Fe3O4/SiO2 Nanocomposite Derived from Coal Fly Ash and Acid Mine Drainage for the Adsorptive Removal of Diclofenac in Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of SiO2 NPs and Fe3O4/SiO2
2.1.1. Fourier Transform Infrared Spectroscopy
2.1.2. X-Ray Diffraction
2.1.3. Scanning Electron Microscopy
2.1.4. Energy-Dispersive X-Ray Spectroscopy
2.1.5. Transmission Electron Microscopy
2.1.6. Nitrogen Adsorption–Desorption Studies
2.1.7. Point of Zero Charge (pHPZC)
2.1.8. Vibrating Sample Magnetometer
2.2. Optimisation of Adsorbents (Selection of Best Adsorbent Material)
2.3. Optimization Scheme
2.4. Isotherm Studies
2.5. Kinetics Studies
2.6. Thermodynamic Studies
2.7. Possible Adsorption Mechanism
2.8. Desorption Mechanism
2.9. Analysis of Wastewater and Sewage Samples
2.10. Comparison Study
2.11. Regenerability and Reusability Studies
3. Materials and Methods
3.1. Reagents and Materials
3.2. Instrumentation
3.3. Synthesis of SiO2 Nanoparticles from Coal Fly Ash
3.4. Synthesis of Fe3O4/SiO2 Nanocomposite
3.5. Batch Adsorption Experiments
3.6. Isotherms Studies
3.7. Kinetics Studies
3.8. Thermodynamics Studies
3.9. Real Water Sample Analysis
3.10. Point of Zero Charge
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frascaroli, G.; Reid, D.; Hunter, C.; Roberts, J.; Helwig, K.; Spencer, J.; Escudero, A. Pharmaceuticals in wastewater treatment plants: A systematic review on the substances of greatest concern responsible for the development of antimicrobial resistance. Appl. Sci. 2021, 11, 6670. [Google Scholar] [CrossRef]
- Puga, A.; Pazos, M.; Rosales, E.; Sanromán, M.A. Electro-reversible adsorption as a versatile tool for the removal of diclofenac from wastewater. Chemosphere 2021, 280, 130778. [Google Scholar] [CrossRef]
- Parolini, M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Sci. Total Environ. 2020, 740, 140043. [Google Scholar] [CrossRef] [PubMed]
- Ishii, E.; Watanabe, Y.; Agusa, T.; Hosono, T.; Nakata, H. Acesulfame as a suitable sewer tracer on groundwater pollution: A case study before and after the 2016 Mw 7.0 Kumamoto earthquakes. Sci. Total Environ. 2021, 754, 142409. [Google Scholar] [CrossRef]
- Kimbi Yaah, V.B.; Zbair, M.; de Oliveira, S.B.; Ojala, S. Hydrochar-derived adsorbent for the removal of diclofenac from aqueous solution. Nanotechnol. Environ. Eng. 2021, 6, 3. [Google Scholar] [CrossRef]
- Shin, Y.; Hwang, T.M.; Nam, S.H.; Kim, E.; Park, J.; Choi, Y.J.; Koo, J.W. Evaluating Nanofiltration and Reverse Osmosis Membranes for Pharmaceutically Active Compounds Removal: A Solution Diffusion Model Approach. Membranes 2024, 14, 250. [Google Scholar] [CrossRef]
- Dzimitrowicz, A.; Terefinko, D.; Bielawska-Pohl, A.; Motyka-Pomagruk, A.; Jamroz, P.; Cyganowski, P.; Caban, M. Biosafe removal of diclofenac from wastewaters by a continuous-flow mode cold atmospheric pressure plasma system. J. Environ. Chem. Eng. 2024, 12, 111598. [Google Scholar] [CrossRef]
- Salomão, G.R.; Américo-Pinheiro, J.H.P.; Isique, W.D.; Torres, N.H.; Cruz, I.A.; Ferreira, L.F.R. Diclofenac removal in water supply by adsorption on composite low-cost material. Environ. Technol. 2021, 42, 2095–2111. [Google Scholar] [CrossRef]
