Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (262)

Search Parameters:
Keywords = volume of drainage water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8662 KiB  
Article
Synergy of Fly Ash and Surfactant on Stabilizing CO2/N2 Foam for CCUS in Energy Applications
by Jabir Dubaish Raib, Fujian Zhou, Tianbo Liang, Anas A. Ahmed and Shuai Yuan
Energies 2025, 18(15), 4181; https://doi.org/10.3390/en18154181 - 6 Aug 2025
Abstract
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, [...] Read more.
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, volume, and bubble structure of foams formed using two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS), along with the cationic surfactant cetyltrimethylammonium bromide (CTAB), selected for their comparable interfacial tension properties. Analysis of foam stability and volume and bubble structure was conducted under different CO2/N2 mixtures, with half-life and initial foam volume serving as the evaluation criteria. The impact of fly ash and clay on SDS-N2 foam was also evaluated. The results showed that foams created with CTAB, SDBS, and SDS exhibit the greatest stability in pure nitrogen, attributed to low solubility in water and limited gas diffusion. SDS showed the highest foam strength attributable to its comparatively low surface tension. The addition of fly ash and clay significantly improved foam stability by migrating to the gas–liquid interface, creating a protective barrier that reduced drainage. Both nano fly ash and clay improved the half-life of nitrogen foam by 11.25 times and increased the foam volume, with optimal concentrations identified as 5.0 wt% for fly ash and 3.0 wt% for clay. This research emphasizes the importance of fly ash nanoparticles in stabilizing foams, therefore optimizing a foam system for enhanced oil recovery (EOR). Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection 2024)
Show Figures

Figure 1

13 pages, 3187 KiB  
Article
An Approach to Improve Land–Water Salt Flux Modeling in the San Francisco Estuary
by John S. Rath, Paul H. Hutton and Sujoy B. Roy
Water 2025, 17(15), 2278; https://doi.org/10.3390/w17152278 - 31 Jul 2025
Viewed by 261
Abstract
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study [...] Read more.
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study area, is affected by channel salinity. The DSM2 approach has been adopted by several hydrodynamic models of the estuary to enforce water volume balance between diversions, evapotranspiration and drainage at the land–water interface, but does not explicitly enforce salt balance. We found deviations from salt balance to be quite large, albeit variable in magnitude due to the heterogeneity of hydrodynamic and salinity conditions across the study area. We implemented a procedure that approximately enforces salt balance through iterative updates of the baseline drain salinity boundary conditions (termed loose coupling). We found a reasonable comparison with field measurements of drainage salinity. In particular, the adjusted boundary conditions appear to capture the range of observed interannual variability better than the baseline periodic estimates. The effect of the iterative adjustment procedure on channel salinity showed substantial spatial variability: locations dominated by large flows were minimally impacted, and in lower flow channels, deviations between baseline and adjusted channel salinity series were notable, particularly during the irrigation season. This approach, which has the potential to enhance the simulation of extreme salinity intrusion events (when high channel salinity significantly impacts drainage salinity), is essential for robustly modeling hydrodynamic conditions that pre-date contemporary water management infrastructure. We discuss limitations associated with this approach and recommend that—for this case study—further improvements could best be accomplished through code modification rather than coupling of transport and island water balance models. Full article
(This article belongs to the Special Issue Advances in Coastal Hydrological and Geological Processes)
Show Figures

