ± 0.2 a | 569.5 ± 0.7 a | 0.264 ± 0.000 c | 11.0 ± 0.0 b | 2157.2 ± 2.7 b |
Tsuyahime (Yamagata) A | 16.2 ± 0.2 b | 563.5 ± 0.7 b | 0.281 ± 0.001 b | 11.8 ± 0.0 b | 2008.9 ± 7.6 b |
Tsuyahime (Yamagata) B | 17.4 ± 0.3 b | 569.0 ± 1.4 a | 0.297 ± 0.001 a | 12.5 ± 0.1 a | 1915.9 ± 13.9 e |
Tsuyahime (Shimane) | 14.2 ± 0.6 c | 554.0 ± 2.8 c | 0.279 ± 0.002 b | 11.7 ± 0.1 b | 1989.3 ± 25.3 b |
Tsuyahime (Miyagii) | 15.7 ± 0.3 b | 561.0 ± 1.4 b | 0.290 ± 0.000 a | 12.2 ± 0.0 a | 1934.5 ± 4.9 d |
Koshihikari (Saga) | 15.0 ± 2.1 c | 558.0 ± 9.9 c | 0.277 ± 0.001 b | 11.6 ± 0.1 b | 2014.4 ± 25.5 b |
Koshihikari (Ibaraki) A | 14.5 ± 1.0 c | 555.5 ± 4.9 c | 0.282 ± 0.002 b | 11.8 ± 0.1 b | 1973.5 ± 32.5 c |
Koshihikari (Ibaraki) B | 15.9 ± 0.0 b | 562.0 ± 0.0 b | 0.293 ± 0.008 a | 12.3 ± 0.3 b | 1922.0 ± 51.1 d |
Koshihikari (Shimane) | 16.1 ± 0.0 b | 563.0 ± 0.0 b | 0.278 ± 0.000 b | 11.7 ± 0.0 b | 2025.2 ± 0.0 b |
Koshihikari (Niigata) A | 18.1 ± 0.2 a | 572.5 ± 0.7 a | 0.293 ± 0.001 a | 12.3 ± 0.1 b | 1953.9 ± 7.0 c |
Koshihikari (Niigata) B | 17.7 ± 1.3 a | 570.5 ± 6.4 a | 0.290 ± 0.004 a | 12.2 ± 0.2 b | 1970.9 ± 46.1 c |
Koshihikari (Yamagata) A | 18.2 ± 0.3 a | 573.0 ± 1.4 a | 0.290 ± 0.003 a | 12.2 ± 0.1 b | 1975.9 ± 14.4 c |
Koshihikari (Yamagata) B | 16.5 ± 0.3 b | 565.0 ± 1.4 b | 0.287 ± 0.000 a | 12.1 ± 0.0 b | 1968.6 ± 4.9 c |
Koshihikari (Ishikawa) | 16.7 ± 0.6 b | 566.0 ± 2.8 b | 0.287 ± 0.001 a | 12.1 ± 0.1 b | 1972.1 ± 0.1 c |
Koshihikari (Yamanashi) | 16.5 ± 1.5 b | 565.0 ± 7.1 b | 0.289 ± 0.003 a | 12.1 ± 0.1 b | 1955.2 ± 43.6 c |
Milkyqueen (Kyoto) | 9.6 ± 0.6 d | 530.0 ± 2.8 d | 0.236 ± 0.001 d | 9.8 ± 0.1 c | 2245.8 ± 1.5 a |
Milkyqueen (Yamagata) | 5.5 ± 1.6 e | 507.0 ± 7.1 e | 0.213 ± 0.001 d | 8.7 ± 0.0 d | 2386.0 ± 41.2 a |
Yumepirika (Hokkaidou) A | 14.9 ± 0.5 c | 554.0 ± 2.8 c | 0.235 ± 0.002 d | 9.7 ± 0.1 c | 2362.5 ± 9.3 a |
Yumepirika (Hokkaidou) B | 14.9 ± 0.3 c | 556.0 ± 1.4 c | 0.251 ± 0.001 c | 10.4 ± 0.1 c | 2215.2 ± 18.1 a |
Protein | Phosphorus | |
---|---|---|
Contents | ||
(%) | (mg/100 g) | |
Gohyakukawa | 5.8 ± 0.0 c | 290.0 ± 0.5 c |
Kazesayaka | 5.7 ± 0.0 c | 286.0 ± 0.6 d |
Sasanishiki | 4.6 ± 0.0 d | 280.0 ± 0.5 d |
Ginganoshizuku | 6.3 ± 0.0 b | 283.0 ± 1.1 d |
Hatsushimo | 6.6 ± 0.1 b | 270.0 ± 0.8 e |
Koshiibuki | 5.9 ± 0.0 c | 300.0 ± 0.6 c |
Haenuki | 6.1 ± 0.0 c | 278.0 ± 0.5 d |
Tsugaruroman | 6.4 ± 0.0 b | 284.0 ± 0.8 d |
Aichinokaori | 7.3 ± 0.1 a | 300.0 ± 1.1 c |
Yuudai21 | 6.1 ± 0.0 c | 279.0 ± 0.6 d |
Akitakomachi (Ibaraki) | 7.1 ± 0.0 a | 306.0 ± 1.2 c |
Akitakomachi (Chiba) | 6.4 ± 0.0 b | 330.0 ± 2.0 b |
Akitakomachi (Akita) A | 6.2 ± 0.0 b | 276.0 ± 1.1 d |
Akitakomachi (Akita) B | 6.4 ± 0.0 b | 283.0 ± 0.8 d |
Tsuyahime (Yamagata) A | 6.1 ± 0.1 c | 275.0 ± 1.2 d |
Tsuyahime (Yamagata) B | 6.1 ± 0.0 c | 258.0 ± 1.1 f |
Tsuyahime (Shimane) | 6.2 ± 0.1 c | 298.0 ± 1.0 c |
Tsuyahime (Miyagii) | 5.3 ± 0.1 d | 304.0 ± 0.8 c |
Koshihikari (Saga) | 6.3 ± 0.0 b | 352.0 ± 1.1 a |
Koshihikari (Ibaraki) A | 5.5 ± 0.1 c | 279.0 ± 1.8 d |