- Gao, Y.; Cheng, T.; Zhao, F.; Huang, G.; Bi, J. A hybrid linker-MOF fibrous composite for efficient diclofenac removal and self-cleaning. Sep. Purif. Technol. 2024, 337, 126260. [Google Scholar] [CrossRef]
- Kubiak, A.; Cegłowski, M. Investigating a batch-flow photocatalytic LED system for diclofenac removal in wastewater treatment plants: Assessing the influence of reaction conditions on photocatalytic efficiency. J. Water Process Eng. 2024, 62, 105397. [Google Scholar] [CrossRef]
- Lee, J.; Jo, S.J.; Yoon, S.; Ko, M.; Jang, T.; Kim, H.K.; Park, J.A. Coupled adsorption-photocatalysis process for the removal of diclofenac using magnetite/reduced graphene oxide nanocomposite. Chemosphere 2024, 349, 140788. [Google Scholar] [CrossRef] [PubMed]
- Conte, F.; Tommasi, M.; Degerli, S.N.; Forame, E.; Parolini, M.; De Felice, B.; Rossetti, I. Comparison of Different Advanced Oxidation Processes (AOPs) and Photocatalysts for the Degradation of Diclofenac. ChemPhotoChem 2024, 8, e202300177. [Google Scholar] [CrossRef]
- de Carvalho Filho, J.A.A.; da Cruz, H.M.; Fernandes, B.S.; Motteran, F.; de Paiva, A.L.R.; Cabral, J.J.D.S.P. Efficiency of the bank filtration technique for diclofenac removal: A review. Environ. Pollut. 2022, 300, 118916. [Google Scholar] [CrossRef]
- Bernal, V.; Giraldo, L.; Moreno-Piraján, J.C. Physicochemical properties of activated carbon: Their effect on the adsorption of pharmaceutical compounds and adsorbate–adsorbent interactions. C 2018, 4, 62. [Google Scholar] [CrossRef]
- Lan, D.; Zhu, H.; Li, S.; Chen, Q.; Wang, C.; Xu, M. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives. Chemosphere 2022, 293, 133464. [Google Scholar] [CrossRef]
- Hinsene, H.; Bhawawet, N.; Imyim, A. Rice husk biochar doped with deep eutectic solvent and Fe3O4/ZnO nanoparticles for heavy metal and diclofenac removal from water. Sep. Purif. Technol. 2024, 339, 126638. [Google Scholar] [CrossRef]
- Ortiz-Bustos, J.; Soares, S.F.; del Pulgar, H.P.; Gómez-Ruiz, S.; Daniel-da-Silva, A.L.; del Hierro, I. Tuning adsorption capacities of hybrid mesoporous silica nanospheres and adsorption mechanism study for sulfamethoxazole and diclofenac removal from water. J. Mol. Liq. 2024, 398, 124213. [Google Scholar] [CrossRef]
- Saadoon, S.; Mohammed, A.K.; Ali, Z.T.A.; Rashid, I.M.; Isahak, W.N.R.W.; Rahimnejad, M. Removal of Diclofenac from Contaminated Water using Organoclay as Reactive Material. Al-Khwarizmi Eng. J. 2024, 20, 1–13. [Google Scholar] [CrossRef]
- Parlapiano, M.; Foglia, A.; Sgroi, M.; Pisani, M.; Astolfi, P.; Mezzelani, M.; Fatone, F. Assessment of molecularly imprinted polymers for selective removal of diclofenac from wastewater by laboratory and pilot-scale adsorption tests. J. Water Process Eng. 2024, 63, 105467. [Google Scholar] [CrossRef]
- Kocabıyık, B.; Üner, O.; Geçgel, U. Diclofenac sodium adsorption in aqueous media by activated carbon obtained from einkorn (Triticum monococcum L.) husk. Adsorption 2024, 30, 1033–1046. [Google Scholar] [CrossRef]
- Al-Hazmi, G.A.; Alayyafi, A.A.; El-Desouky, M.G.; El-Bindary, A.A. Guava seed activated carbon loaded calcium alginate aerogel for the adsorption of diclofenac sodium: Characterisation, isotherm, kinetics, and optimisation via Box-Behnken design. Int. J. Biol. Macromol. 2024, 262, 129995. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, F.; Güzel, F.; Teymur, Y.A. Red pepper (Capsicum annuum L.) industrial processing pulp-derived nanoporous carbon sorbent for the removal of methylene blue, diclofenac, and copper (II). Biomass Convers. Biorefin. 2024, 14, 5651–5664. [Google Scholar] [CrossRef]