Figure 1

25 pages, 27837 KiB  
Article
A Study on the Lateral Static Stability of a Helicopter Floating on Water with a Flexible Airbag
by Le Li, Jichang Chen, Yujie Ma, Mengxuan Bai, Lixia Chen and Mingbo Tong
Aerospace 2025, 12(8), 664; https://doi.org/10.3390/aerospace12080664 - 26 Jul 2025
Viewed by 204
Abstract
Research on helicopter stability is essential for the design of flotation systems and serves as a primary basis for evaluating wind and wave resistance. The drainage volume method and fluid–solid coupling method are commonly used for calculating floating characteristics. However, the drainage volume [...] Read more.
Research on helicopter stability is essential for the design of flotation systems and serves as a primary basis for evaluating wind and wave resistance. The drainage volume method and fluid–solid coupling method are commonly used for calculating floating characteristics. However, the drainage volume method ignores the flexibility of airbags and their interaction with the helicopter, while the fluid–solid coupling method is computationally intensive. In contrast, the analysis of a helicopter’s hydrostatic floating characteristics is a static problem. It suffices to obtain relevant results when the helicopter reaches a stationary state, without the need to accurately simulate the dynamic process of achieving that state. Therefore, this paper proposes an equivalent calculation method, in which the hydrostatic effect of water on the helicopter is represented by the hydrostatic pressure applied across the entire flotation system. The finite element method (FEM) is then employed to determine the final static state, and the results are compared with those from the drainage volume method and available experimental data to validate the reliability of the proposed approach. To elucidate the influence mechanism of airbags and flexible connecting straps on the lateral static stability of helicopters, this paper analyzes airbag positions at various heeling angles and examines the impact of different internal airbag pressures. The results indicate that the main factor affecting lateral static stability is the displacement of the airbags. This displacement causes variations in the airbag’s buoyancy and center of buoyancy, thereby reducing the lateral heeling moment. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 15362 KiB  
Article
The Influence of Different Concentrations of Methane in Ditches on the Propagation Characteristics of Explosions
by Xingxing Liang, Junjie Cheng, Yibo Zhang and Zhongqi Wang
Fire 2025, 8(7), 275; https://doi.org/10.3390/fire8070275 - 11 Jul 2025
Viewed by 481
Abstract
As the urban underground natural gas pipeline network expands, the explosion risk arising from methane accumulation in drainage ditches due to pipeline leakage has increased severely. A two-dimensional numerical model—9.7 m in length (including a 1-m obstacle section), 0.1 m in diameter, and [...] Read more.
As the urban underground natural gas pipeline network expands, the explosion risk arising from methane accumulation in drainage ditches due to pipeline leakage has increased severely. A two-dimensional numerical model—9.7 m in length (including a 1-m obstacle section), 0.1 m in diameter, and with a water volume fraction of 0.2—was developed to address the flexible boundary characteristics of urban underground ditches. The investigation examined the influence of methane concentration on explosion propagation characteristics. Results indicated that, at a methane concentration of 11%, the peak pressure attained 157.9 kPa, and the peak temperature exceeded 3100 K—all of which were significantly higher than the corresponding values at 10%, 13%, and 16% concentrations. Explosion-induced water motion exerted a cooling effect that inhibited heat and pressure transfer, while obstacles imposed partial restrictions on flame propagation. Temporal profiles of temperature and pressure exhibited three distinct stages: “initial stability–rapid rise–attenuation”. Notably, at a methane concentration of 16%, the water column formed by fluid vibration demonstrated a pronounced cooling effect, causing faster decreases in measured temperatures and pressures compared to other concentrations. Full article
Show Figures