Koshihikari (Ibaraki) B | 5.5 ± 0.0 c | 272.0 ± 2.0 e |
Koshihikari (Shimane) | 5.9 ± 0.0 c | 294.0 ± 1.6 c |
Koshihikari (Niigata) A | 6.4 ± 0.0 b | 292.0 ± 0.5 c |
Koshihikari (Niigata) B | 6.4 ± 0.0 b | 270.0 ± 1.1 e |
Koshihikari (Yamagata) A | 5.8 ± 0.0 c | 273.0 ± 1.2 e |
Koshihikari (Yamagata) B | 5.6 ± 0.0 c | 277.0 ± 0.5 d |
Koshihikari (Ishikawa) | 5.5 ± 0.1 c | 272.0 ± 0.8 e |
Koshihikari (Yamanashi) | 5.1 ± 0.1 d | 285.0 ± 1.6 d |
Milkyqueen (Kyoto) | 6.0 ± 0.0 c | 287.0 ± 1.6 d |
Milkyqueen (Yamagata) | 5.2 ± 0.0 d | 271.0 ± 0.5 e |
Yumepirika (Hokkaidou) A | 5.8 ± 0.0 c | 311.0 ± 1.1 c |
Yumepirika (Hokkaidou) B | 6.4 ± 0.0 b | 335.0 ± 0.8 b |
Surface layer | Overall | Surface layer | Overall | BalanceA1 | BalanceA2 | |
---|---|---|---|---|---|---|
Hardness (H1) | Hardness (H2) | Stickiness (S1) | Stickiness (S2) | |||
(N/cm2) | (N/cm2) | (N/cm2) | (N/cm2) | (A3/A1) | (A6/A4) | |
Gohyakukawa | 0.57 ± 0.22 c | 17.50 ± 2.27c | −0.085 ± 0.040 a | −3.01 ± 0.63 b | 0.32 ± 0.21 d | 0.09 ± 0.02 d |
Kazesayaka | 0.61 ± 0.23 c | 16.58 ± 2.27 c | −0.108 ± 0.061 b | −3.46 ± 0.77 c | 0.38 ± 0.19 c | 0.12 ± 0.04 c |
Sasanishiki | 0.65 ± 0.21 b | 16.28 ± 2.44 c | −0.078 ± 0.048 a | −2.87 ± 0.78 b | 0.19 ± 0.10 e | 0.09 ± 0.04 d |
Ginganoshizuku | 0.55 ± 0.21 c | 16.43 ± 2.07 c | −0.078 ± 0.051 a | −2.86 ± 0.89 b | 0.31 ± 0.27 d | 0.10 ± 0.05 d |
Hatsushimo | 0.57 ± 0.27 c | 19.02 ± 1.15 a | −0.125 ± 0.047 b | −3.39 ± 0.57 c | 0.44 ± 0.17 b | 0.11 ± 0.04 d |
Koshiibuki | 0.69 ± 0.17 b | 17.10 ± 2.06 c | −0.162 ± 0.074 d | −3.49 ± 0.55 c | 0.38 ± 0.15 c | 0.14 ± 0.04 b |
Haenuki | 0.47 ± 0.17 d | 13.63 ± 1.77 e | −0.101 ± 0.037 b | −1.79 ± 0.34 a | 0.48 ± 0.23 b | 0.15 ± 0.03 b |
Tsugaruroman | 0.50 ± 0.17 d | 13.66 ± 2.25 e | −0.105 ± 0.039 b | −1.91 ± 0.60 a | 0.38 ± 0.16 c | 0.13 ± 0.04 c |
Aichinokaori | 0.69 ± 0.19 b | 18.52 ± 1.94 a | −0.132 ± 0.056 c | −3.84 ± 0.57 c | 0.38 ± 0.19 c | 0.12 ± 0.04 c |
Yuudai21 | 0.46 ± 0.16 d | 15.37 ± 2.10 d | −0.112 ± 0.055 b | −3.54 ± 0.49 c | 0.61 ± 0.27 a | 0.17 ± 0.04 a |
Akitakomachi (Ibaraki) | 0.67 ± 0.14 b | 17.27 ± 1.16 c | −0.083 ± 0.045 a | −3.43 ± 0.54 c | 0.20 ± 0.10 e | 0.09 ± 0.04 d |
Akitakomachi (Chiba) | 0.79 ± 0.16 a | 17.21 ± 1.18 c | −0.169 ± 0.051 d | −3.85 ± 0.44 e | 0.33 ± 0.15 d | 0.14 ± 0.04 b |
Akitakomachi (Akita) A | 0.77 ± 0.17 a | 17.92 ± 1.49 b | −0.154 ± 0.051 c | −3.80 ± 0.43 e | 0.38 ± 0.10 c | 0.13 ± 0.04 c |
Akitakomachi (Akita) B | 0.82 ± 0.20 a | 18.70 ± 1.70 a | −0.154 ± 0.062 c | −3.47 ± 0.40 c | 0.29 ± 0.14 e | 0.12 ± 0.04 c |
Tsuyahime (Yamagata) A | 0.79 ± 0.22 a | 17.99 ± 1.53 b | −0.192 ± 0.067 e | −3.88 ± 0.32 e | 0.37 ± 0.12 c | 0.13 ± 0.03 c |
Tsuyahime (Yamagata) B | 0.89 ± 0.18 a | 19.38 ± 1.36 a | −0.194 ± 0.066 e | −3.82 ± 0.40 d | 0.33 ± 0.14 d | 0.13 ± 0.04 c |
Tsuyahime (Shimane) | 0.76 ± 0.14 a | 1749 ± 1.33 b | −0.188 ± 0.049 e | −3.68 ± 0.36 d | 0.40 ± 0.13 c | 0.15 ± 0.04 b |