- Sharma, P.; Prakash, J.; Kaushal, R. An insight into the green synthesis of SiO2 nanostructures as a novel adsorbent for removal of toxic water pollutants. Environ. Res. 2022, 212, 113328. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, L.; Tang, L.; Mei, J.; Fu, J. Unveiling combined ecotoxicity: Interactions and impacts of engineered nanoparticles and PPCPs. Sci. Total Environ. 2024, 921, 170746. [Google Scholar] [CrossRef]
- Lilli, B.; Wassersleben, S.; Schulze, T.; Otto, A.; Enke, D. Additive effects of rice husk-based carbon-silica composites on adsorption of diclofenac sodium and carbamazepine from aqueous solutions. Sci. Total Environ. 2024, 954, 176389. [Google Scholar] [CrossRef]
- Eskandari, M.J.; Hasanzadeh, I. Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation. Mater. Sci. Eng. B. 2021, 266, 115050. [Google Scholar] [CrossRef]
- Ain, S.N.U.; Khan, M.S.; Riaz, N.; Khan, A.; Sarwar, A.; Khalid, A.; Al-Harrasi, A. Surface-Functionalized Magnetic Silica-Malachite Tricomposite (Fe–M–Si tricomposite): A Promising Adsorbent for the Removal of Cypermethrin. ACS Omega 2024, 9, 13803–13817. [Google Scholar] [CrossRef]
- Ali, N.S.M.; Alalwan, H.A.; Alminshid, A.H.; Mohammed, M.M. Synthesis and characterization of Fe3O4-SiO2 nanoparticles as adsorbent material for methyl blue dye removal from aqueous solutions. Pollution 2022, 8, 295–302. [Google Scholar]
- Jahanbakhsh, Z.; Hosseinzadeh, H.; Masoumi, B. Synthesis of carboxymethyl β-cyclodextrin bonded Fe3O4@ SiO2–NH2 core-shell magnetic nanocomposite adsorbent for effective removal of Pb (II) from wastewater. J. Solgel Sci. Technol. 2021, 99, 230–242. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Jahanbakhsh, Z.; Masoumi, B.; Hooshangi, V. Preparation of amino-functionalized β-cyclodextrin/Fe3O4@ SiO2 magnetic nanocarrier for controlled release of doxorubicin, an anticancer drug. Arab. J. Sci. Eng. 2024, 49, 459–473. [Google Scholar] [CrossRef]
- Khalid, A.; Saddique, Z.; Iqbal, Z.F.; Imran, M.; Javaid, A.; Latif, S.; Rasheed, T. Photocatalytic Potential of Sandwich like Magnetic NPs/MXenes Nanohybrids for Abatement of Wastewater Contaminants. Top. Catal. 2024, 68, 951–964. [Google Scholar] [CrossRef]
- Du, J.; Xu, K.; Yang, X.; Dong, Z.; Zhao, L. Removal of diclofenac sodium from aqueous solution using different ionic liquids functionalized tragacanth gum hydrogel prepared by radiation technique. Int. J. Biol. Macromol. 2024, 265, 130758. [Google Scholar] [CrossRef] [PubMed]
- Wazir, A.H.; Haq, I.U.; Manan, A.; Khan, A. Preparation and characterisation of activated carbon from coal by chemical activation with KOH. Int. J. Coal Prep. Util. 2022, 42, 1477–1488. [Google Scholar] [CrossRef]
- Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. Temperature dependences of IR spectra of humic substances of brown coal. Agronomy 2021, 11, 1822. [Google Scholar] [CrossRef]