Figure 1

18 pages, 2276 KiB  
Article
Surface Water Runoff Estimation of a Continuously Flooded Rice Field Using a Daily Water Balance Approach—An Irrigation Assessment
by Diego Rivero, Guillermina Cantou, Raquel Hayashi, Jimena Alonso, Matías Oxley, Agustín Menta, Pablo González-Barrios and Álvaro Roel
Water 2025, 17(14), 2069; https://doi.org/10.3390/w17142069 - 10 Jul 2025
Viewed by 480
Abstract
The high water demand of rice cultivation is mainly due to flood irrigation, which requires large volumes not only to meet evapotranspiration needs, but also due to losses from percolation, lateral seepage, and surface runoff. In addition to lowering water use efficiency, surface [...] Read more.
The high water demand of rice cultivation is mainly due to flood irrigation, which requires large volumes not only to meet evapotranspiration needs, but also due to losses from percolation, lateral seepage, and surface runoff. In addition to lowering water use efficiency, surface runoff may transport nutrients. This study aimed to calibrate and validate a daily water balance model to estimate surface runoff losses across three rice-growing seasons. During the first two seasons, different model components were calibrated by comparing simulated and observed water depths. In the final season, the calibrated model was validated using direct runoff measurements obtained from weirs and flowmeters. Results showed strong agreement between model estimates and direct measurements of water depth and surface runoff. Linear regression models showed good fit, with coefficients of determination (R2) above 0.80 for water depth and 0.79 for runoff. A validated daily water balance model, combined with periodic monitoring of water depth, proved to be a reliable tool for estimating surface runoff during the rice-growing season. Total runoff—from irrigation, rainfall, and final drainage—represented between 7.5% and 18% of the total water input. This approach offers a practical tool for improving irrigation water management and understanding runoff-driven nutrient transport. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

16 pages, 4197 KiB  
Article
Optimization of Reinforcement Schemes for Stabilizing the Working Floor in Coal Mines Based on an Assessment of Its Deformation State
by Denis Akhmatnurov, Nail Zamaliyev, Ravil Mussin, Vladimir Demin, Nikita Ganyukov, Krzysztof Zagórski, Krzysztof Skrzypkowski, Waldemar Korzeniowski and Jerzy Stasica
Materials 2025, 18(13), 3094; https://doi.org/10.3390/ma18133094 - 30 Jun 2025
Cited by 1 | Viewed by 366
Abstract
In the Karaganda coal basin, deteriorating geomechanical conditions have been observed, including seam disturbances, diminished strength of argillite–aleurolite strata, water ingress, and pronounced floor heave, all of which markedly increase the labor intensity of maintaining developmental headings. The maintenance and operation of these [...] Read more.
In the Karaganda coal basin, deteriorating geomechanical conditions have been observed, including seam disturbances, diminished strength of argillite–aleurolite strata, water ingress, and pronounced floor heave, all of which markedly increase the labor intensity of maintaining developmental headings. The maintenance and operation of these entries for a reference coal yield of 1000 t necessitate 72–75 man-shifts, of which 90–95% are expended on mitigating ground pressure effects and restoring support integrity. Conventional heave control measures—such as relief drifts, slotting, drainage, secondary blasting, and the application of concrete or rock–bolt systems—deliver either transient efficacy or incur prohibitive labor and material expenditures while lacking unified methodologies for predictive forecasting and support parameter design. This study therefore advocates for an integrated framework that synergizes geomechanical characterization, deformation prognosis, and the tailored selection of reinforcement schemes (incorporating both sidewall and floor-anchoring systems with directed preloading), calibrated to seam depth, geometry, and lithological properties. Employing deformation state assessments to optimize reinforcement layouts for floor stabilization in coal mine workings is projected to curtail repair volumes by 30–40% whilst significantly enhancing operational safety, efficiency, and the punctuality of face preparation. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