Tsuyahime (Miyagii) | 0.84 ± 0.15 a | 18.18 ± 1.77 a | −0.191 ± 0.054 e | −3.78 ± 0.54 d | 0.38 ± 0.11 c | 0.15 ± 0.04 b |
Koshihikari (Saga) | 0.63 ± 0.15 c | 17.07 ± 1.41 c | −0.115 ± 0.046 b | −3.21 ± 0.56 c | 0.32 ± 0.15 d | 0.11 ± 0.03 d |
Koshihikari (Ibaraki) A | 0.49 ± 0.18 d | 15.93 ± 1.99 d | −0.103 ± 0.045 b | −3.23 ± 0.41 c | 0.43 ± 0.16 b | 0.14 ± 0.05 b |
Koshihikari (Ibaraki) B | 0.78 ± 0.20 a | 18.11 ± 1.34 a | −0.144 ± 0.043 c | −3.77 ± 0.45 d | 0.32 ± 0.12 d | 0.12 ± 0.03 c |
Koshihikari (Shimane) | 0.73 ± 0.21 b | 18.17 ± 1.44 a | −0.152 ± 0.039 c | −3.78 ± 0.33 d | 0.35 ± 0.14 d | 0.11 ± 0.04 d |
Koshihikari (Niigata) A | 0.72 ± 0.17 b | 17.67 ± 1.60 b | −0.138 ± 0.036 c | −3.86 ± 0.33 e | 0.34 ± 0.13 d | 0.12 ± 0.03 c |
Koshihikari (Niigata) B | 0.83 ± 0.21 a | 19.38 ± 1.52 a | −0.162 ± 0.048 d | −3.50 ± 0.50 c | 0.35 ± 0.12 d | 0.12 ± 0.03 c |
Koshihikari (Yamagata) A | 0.76 ± 0.17 a | 17.42 ± 1.21 c | −0.166 ± 0.049 d | −3.67 ± 0.32 d | 0.36 ± 0.13 d | 0.13 ± 0.04 c |
Koshihikari (Yamagata) B | 0.74 ± 0.19 b | 18.26 ± 1.30 a | −0.166 ± 0.047 d | −3.76 ± 0.40 d | 0.41 ± 0.14 c | 0.13 ± 0.03 c |
Koshihikari (Ishikawa) | 0.66 ± 0.15 b | 17.31 ± 1.32 c | −0.154 ± 0.037 c | −3.40 ± 0.43 c | 0.42 ± 0.18 c | 0.14 ± 0.04 b |
Koshihikari (Yamanashi) | 0.73 ± 0.16 b | 18.56 ± 1.37 a | −0.159 ± 0.045 d | −3.37 ± 0.39 c | 0.37 ± 0.14 d | 0.12 ± 0.03 c |
Milkyqueen (Kyoto) | 0.69 ± 0.16 b | 15.68 ± 1.91 d | −0.147 ± 0.064 c | −3.96 ± 0.44 e | 0.42 ± 0.20 c | 0.17 ± 0.05 a |
Milkyqueen (Yamagata) | 0.66 ± 0.15 b | 15.85 ± 2.07 d | −0.143 ± 0.059 c | −3.94± 0.39 e | 0.42 ± 0.17 c | 0.16 ± 0.05 a |
Yumepirika (Hokkaidou) A | 0.81 ± 0.17 a | 17.15 ± 1.80 c | −0.183 ± 0.085 e | −3.95 ± 0.35 e | 0.39 ± 0.19 c | 0.17 ± 0.05 a |
Yumepirika (Hokkaidou) B | 0.87 ± 0.14 a | 18.76 ± 1.37 a | −0.206 ± 0.054 f | −4.61± 0.34 f | 0.37 ± 0.09 d | 0.15 ± 0.05 b |
Max.vis | Mini.vis | BD | Fin.vis | Setb | Cons | Max/Fin | |
---|---|---|---|---|---|---|---|
(RVU) | (RVU) | (RVU) | (RVU) | (RVU) | (RVU) | ||
Gohyakukawa | 315.4 ± 1.2 c | 118.5 ± 0.9 d | 196.9 ± 0.2 e | 238.3 ± 1.4 d | −77.1 ± 0.2 c | 119.9 ± 0.4 b | 1.32 ± 0.01 d |
Kazesayaka | 294.9 ± 3.2 c | 112.2 ± 0.2 d | 182.7 ± 3.4 e | 223.4 ± 0.4 d | −71.5 ± 2.8 c | 111.2 ± 0.5 b | 1.32 ± 0.01 d |
Sasanishiki | 317.7 ± 2.5 c | 120.1 ± 1.4 d | 197.6 ± 1.2 e | 234.7 ± 1.7 d | −83.1 ± 0.8 d | 114.5 ± 0.4 b | 1.35 ± 0.00 d |
Ginganoshizuku | 282.6 ± 0.6 d | 122.7 ± 0.7 d | 160.0 ± 1.4 g | 239.9 ± 0.6 d | −42.7 ± 1.3 b | 117.2 ± 0.1 b | 1.18 ± 0.01 d |
Hatsushimo | 282.2 ± 4.1 d | 108.3 ± 1.6 e | 173.9 ± 2.5 f | 232.2 ± 2.9 d | −50.0 ± 1.2 b | 123.9 ± 1.4 b | 1.22 ± 0.00 d |
Koshiibuki | 315.4 ± 16.1 c | 110.7 ± 3.8 e | 204.7 ± 12.3 e | 206.8 ± 4.9 e | −108.6 ± 11.2 e | 96.1 ± 1.1 c | 1.53 ± 0.04 c |
Haenuki | 295.3 ± 2.8 c | 113.1 ± 0.2 d | 182.2 ± 3.1 e | 248.5 ± 2.3 c | −76.8 ± 0.5 c | 105.4 ± 2.5 b | 1.31 ± 0.00 d |
Tsugaruroman | 271.5 ± 6.7 d | 118.3 ± 1.9 d | 153.1 ± 4.8 g | 226.1 ± 3.2 d | −45.3 ± 3.4 b | 107.8 ± 1.4 b | 1.20 ± 0.01 d |
Aichinokaori | 303.0 ± 6.2 c | 126.6 ± 1.9 d | 176.4 ± 4.2 f | 205.8 ± 2.4 e | −97.2± 3.8 e | 79.2 ± 0.4 d | 1.47 ± 0.01 c |
Yuudai21 | 348.9 ± 5.5 b | 98.2 ± 0.7 e | 250.7 ± 4.8 b | 191.5 ± 1.1 e | −157.3 ± 4.4 g | 93.4 ± 0.4 c | 1.82 ± 0.02 b |
Akitakomachi (Ibaraki) | 322.7 ± 0.6 c | 129.3 ± 2.5 d | 193.4 ± 1.8 e | 251.9 ± 2.3 c | −70.8 ± 1.6 c | 122.5 ± 0.2 b | 1.28 ± 0.01 d |
Akitakomachi (Chiba) | 328.3 ± 0.3 c | 131.4 ± 0.8 c | 196.9 ± 0.5 e | 251.1 ± 0.6 c | −77.2 ± 0.4 d | 119.8 ± 0.1 b | 1.31 ± 0.00 d |
Akitakomachi (Akita) A | 301.3 ± 8.4 c | 126.4 ± 0.2 d | 174.8 ± 8.6 f | 264.0 ± 1.0 b | −37.2 ± 9.4 a | 137.6 ± 0.8 a | 1.14 ± 0.04 d |
Akitakomachi (Akita) B | 297.0 ± 1.2 c | 123.2 ± 0.5 d | 173.8 ± 0.8 f | 260.6 ± 0.2 b | −36.3 ± 1.1 a | 137.5 ± 0.3 a | 1.14 ± 0.00 d |
Tsuyahime (Yamagata) A | 354.7 ± 6.5 b | 143.9 ± 6.0 b | 210.8 ± 0.6 d | 269.9 ± 3.7 b | −84.8 ± 2.9 d | 126.0 ± 2.3 d | 1.31 ± 0.01 d |
Tsuyahime (Yamagata) B | 329.3 ± 2.5 c | 138.6 ± 1.2 b | 190.6 ± 3.7 e | 281.9 ± 0.1 a | −47.3 ± 2.4 b | 143.3 ± 1.4 a | 1.17 ± 0.01 d |
Tsuyahime (Shimane) | 401.5 ± 4.9 a | 151.4 ± 0.4 a | 250.1 ± 5.2 b | 287.4 ± 0.4 a | −114.1 ± 5.2 e | 136.0 ± 0.0 a | 1.40 ± 0.02 c |
Tsuyahime (Miyagii) | 342.4 ± 1.2 b | 149.3 ± 0.9 a | 193.0 ± 0.3 e | 277.1 ± 0.9 a | −65.3 ± 0.3 c | 127.8 ± 0.0 b | 1.24 ± 0.00 d |
Koshihikari (Saga) | 362.0 ± 1.4 b | 133.9 ± 1.9 c | 228.1± 0.5 c | 248.9 ± 2.7 c | −113.2 ± 1.3 e | 115.0 ± 0.8 b | 1.45 ± 0.01 d |
Koshihikari (Ibaraki) A | 351.5 ± 5.8 b | 120.7 ± 3.1 d | 230.8 ± 2.5 c | 227.7 ± 2.6 d | −123.8 ± 3.2 f | 107.0 ± 0.5 b | 1.54 ± 0.01 c |
Koshihikari (Ibaraki) B | 383.3 ± 5.8 a | 125.2 ± 1.2 d | 258.1 ± 4.6 b | 235.7 ± 1.1 d | −147.5 ± 4.7 g | 110.5 ± 0.1 b | 1.63 ± 0.02 b |
Koshihikari (Shimane) | 390.2 ± 1.8 a | 137.0 ± 1.3 c | 253.2 ± 0.5 b | 251.6 ± 1.2 c | −138.6 ± 0.6 g | 114.6 ± 0.1 b | 1.55 ± 0.00 c |
Koshihikari (Niigata) A | 376.8 ± 0.6 b | 136.0 ± 0.8 c | 240.8 ± 0.1 b | 253.5 ± 0.8 c | −123.3 ± 0.1 f | 117.5 ± 0.0 b | 1.49 ± 0.00 c |
Koshihikari (Niigata) B | 342.2 ± 5.6 b | 126.3 ± 1.1 d | 215.9 ± 4.5 d | 247.7 ± 0.9 c | −94.5 ± 4.7 e | 121.3 ± 0.1 b | 1.38 ± 0.02 d |
Koshihikari (Yamagata) A | 344.1 ± 6.2 b | 134.5 ± 1.7 c | 209.6 ± 4.5 d | 261.0 ± 0.8 b | −83.2 ± 5.4 d | 126.4 ± 0.9 b | 1.32 ± 0.02 d |
Koshihikari (Yamagata) B | 330.8 ± 0.8 c | 140.4 ± 0.7 b | 190.3 ± 0.1 e | 281.1 ± 1.2 a | −49.6 ± 0.4 b | 140.7 ± 0.5 a | 1.18 ± 0.00 d |
Koshihikari (Ishikawa) | 359.0 ± 0.1 b | 130.6 ± 1.7 c | 228.4 ± 1.8 c | 261.1 ± 1.0 b | −97.9 ± 1.1 e | 130.5 ± 0.7 a | 1.37 ± 0.01 d |
Koshihikari (Yamanashi) | 332.6 ± 2.1 c | 130.3 ± 1.3 c | 202.3 ± 0.8 e | 253.2 ± 1.4 c | −79.4 ± 0.7 d | 122.9 ± 0.1 b | 1.31 ± 0.00 d |
Milkyqueen (Kyoto) | 392.7 ± 1.1 a | 108.5 ± 1.1 e | 284.2 ± 2.2 a | 179.6 ± 0.9 e | −213.0 ±1.9 h | 71.2 ± 0.2 d | 2.19 ± 0.02 a |
Milkyqueen (Yamagata) | 335.6 ± 2.1 c | 106.0 ± 0.5 e | 229.6 ± 1.6 c | 189.4 ± 0.5 e | −146.2 ± 1.6 g | 83.4 ± 0.1 d | 1.77 ± 0.01 b |