30 pages, 8526 KiB  
Article
Water-Sensitive Urban Design (WSUD) Performance in Mitigating Urban Flooding in a Wet Tropical North Queensland Sub-Catchment
by Sher Bahadur Gurung, Robert J. Wasson, Michael Bird and Ben Jarihani
Hydrology 2025, 12(6), 151; https://doi.org/10.3390/hydrology12060151 - 15 Jun 2025
Viewed by 553
Abstract
Existing wet tropical urban drainage systems often fail to accommodate runoff generated during extreme rainfall. Water-sensitive urban design (WSUD) systems have the potential to retrofit the existing urban drainage system by enhancing infiltration and retention functions. However, studies supporting this assumption were based [...] Read more.
Existing wet tropical urban drainage systems often fail to accommodate runoff generated during extreme rainfall. Water-sensitive urban design (WSUD) systems have the potential to retrofit the existing urban drainage system by enhancing infiltration and retention functions. However, studies supporting this assumption were based on temperate or arid climatic conditions, raising questions about its relevance in wet tropical catchments. To answer these questions, in this study a comprehensive modelling study of WSUD effectiveness in a tropical environment was implemented. Engineers Park, a small sub-catchment of 0.27 km2 at Saltwater Creek, Cairns, Queensland, Australia was the study site in which the flood mitigation capabilities of grey and WSUD systems under major (1% Annual Exceedance Probability—AEP), moderate (20% AEP), and minor (63.2% AEP) magnitudes of rainfall were evaluated. A detailed one-dimensional (1D) and coupled 1D2D hydrodynamic model in MIKE+ were developed and deployed for this study. The results highlighted that the existing grey infrastructure within the catchment underperformed during major events resulting in high peak flows and overland flow, while minor rainfall events increased channel flow and shifted the location of flooding. However, the integration of WSUD with grey infrastructure reduced peak flow by 0% to 42%, total runoff volume by 0.9% to 46%, and the flood extent ratio to catchment area from 0.3% to 1.1%. Overall, the WSUD integration positively contributed to reduced flooding in this catchment, highlighting its potential applicability in tropical catchments subject to intense rainfall events. However, careful consideration is required before over-generalization of these results, since the study area is small. The results of this study can be used in similar study sites by decision-makers for planning and catchment management purposes, but with careful interpretation. Full article
Show Figures

Figure 1

19 pages, 3604 KiB  
Article
Research on a Sand-Carrying Model of Horizontal Sections of Deep Coalbed Methane Wells
by Longfei Sun, Weilin Qi, Wei Qi, Li Hao, Anda Tang, Lin Yang, Kang Zhang and Yun Zhang
Processes 2025, 13(6), 1810; https://doi.org/10.3390/pr13061810 - 6 Jun 2025
Viewed by 399
Abstract
Deep coalbed methane wells often encounter challenges such as inefficient sand transport and sand accumulation in the horizontal sections during drainage, which significantly impact the stability of gas production and the efficiency of the gas lift system. To investigate the sand-carrying mechanisms in [...] Read more.
Deep coalbed methane wells often encounter challenges such as inefficient sand transport and sand accumulation in the horizontal sections during drainage, which significantly impact the stability of gas production and the efficiency of the gas lift system. To investigate the sand-carrying mechanisms in the horizontal sections of deep coalbed methane wells, this study develops a theoretical model for critical sand-carrying velocity based on gravitational, buoyant, drag, and pressure gradient forces. Additionally, a visualized experimental system was constructed using a multiphase pipe flow platform. By varying parameters such as liquid flow rate, gas–liquid ratio, gravel particle size, and pipe inclination, the critical conditions for sand transport were examined, and the dominant factors influencing sand transport in horizontal wellbore sections were identified. The experimental results indicate that water flow rate and particle size are inversely correlated with the gas volume required for sand transport, whereas inclination angle is positively correlated. The proposed model was validated against experimental data, showing a prediction error within 15%, thereby confirming its accuracy and engineering applicability. These findings offer theoretical guidance and technical references for efficient drainage and stable gas production in horizontal wellbore sections of deep coalbed methane wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