Yumepirika (Hokkaidou) A | 330.5 ± 1.5 c | 137.0 ± 1.9 b | 193.4 ± 0.5 e | 257.5 ± 1.7 b | −72.9 ± 0.2 c | 120.5 ± 0.2 b | 1.28 ± 0.00 d |
Yumepirika (Hokkaidou) B | 328.0 ± 3.7 c | 134.8 ± 3.5 c | 193.2 ± 0.2 e | 255.0 ± 3.0 b | −73.1 ± 0.7 c | 120.1 ± 0.5 b | 1.29 ± 0.00 d |
Fatty Acid | ||||||||
---|---|---|---|---|---|---|---|---|
Myristic | Palmitic | Palmitoleic | Stearic | Oleic | Linoleic | α-Linoleic | Arachidic | |
(14:0) (%) | (16:0) (%) | (16:1) (%) | (18:0) (%) | (18:1) (%) | (18:2n−6) (%) | (18:3n−3) (%) | (20:0) (%) | |
Max.vis | 0.50 ** | −0.34 | 0.42 * | 0.63 ** | 0.20 | −0.24 | 0.22 | 0.49 ** |
Min.vis | −0.09 | 0.08 | 0.08 | 0.30 | 0.05 | −0.22 | 0.19 | 0.07 |
BD | 0.58 ** | −0.40 * | 0.42 * | 0.56 ** | 0.19 | −0.17 | 0.16 | 0.50 ** |
Fin.vis | −0.13 | 0.21 | 0.00 | 0.24 | 0.01 | −0.23 | 0.18 | −0.06 |
SB | −0.53 ** | 0.42 * | −0.30 | −0.39 * | −0.15 | 0.04 | −0.07 | −0.43 * |
Pt | 0.48 ** | −0.46 ** | 0.52 ** | 0.68 ** | 0.46 ** | −0.56 ** | 0.02 | 0.57 ** |
Cons | −0.20 | 0.25 | 0.06 | 0.16 | 0.00 | −0.21 | 0.12 | −0.10 |
Set/Cons | −0.45 ** | 0.39 * | −0.24 | −0.21 | −0.11 | −0.04 | 0.00 | −0.35 |
Max/Min | 0.49 ** | −0.36 * | 0.31 | 0.26 | 0.12 | 0.00 | 0.02 | 0.34 |
Max/Fin | 0.46 ** | −0.39 * | 0.27 | 0.23 | 0.12 | 0.02 | 0.02 | 0.36 * |
Max.vis | Min.vis | BD | Fin.vis | Setb | Cons | Max/Fin | |
---|---|---|---|---|---|---|---|
(RVU) | (RVU) | (RVU) | (RVU) | (RVU) | (RVU) | ||
Koshihikari (Saga) | 351.0 ± 4.5 b | 130.1 ± 2.1 c | 221.6± 2.5 c | 240.4 ± 3.5 c | −111.3 ± 1.1 e | 110.3 ± 1.4 b | 1.5 ± 0.0 b |
Koshihikari (Ibaraki) | 357.0 ± 8.5 a | 122.8 ± 2.5 c | 234.2 ± 6.0 c | 228.6 ± 3.4 c | −128.4 ± 5.1 f | 105.8 ± 0.9 c | 1.5 ± 0.0 b |
Koshihikari (Shimane) | 364.5 ± 4.8 a | 124.3 ± 1.2 c | 240.2 ± 3.6 b | 236.4 ± 0.9 c | −128.1 ± 3.9 f | 112.1 ± 0.3 b | 1.5 ± 0.0 b |
Koshihikari (Niigata) A | 342.1 ± 0.5 c | 122.0 ± 2.3 c | 250.1 ± 2.8 a | 231.1 ± 2.2 c | −111.0 ± 2.8 e | 109.0 ± 0.1 b | 1.5 ± 0.0 b |
Koshihikari (Niigata) B | 344.2 ± 2.9 c | 123.3 ± 1.4 c | 220.9 ± 1.6 c | 232.9 ± 1.7 c | −111.3 ± 1.2 e | 109.6 ± 0.4 b | 1.5 ± 0.0 b |
Koshihikari (Yamagata) A | 358.2 ± 0.8 a | 137.3 ± 0.6 b | 220.9 ± 1.4 c | 256.5 ± 2.2 b | −101.7 ± 2.9 d | 119.1 ± 1.6 a | 1.4 ± 0.0 c |
Koshihikari (Yamagata) B | 350.9 ± 0.2 b | 123.4 ± 1.1 c | 227.5 ± 0.9 c | 230.0 ± 1.6 c | −120.8 ± 1.4 f | 106.7 ± 0.5 c | 1.5 ± 0.0 b |
Milkyqueen (Kyoto) | 363.9 ± 0.3 a | 103.2 ± 0.5 e | 260.7 ± 0.2 a | 188.9 ± 0.2 d | −175.0 ± 0.1 h | 85.7 ± 0.2 d | 1.9 ± 0.0 a |
Milkyqueen (Yamagata) | 369.5 ± 0.6 a | 103.6 ± 0.6 e | 265.9 ± 1.2 a | 195.0 ± 0.2 d | −174.5 ± 0.5 h | 91.4 ± 0.8 d | 1.9 ± 0.0 a |
Tsuyahime (Yamagata) A | 352.9 ± 2.8 b | 142.7 ± 0.8 a | 210.2 ± 2.0 d | 264.8 ± 0.5 a | −88.1 ± 2.2 c | 122.1 ± 0.2 a | 1.3 ± 0.0 d |
Tsuyahime (Shimane) | 364.3 ± 1.9 a | 150.0 ± 1.6 a | 214.3 ± 0.4 d | 269.4 ± 1.2 a | −94.9 ± 0.8 d | 119.4 ± 0.4 a | 1.4 ± 0.0 c |
Yumepirika (Hokkaidou) A | 324.5 ± 0.1 d | 117.1 ± 1.5 d | 207.4 ± 1.4 d | 225.5 ± 2.5 c | −99.0 ± 2.4 d | 108.3 ± 1.1 b | 1.4 ± 0.0 c |
Gohyakukawa | 317.6 ± 3.1 e | 124.7 ± 1.4 c | 192.9 ± 1.8 e | 250.9 ± 1.5 b | −66.8 ± 1.6 b | 126.2 ± 0.1 a | 1.3 ± 0.0 d |
Kazesayaka | 309.0 ± 1.0 e | 118.1 ± 2.3 d | 190.9 ± 1.3 e | 235.2 ± 1.9 c | −73.8 ± 0.9 b | 117.1 ± 0.4 a | 1.3 ± 0.0 d |
Sasanishiki | 336.1 ± 2.8 c | 126.5 ± 3.6 c | 209.7 ± 0.8 d | 247.0 ± 4.5 b | −89.1 ± 1.7 c | 120.5 ± 0.9 a | 1.4 ± 0.0 c |
Ginganoshizuku | 336.2 ± 1.6 c | 129.1 ± 0.1 c | 207.1 ± 1.5 d | 252.5 ± 0.2 b | −83.7 ± 1.4 c | 123.4 ± 0.1 a | 1.3 ± 0.0 d |
Hatsushimo | 278.2 ± 0.6 f | 114.0 ± 0.2 d | 164.2 ± 0.8 | 244.4 ± 0.8 b | −33.8 ± 1.4 a | 130.5 ± 0.6 a | 1.1 ± 0.0 e |
Koshiibuki | 345.3 ± 1.4 b | 116.5± 0.1 d | 228.8 ± 1.4 c | 217.7 ± 1.2 d | −127.6 ± 2.5 f | 101.1 ± 1.1 c | 1.6 ± 0.0 b |
Haenuki | 340.6 ± 3.2 c | 119.1 ± 0.1 d | 221.5 ± 3.1 c | 230.0 ± 0.4 c | −110.6 ± 2.8 e | 111.0 ± 0.3 b | 1.5 ± 0.0 b |
Tugaruroman | 322.3 ± 2.5 d | 124.5 ± 3.2 c | 197.8 ± 0.7 e | 138.0 ± 4.2 e | −84.3 ± 1.6 c | 113.5 ± 0.9 b | 1.4 ± 0.0 c |
Yuudai21 | 358.3 ± 1.1 a | 103.3 ± 0.0 e | 254.9 ± 1.1 a | 201.6 ± 0.1 d | −156.6 ± 1.0 g | 98.3 ± 0.1 c | 1.8 ± 0.0 a |
Palmitic Acid (%) | Stearic Acid (%) | Oleic Acid (%) | Linoleic Acid (%) | α-Linolenic Acid (%) | Arachidic Acid (%) | |
---|---|---|---|---|---|---|
(16:0) | (18:0) | (18:1) | (18:2n−6) | (18:3n−3) | (20:0) | |
Gohyakukawa | 22.4 ± 0.7 a | 2.1 ± 0.0 a | 36.4 ± 0.6 c | 34.8 ± 0.4 a | 1.4 ± 0.0 a | 0.6 ± 0.0 b |
Kazesayaka | 22.9 ± 0.6 a | 2.1 ± 0.0 a | 35.9 ± 0.4 c | 34.9 ± 0.5 a | 1.3 ± 0.0 a | 0.6 ± 0.0 b |
Sasanishiki | 22.2 ± 0.6 a | 2.1 ± 0.0 a | 38.0 ± 0.5 b | 33.8 ± 0.4 b | 1.1 ± 0.0 b | 0.6 ± 0.0 b |
Ginganoshizuku | 23.4 ± 0.2 a | 1.8 ± 0.0 b | 34.9 ± 0.2 c | 36.0 ± 0.2 a | 1.2 ± 0.0 ab | 0.5 ± 0.0 c |
Hatsushimo | 22.3 ± 0.3 a | 2.1 ± 0.0 a | 36.3 ± 0.3 c | 35.4 ± 0.3 a | 1.0 ± 0.0 b | 0.5 ± 0.0 c |
Koshiibuki | 21.9 ± 0.2 b | 2.1 ± 0.0 a | 38.4 ± 0.2 b | 33.5 ± 0.2 b | 1.2 ± 0.0 ab | 0.6 ± 0.0 b |
Haenuki | 22.7 ± 0.4 a | 2.0 ± 0.0 a | 36.4 ± 0.3 c | 34.8 ± 0.2 a | 1.3 ± 0.0 a | 0.5 ± 0.0 c |
Tsugaruroman | 23.4 ± 0.4 a | 1.5 ± 0.0 c | 34.6 ± 0.2 c | 36.3 ± 0.1 a | 1.3 ± 0.0 a | 0.4 ± 0.0 d |
Aichinokaori | 21.6 ± 0.6 b | 1.7 ± 0.0 b | 37.8 ± 0.4 b | 35.0 ± 0.4 a | 1.1 ± 0.0 b | 0.5 ± 0.0 c |
Yuudai21 | 22.0 ± 0.4 a | 1.8 ± 0.0 b | 36.9 ± 0.2 b | 35.3 ± 0.2 a | 1.2 ± 0.0 ab | 0.5 ± 0.0 c |
Akitakomachi (Ibaraki) | 19.7 ± 0.0 b | 2.2 ± 0.0 a | 42.9 ± 0.0 a | 30.9 ± 0.0 c | 1.0 ± 0.0 b | 0.7 ± 0.0 a |
Akitakomachi (Chiba) | 19.5 ± 0.1 b | 2.3 ± 0.0 a | 43.2 ± 0.1 a | 30.5 ± 0.1 c | 1.0 ± 0.0 b | 0.7 ± 0.4 a |
Akitakomachi (Akita) A | 22.3 ± 0.1 a | 1.9 ± 0.0 a | 38.1 ± 0.1 b | 33.6 ± 0.1 b | 1.2 ± 0.0 ab | 0.5 ± 0.0 c |
Akitakomachi (Akita) B | 22.5 ± 0.2 a | 1.9 ± 0.0 a | 37.8 ± 0.2 b | 33.8 ± 0.2 b | 1.2 ± 0.0 ab | 0.5 ± 0.0 c |
Tsuyahime (Yamagata) A | 22.6 ± 0.2 a | 2.2 ± 0.0 a | 36.1 ± 0.2 c | 34.9 ± 0.2 a | 1.3 ± 0.0 a | 0.5 ± 0.0 c |
Tsuyahime (Yamagata) B | 23.0 ± 0.3 a | 2.0 ± 0.0 a | 36.7 ± 0.3 b | 34.2 ± 0.3 a | 1.3 ± 0.0 a | 0.5 ± 0.0 c |