33 pages, 3778 KiB  
Article
Technical System for Urban Stormwater Carrying Capacity Assessment and Optimization
by Kun Mao, Junqi Li, Di Liu, Xiaojing Li, Miansong Huang and Lulu Xiang
Buildings 2025, 15(11), 1889; https://doi.org/10.3390/buildings15111889 - 30 May 2025
Viewed by 435
Abstract
The combined effects of rapid urbanization and climate change are increasingly exacerbating the risk of urban flooding. This study develops a data-efficient framework for estimating a city’s Urban Stormwater Carrying Capacity (USCC)—the maximum stormwater volume that can be safely infiltrated, stored, and conveyed. [...] Read more.
The combined effects of rapid urbanization and climate change are increasingly exacerbating the risk of urban flooding. This study develops a data-efficient framework for estimating a city’s Urban Stormwater Carrying Capacity (USCC)—the maximum stormwater volume that can be safely infiltrated, stored, and conveyed. The framework couples three rainfall scenarios—frequent, heavy, and extreme—with nine widely adopted drainage and storage measures, ranging from green spaces and permeable pavements to pipes and underground emergency reservoirs, and expresses USCC through a streamlined water-balance equation. Applied to the 24 km2 Zhangmian River district in Weifang, China, the framework yields capacities of 4.84, 5.86, and 9.80 × 106 m3 for the three scenarios, respectively; underground reservoirs supply ≈ 40% of the extreme-event capacity. Sensitivity analysis shows that increasing the imperviousness coefficient from 0.65 to 0.85 raises peak drainage demand by 30.8%, whereas halving reservoir depth lowers total capacity by 27.8%. Because the method requires only rainfall depth, land-cover data, and basic facility dimensions, it enables rapid, transparent scenario testing and helps planners prioritize cost-effective upgrades. The approach is transferable to other cities and can be extended to incorporate water quality or digital-twin modules in future research. Full article
(This article belongs to the Special Issue Urban Building and Green Stormwater Infrastructure)
Show Figures

Figure 1

20 pages, 3031 KiB  
Article
Effects of Drainage Control on Non-Point Source Pollutant Loads in the Discharges from Rice Paddy Fields
by Sunyoung Jeon, Dogun Kim and Seokoh Ko
Water 2025, 17(11), 1650; https://doi.org/10.3390/w17111650 - 29 May 2025
Viewed by 519
Abstract
Non-point source (NPS) pollution from agriculture accounts for more than 20% of the total pollution load in the Republic of Korea, with the highest nutrient balance among OECD countries. Rice paddy fields are among the most important NPSs because of their large area, [...] Read more.
Non-point source (NPS) pollution from agriculture accounts for more than 20% of the total pollution load in the Republic of Korea, with the highest nutrient balance among OECD countries. Rice paddy fields are among the most important NPSs because of their large area, intensive fertilizer use, intensive use of irrigation water, and subsequent drainage. Therefore, the use of controlled drainage in paddy fields (Test) was evaluated for reduction in the discharged volumes and pollutant loads in drainage and stormwater runoff in comparison to plots using traditional drainages (Control). The results show that the loads were highly variable and that the reductions in the annual load of biochemical oxygen demand (BOD), suspended solid (SS), total nitrogen (T-N), total phosphorus (T-P), and total organic carbon (TOC) in the Test compared to that of the Control were 31.0 ± 28.9%, 83.5 ± 11.8%, 65.4 ± 12.2%, 69.1 ± 21.7%, and 64.9 ± 12.9%, respectively. It was shown that discharge in the post-harrowing and transplanting drainage (HD) was predominantly responsible for the total loads; therefore, the load reduction in HD was evaluated further at additional sites. The reduction at all studied sites was highly variable and as follows: 30.0 ± 33.6%, 70.9 ± 24.6%, 32.2 ± 45.5%, 45.7 ± 37.0%, and 27.0 ± 71.5%, for BOD, SS, T-N, T-P, and TOC, respectively. It was also demonstrated that controlled drainage contributed significantly to reducing the loads and volume of stormwater runoff from paddy fields. Correlations between paddy field conditions and multiple regression showed that the loads were significantly related to paddy water quality. The results of this study strongly suggest that controlled drainage is an excellent alternative for reducing the discharge of NPS pollutants from paddy fields. It is also suggested that the best discharge control would be achieved by combinations of various discharge mitigation alternatives, such as the management of irrigation, drainage, and fertilization, as well as drainage treatment, supported by more field tests, identification of the fates of pollutants, effects of rainfall, and climate changes. Full article
(This article belongs to the Special Issue Basin Non-Point Source Pollution)
Show Figures