Tsuyahime (Shimane) | 21.1 ± 0.6 b | 2.5 ± 0.0 a | 39.2 ± 0.6 a | 32.8 ± 0.6 b | 1.2 ± 0.0 ab | 0.7 ± 0.0 a |
Tsuyahime (Miyagi) | 22.6 ± 0.3 a | 2.1 ± 0.0 a | 37.4 ± 0.3 b | 33.7 ± 0.3 b | 1.4 ± 0.0 a | 0.5 ± 0.0 c |
Koshihikari (Saga) | 22.1 ± 2.1 a | 2.4 ± 0.0 a | 36.2 ± 1.1 c | 34.8 ± 1.1 a | 1.3 ± 0.0 a | 0.7 ± 0.4 a |
Koshihikari (Ibaraki) A | 21.2 ± 1.0 b | 2.1 ± 0.0 a | 38.9 ± 0.5 a | 33.5 ± 0.6 b | 1.2 ± 0.0 ab | 0.6 ± 0.0 b |
Koshihikari (Ibaraki) B | 21.2 ± 0.0 b | 2.2 ± 0.0 a | 38.9 ± 0.0 a | 33.3 ± 0.0 b | 1.3 ± 0.0 a | 0.6 ± 0.0 b |
Koshihikari (Shimane) | 21.8 ± 0.0 b | 2.4 ± 0.0 a | 36.7 ± 0.0 b | 34.6 ± 0.6 a | 1.3 ± 0.0 a | 0.6 ± 0.0 b |
Koshihikari (Niigata) A | 22.3 ± 0.2 a | 1.9 ± 0.0 a | 37.2 ± 0.2 b | 34.5 ± 0.2 a | 1.3 ± 0.0 a | 0.5 ± 0.0 c |
Koshihikari (Niigata) B | 22.9 ± 1.3 a | 1.9 ± 0.0 a | 35.5 ± 0.3 c | 35.3 ± 0.3 a | 1.5 ± 0.4 a | 0.5 ± 0.0 c |
Koshihikari (Yamagata) A | 23.7 ± 0.3 a | 2.0 ± 0.0 a | 34.9 ± 0.3 c | 35.3 ± 0.3 a | 1.3 ± 0.0 a | 0.5 ± 0.0 c |
Koshihikari (Yamagata) B | 23.3 ± 0.3 a | 2.0 ± 0.0 a | 35.9 ± 0.3 c | 34.7 ± 0.3 a | 1.4 ± 0.0 a | 0.5 ± 0.0 c |
Koshihikari (Ishikawa) | 22.5 ± 0.6 a | 2.3 ± 0.0 a | 37.1 ± 0.6 b | 33.5 ± 0.3 b | 1.3 ± 0.0 a | 0.6 ± 0.0 b |
Koshihikari (Yamanashi) | 22.7 ± 1.5 a | 2.1 ± 0.0 a | 37.0 ± 0.5 b | 33.9 ± 0.5 b | 1.4 ± 0.0 a | 0.6 ± 0.0 b |
Milkyqueen (Kyoto) | 20.6 ± 0.6 b | 2.3 ± 0.0 a | 37.9 ± 0.6 b | 34.5 ± 0.6 a | 1.2 ± 0.0 ab | 0.7 ± 0.0 a |
Milkyqueen (Yamagata) | 22.9 ± 1.6 a | 1.9 ± 0.0 a | 35.6 ± 1.6 c | 35.3 ± 1.6 a | 1.4 ± 0.0 a | 0.5 ± 0.0 c |
Yumepirika (Hokkaido) A | 24.0 ± 0.5 a | 1.9 ± 0.0 a | 34.6 ± 0.5 c | 35.6 ± 0.3 a | 1.2 ± 0.0 ab | 0.5 ± 0.0 c |
Yumepirika (Hokkaido) B | 23.8 ± 0.3 a | 1.8 ± 0.0 b | 34.1 ± 0.3 c | 36.1 ± 0.3 a | 1.3 ± 0.0 a | 0.5 ± 0.0 c |
Palmitic Acid (2022) | Palmitic Acid (2023) | Oleic Acid (2022) | Oleic Acid (2023) | Linoleic Acid (2022) | Linoleic Acid (2023) | α-Linoleic Acid (2022) | α-Linoleic Acid (2023) | |
---|---|---|---|---|---|---|---|---|
(16:0) | (16:0) | (18:1) | (18:1) | (18:2n−6) | (18:2n−6) | (18:3n−3) | (18:3n−3) | |
Koshihikari (Saga) | 22.1 ± 2.1 a | 22.8 ± 0.1 a | 36.2 ± 1.1 c | 35.7 ± 0.1 b | 34.8 ± 1.1 a | 34.4 ± 0.1 a | 1.3 ± 0.0 a | 1.3 ± 0.0 b |
Koshihikari (Ibaraki) | 21.2 ± 1.0 b | 21.2 ± 0.0 b | 38.9 ± 0.5 a | 39.3 ± 0.3 a | 33.5 ± 0.6 b | 32.4 ± 0.2 b | 1.2 ± 0.0 ab | 1.4 ± 0.0 ab |
Koshihikari (Shimane) | 21.8 ± 0.0 b | 23.0 ± 0.0 a | 36.7 ± 0.0 b | 35.4 ± 0.0 b | 34.6 ± 0.6 a | 34.4 ± 0.2 a | 1.3 ± 0.0 a | 1.3 ± 0.0 b |
Koshihikari (Niigata) A | 22.3 ± 0.2 a | 21.2 ± 0.2 b | 37.2 ± 0.2 b | 39.2 ± 0.2 a | 34.5 ± 0.2 a | 33.0 ± 0.2 a | 1.3 ± 0.0 a | 1.2 ± 0.0 c |
Koshihikari (Niigata) B | 22.9 ± 1.3 a | 20.6 ± 0.3 b | 35.5 ± 0.3 c | 40.4 ± 0.3 a | 35.3 ± 0.3 a | 32.3 ± 0.2 b | 1.5 ± 0.4 a | 1.2 ± 0.0 c |
Koshihikari (Yamagata) A | 23.7 ± 0.3 a | 21.6 ± 0.3 b | 34.9 ± 0.3 c | 38.8 ± 0.3 a | 35.3 ± 0.3 a | 33.2 ± 0.1 a | 1.3 ± 0.0 a | 1.1 ± 0.0 c |
Koshihikari (Yamagata) B | 23.3 ± 0.3 a | 22.2 ± 0.3 b | 35.9 ± 0.3 c | 37.7 ± 0.3 b | 34.7 ± 0.3 a | 33.5 ± 0.2 a | 1.4 ± 0.0 a | 1.1 ± 0.0 c |