Figure 1

20 pages, 6805 KiB  
Article
Analysis of Irrigation, Crop Growth and Physiological Information in Substrate Cultivation Using an Intelligent Weighing System
by Jiu Xu, Lili Zhangzhong, Peng Lu, Yihan Wang, Qian Zhao, Youli Li and Lichun Wang
Agriculture 2025, 15(10), 1113; https://doi.org/10.3390/agriculture15101113 - 21 May 2025
Viewed by 603
Abstract
The online dynamic collection of irrigation and plant physiological information is crucial for the precise irrigation management of nutrient solutions and efficient crop cultivation in vegetable soilless substrate cultivation facilities. In this study, an intelligent weighing system was installed in a tomato substrate [...] Read more.
The online dynamic collection of irrigation and plant physiological information is crucial for the precise irrigation management of nutrient solutions and efficient crop cultivation in vegetable soilless substrate cultivation facilities. In this study, an intelligent weighing system was installed in a tomato substrate cultivation greenhouse. The monitored values from the intelligent weighing system’s pressure-type module were used to calculate irrigation start–stop times, frequency, volume, drainage volume, drainage rate, evapotranspiration, evapotranspiration rate, and stomatal conductance. In contrast, the monitored values of the suspension-type weighing module were used to calculate the amount of weight change in the plants, which supported the dynamic and quantitative characterization of substrate cultivation irrigation and crop growth based on an intelligent weighing system. The results showed that the monitoring curves of pressure and flow sensors based on the pressure-type module could accurately identify the irrigation start time and number of irrigations and calculate the irrigation volume, drainage volume, and drainage rate. The calculated irrigation amount was closely aligned with that determined by an integrated-water–fertilizer automatic control system (R2 = 0.923; mean absolute error (MAE) = 0.105 mL; root-mean-square error (RMSE) = 0.132 mL). Furthermore, transpiration rate and leaf stomatal conductance were obtained through inversion, and the R2, MAE, and RMSE of the extinction coefficient correction model were 0.820, 0.014 mol·m−2·s−1, and 0.017 mol·m−2·s−1, respectively. Compared to traditional estimation methods, the MAE and RMSE decreased by 12.5% and 15.0%, respectively. The measured values of fruit picking and leaf stripping linearly fitted with the calculated values of the suspended weighing module, and R2, MAE, and RMSE were 0.958, 0.145 g, and 0.143 g, respectively. This indicated that data collection based on the suspension-type weighing module could allow for a dynamic analysis of plant weight changes and fruit yield. In summary, the intelligent weighing system could accurately analyze irrigation information and crop growth physiological indicators under the practical application conditions of facility vegetable substrate cultivation, providing technical support for the precise management of nutrient solutions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

17 pages, 4187 KiB  
Article
Optimization of Subsurface Drainage Parameters in Saline–Alkali Soils to Improve Salt Leaching Efficiency in Farmland in Southern Xinjiang
by Han Guo, Guangning Wang, Zhenliang Song, Pengfei Xu, Xia Li and Liang Ma
Agronomy 2025, 15(5), 1222; https://doi.org/10.3390/agronomy15051222 - 17 May 2025
Viewed by 633
Abstract
In arid regions, soil salinization and inefficient water use are major challenges to sustainable agricultural development. Optimizing subsurface drainage system layouts is critical for improving saline soil reclamation efficiency. This study conducted field experiments from 2023 to 2024 to evaluate the effects of [...] Read more.
In arid regions, soil salinization and inefficient water use are major challenges to sustainable agricultural development. Optimizing subsurface drainage system layouts is critical for improving saline soil reclamation efficiency. This study conducted field experiments from 2023 to 2024 to evaluate the effects of varying subsurface drainage configurations—specifically, burial depths (1.0–1.5 m) and pipe spacings (20–40 m)—on drainage and salt removal efficiency in silty loam soils of southern Xinjiang, aiming to develop an optimized scheme balancing water conservation and desalination. Five treatments (A1–A5) were established to measure evaporation, drainage, and salt discharge during both spring and winter irrigation. These variables were analyzed using a water balance model and multifactorial ANOVA to quantify the interactive effects of drainage depth and spacing. The results indicated that treatment A5 (1.5 m depth, 20 m spacing) outperformed all the others in terms of both the drainage-to-irrigation ratio (Rd/i) and the drainage salt efficiency coefficient (DSEC), with a two-year average Rd/i of 32.35% across two spring and two winter irrigation events, and a mean DSEC of 3.28 kg·m−3. The 1.5 m burial depth significantly improved salt leaching efficiency by increasing the salt control volume and reducing capillary rise. The main effect of burial depth on both Rd/i and DSEC was highly significant (p < 0.01), whereas the effect of spacing was not statistically significant (p > 0.05). Although the limited experimental duration and the use of a single soil type may affect the generalizability of the findings, the recommended configuration (1.5 m burial depth, 20 m spacing) shows strong potential for broader application in silty loam regions of southern Xinjiang and provides technical support for subsurface drainage projects aimed at reclaiming saline soils in arid regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

22 pages, 9264 KiB  
Article
A Flood Prevention Design for Guangzhou Metro Stations Under Extreme Rainfall Based on the SCS-CN Model
by Xin Chen, Hongyu Kuai, Xiaoqian Liu and Bo Xia
Buildings 2025, 15(10), 1689; https://doi.org/10.3390/buildings15101689 - 16 May 2025
Viewed by 620
Abstract
With the intensification of global climate change, the underground rail transit system of Guangzhou, as a major coastal city, faces severe flood risks. Through field investigations of 313 metro stations, this study identified 472 flood-related risk points, primarily involving water backflow at low-lying [...] Read more.
With the intensification of global climate change, the underground rail transit system of Guangzhou, as a major coastal city, faces severe flood risks. Through field investigations of 313 metro stations, this study identified 472 flood-related risk points, primarily involving water backflow at low-lying stations, insufficient elevation of structural components, and the threat of overbank flooding from adjacent rivers. By integrating GIS-based spatial analysis with the SCS-CN runoff model, an extreme rainfall scenario (534.98 mm) was simulated, revealing a maximum runoff depth of 484.23 mm. Based on these results, it is recommended to raise the flood protection design elevation to 582 mm and install additional waterproof barriers. Optimization strategies include establishing flood protection standards for new stations based on site topography and runoff volume, elevating station platforms or adding waterproof structures at existing stations, and upgrading drainage systems with real-time monitoring and early-warning mechanisms. This study emphasizes the necessity for Guangzhou’s metro system to integrate climate-adaptive urban planning and technological innovation to enhance flood resilience and promote sustainable urban development. Full article
Show Figures