Milkyqueen (Kyoto) | 20.6 ± 0.6 b | 21.2 ± 0.2 b | 37.9 ± 0.6 b | 37.8 ± 0.2 b | 34.5 ± 0.6 a | 33.9 ± 0.2 a | 1.2 ± 0.0 ab | 1.2 ± 0.0 c |
Milkyqueen (Yamagata) | 22.9 ± 1.6 a | 21.5 ± 0.6 b | 35.6 ± 1.6 c | 38.3 ± 0.6 a | 35.3 ± 1.6 a | 33.4 ± 0.2 a | 1.4 ± 0.0 a | 1.2 ± 0.0 c |
Tsuyahime (Yamagata) A | 22.6 ± 0.2 a | 21.5 ± 0.2 b | 36.1 ± 0.2 c | 38.4 ± 0.2 a | 34.9 ± 0.2 a | 33.6 ± 0.2 a | 1.3 ± 0.0 a | 1.1 ± 0.0 c |
Tsuyahime (Shimane) | 21.1 ± 0.6 b | 22.2 ± 0.4 b | 39.2 ± 0.6 a | 38.9 ± 0.4 a | 32.8 ± 0.6 b | 31.8 ± 0.2 b | 1.2 ± 0.0 ab | 1.1 ± 0.0 c |
Yumepirika (Hokkaidou) A | 24.0 ± 0.5 a | 23.7 ± 0.3 a | 34.6 ± 0.5 c | 36.3 ± 0.2 b | 35.6 ± 0.3 a | 33.8 ± 0.2 a | 1.2 ± 0.0 ab | 1.1 ± 0.0 c |
Gohyakukawa | 22.4 ± 0.7 a | 22.8 ±0.2 a | 36.4 ± 0.6 c | 35.5 ± 0.2 b | 34.8 ± 0.4 a | 34.6 ± 0.1 a | 1.4 ± 0.0 a | 1.5 ± 0.0 a |
Kazesayaka | 22.9 ± 0.6 a | 21.7 ± 0.3 b | 35.9 ± 0.4 c | 38.0 ± 0.3 a | 34.9 ± 0.5 a | 33.7 ± 0.2 a | 1.3 ± 0.0 a | 1.2 ± 0.0 c |
Sasanishiki | 22.2 ± 0.6 a | 21.9 ± 0.4 b | 38.0 ± 0.5 b | 39.3 ± 0.2 a | 33.8 ± 0.4 b | 32.2 ± 0.1 b | 1.1 ± 0.0 b | 1.0 ± 0.0 d |
Ginganoshizuku | 23.4 ± 0.2 a | 22.3 ± 0.2 a | 34.9 ± 0.2 c | 38.9 ± 0.2 a | 36.0 ± 0.2 a | 32.3 ± 0.2 b | 1.2 ± 0.0 ab | 1.0 ± 0.0 d |
Hatsushimo | 22.3 ± 0.3 a | 23.0 ± 0.3 a | 36.3 ± 0.3 c | 35.9 ± 0.3 b | 35.4 ± 0.3 a | 34.9 ± 0.3 a | 1.0 ± 0.0 b | 1.0 ± 0.0 d |
Koshiibuki | 21.9 ± 0.2 b | 21.8 ± 0.2 b | 38.4 ± 0.2 b | 36.7 ± 0.2 b | 33.5 ± 0.2 b | 34.8 ± 0.2 a | 1.2 ± 0.0 ab | 1.1 ± 0.0 c |
Haenuki | 22.7 ± 0.4 a | 21.0 ± 0.3 b | 36.4 ± 0.3 c | 39.0 ± 0.3 a | 34.8 ± 0.2 a | 32.8 ± 0.2 b | 1.3 ± 0.0 a | 1.1 ± 0.0 c |
Tugaruroman | 23.4 ± 0.4 a | 21.7 ± 0.2 b | 34.6 ± 0.2 c | 38.3 ± 0.2 a | 36.3 ± 0.1 a | 33.8 ± 0.1 a | 1.3 ± 0.0 a | 1.1 ± 0.0 c |
Yuudai21 | 22.0 ± 0.4 a | 21.8 ± 0.2 b | 36.9 ± 0.2 b | 39.2 ± 0.2 a | 35.3 ± 0.2 a | 32.9 ± 0.2 a | 1.2 ± 0.0 ab | 1.1 ± 0.0 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, S.; Ohtsubo, K. Change in Fatty Acid Composition in High-Temperature-Damaged Rice Grains and Its Effects on the Appearance and Physical Qualities of the Cooked Rice. Foods 2025, 14, 3097. https://doi.org/10.3390/foods14173097
Nakamura S, Ohtsubo K. Change in Fatty Acid Composition in High-Temperature-Damaged Rice Grains and Its Effects on the Appearance and Physical Qualities of the Cooked Rice. Foods. 2025; 14(17):3097. https://doi.org/10.3390/foods14173097
Chicago/Turabian StyleNakamura, Sumiko, and Ken’ichi Ohtsubo. 2025. "Change in Fatty Acid Composition in High-Temperature-Damaged Rice Grains and Its Effects on the Appearance and Physical Qualities of the Cooked Rice" Foods 14, no. 17: 3097. https://doi.org/10.3390/foods14173097
APA StyleNakamura, S., & Ohtsubo, K. (2025). Change in Fatty Acid Composition in High-Temperature-Damaged Rice Grains and Its Effects on the Appearance and Physical Qualities of the Cooked Rice. Foods, 14(17), 3097. https://doi.org/10.3390/foods14173097