Figure 1

31 pages, 6141 KiB  
Article
Fe3O4/SiO2 Nanocomposite Derived from Coal Fly Ash and Acid Mine Drainage for the Adsorptive Removal of Diclofenac in Wastewater
by Dance Mabu, Ngwako Joseas Waleng, Tshimangadzo S. Munonde, Azile Nqombolo and Philiswa Nosizo Nomngongo
Recycling 2025, 10(3), 99; https://doi.org/10.3390/recycling10030099 - 16 May 2025
Viewed by 1470
Abstract
The ubiquity of diclofenac (DCF) in the environment has raised significant concerns. Diclofenac is a non-steroidal anti-inflammatory drug that has been found in various environmental matrices at minimum concentrations that are harmful to aquatic and terrestrial organisms. Traditional wastewater treatment plants (WWTPs) are [...] Read more.
The ubiquity of diclofenac (DCF) in the environment has raised significant concerns. Diclofenac is a non-steroidal anti-inflammatory drug that has been found in various environmental matrices at minimum concentrations that are harmful to aquatic and terrestrial organisms. Traditional wastewater treatment plants (WWTPs) are not fully equipped to remove a range of pharmaceuticals, and that explains the continued ubiquity of DCF in surface waters. In this study, an Fe3O4/SiO2 nanocomposite prepared from acid mine drainage and coal fly ash was applied for the removal of DCF from wastewater. Major functional groups (Si–O–Si and Fe–O) were discovered from FTIR. TEM revealed uniform SiO2 nanoparticle rod-like structures with embedded dark spherical nanoparticles. SEM-EDS analysis discovered a sponge-like structure fused with Fe3O4 nanoparticles that had significant Si, O, and Fe content. XRD demonstrated the crystalline nature of the nanocomposite. The surface properties of the nanocomposite were evaluated using BET and were 67.8 m2/g, 0.39 cm3/g, and 23.2 nm for surface area, pore volume, and pore size, respectively. Parameters that were suspected to be affecting the removal process were evaluated, including pH, nanocomposite dosage, and sample volume. The detection of DCF was conducted on high-performance liquid chromatography with diode-array detection (HPLC-DAD). Under optimum conditions, the adsorption process was monolayer, and physisorption was described using the Langmuir and Dubinin-Radushkevich (D-R) isotherm models. The kinetic data best fitted the pseudo-first order kinetic model, indicating a physisorption adsorption process. The thermodynamic experimental data confirmed that the adsorption process was spontaneous. The results obtained from real water samples showed 95.28% and 97.44% removal efficiencies from influent and effluent: 94.83% and 88.61% from raw sewage and final sewage, respectively. Overall, this work demonstrated that an Fe3O4/SiO2 nanocomposite could be successfully prepared from coal fly ash and acid mine drainage and could be used to remove DCF in wastewater. Full article
Show Figures

Figure 1

14 pages, 4675 KiB  
Article
A Numerical Simulation Study on the Spread of Mine Water Inrush in Complex Roadways
by Donglin Fan, Shoubiao Li, Peidong He, Sushe Chen, Xin Zou and Yang Wu
Water 2025, 17(10), 1434; https://doi.org/10.3390/w17101434 - 9 May 2025
Viewed by 382
Abstract
Emergency water release from underground reservoirs is characterized by its suddenness and significant harm. The quantitative prediction of water spreading processes in mine tunnels is crucial for enhancing underground safety. The study focuses on an underground roadway in a coal mine, constructing a [...] Read more.
Emergency water release from underground reservoirs is characterized by its suddenness and significant harm. The quantitative prediction of water spreading processes in mine tunnels is crucial for enhancing underground safety. The study focuses on an underground roadway in a coal mine, constructing a three-dimensional physical model of the complex tunnel network to explore the spatiotemporal characteristics of water flow spreading after water release in coal mine tunnels. The Volume of Fluid (VOF) model of the Eulerian multiphase flow was adopted to simulate the flow state of water in the roadway. The results indicate that after water release from the reservoir, water flows along the tunnel network towards locations with relatively lower altitude terrain. During the initial stage of water release, sloping tunnels act as barriers to water spreading. The water level height at each point in the tunnel network generally experiences three developmental stages: rapid rise, slow increase, and stable equilibrium. The water level height in the tunnel area near the water release outlet rises sharply within a time range of 550 s; tunnels farther from the water release outlet experience a rapid rise in water level height only after 13,200 s. The final stable equilibrium water level in the tunnel depends on the location of the water release outlet and the relative height of the terrain, with a water level height ranging from 0.3 to 3.3 m. The maximum safe evacuation time for personnel within a radius of 300 m from the drainage outlet is only 1 h. In contrast, areas farther away from the drainage location benefit from the water storage capacity of the complex tunnel network and have significantly extended evacuation opportunities. Full article
Show Figures

Figure 1

Back to TopTop