- Gaweł, B.A.; Ulvensøen, A.; Łukaszuk, K.; Arstad, B.; Muggerud, A.M.F.; Erbe, A. Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz. RSC Adv. 2020, 10, 29018–29030. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Cao, K.; Guo, Z.; Han, Y.; Hu, W.; He, Y. Ultrasensitive and reversible room-temperature resistive humidity sensor based on layered two-dimensional titanium carbide. Ceram. Int. 2021, 47, 6463–6469. [Google Scholar] [CrossRef]
- Sugie, C.; Navrotsky, A.; Lauterbach, S.; Kleebe, H.J.; Mera, G. Structure and thermodynamics of silicon oxycarbide polymer-derived ceramics with and without mixed-bonding. Materials 2021, 14, 4075. [Google Scholar] [CrossRef]
- Peréz, D.L.; Puentes, I.; Romero, G.M.; Gaona, I.S.; Vargas, C.P.; Rincón, R.J. Synthesis of superparamagnetic iron oxide nanoparticles coated with polyethylene glycol as potential drug carriers for cancer treatment. J. Nanopart. Res. 2024, 26, 2. [Google Scholar] [CrossRef]
- Tharani, D.; Ananthasubramanian, M. Influence of pre-treatment processes on the purity and characteristics of silica extracted from rice husk. Biomass Convers. Biorefin. 2024, 14, 12517–12529. [Google Scholar] [CrossRef]
- Rahimzadeh, B.; Ghosoun, Z.; Masoudi, F. Identification of Fe3+ content in Epidote from Varan, Urumieh-Dokhtar magmatic arc, Iran: Using FTIR and Raman spectroscopy. Iran J. Earth Sci. 2022, 14, 131–139. [Google Scholar]
- He, S.; Ruan, C.; Shi, Y.; Chen, G.; Ma, Y.; Dai, H.; Yang, X. Insight to hydrophobic SiO2 encapsulated SiO2 gel: Preparation and application in fire extinguishing. J. Hazard. Mater. 2021, 405, 124216. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Ma, J.; He, J. Fabrication of SiO2/TiO2 coated polyethylene films with photoinduced superhydrophilicity, antifogging property and mechanical robustness. Ceram. Int. 2024, 50, 37183–37192. [Google Scholar] [CrossRef]
- Yaseen, M.; Khan, A.; Humayun, M.; Farooq, S.; Shah, N.; Bibi, S.; Ullah, H. Facile synthesis of Fe3O4–SiO2 nanocomposites for wastewater treatment. Macromol. Mater. Eng. 2023, 308, 2200695. [Google Scholar] [CrossRef]
- Saeed, M.S.; Hekmatara, H. MWCNT decorated Magnetic/Ceramic/Polymer (Fe2O3/Fe3O4/SiO2/PANI) nanocomposite with enhanced microwave absorption at an entire X and Ku frequency bands. Ceram. Int. 2024, 50, 11795–11803. [Google Scholar] [CrossRef]
- Takai, Z.I.; Mustafa, M.K.; Asman, S.; Sekak, K.A. Preparation and characterization of magnetite (Fe3O4) nanoparticles by sol-gel method. Int. J. Nanoelectron. Mater. 2019, 12, 37–46. [Google Scholar]
- Sabur, M.A.; Gafur, M.A. Crystallographic; Morphological; Magnetic, and Thermal Characterization of Superparamagnetic Magnetite Nanoparticles (Fe3O4) Synthesized by Chemical Coprecipitation Method and Calcined at 250 °C for 4 hr. J. Nanomater. 2024, 2024, 9577778. [Google Scholar] [CrossRef]
- Kosari, M.; Askari, S.; Seayad, A.M.; Xi, S.; Kawi, S.; Borgna, A.; Zeng, H.C. Strong coke-resistivity of spherical hollow Ni/SiO2 catalysts with shell-confined high-content Ni nanoparticles for methane dry reforming with CO2. Appl. Catal. B Environ. 2022, 310, 121360. [Google Scholar] [CrossRef]
- Yusoff, F.; Suresh, K.; Khairul, W.M. Synthesis and characterization of reduced graphene oxide/iron oxide/silicon dioxide (rGO/Fe3O4/SiO2) nanocomposite as a potential cathode catalyst. J. Phys. Chem. Solids 2022, 163, 110551. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Tran, H.V.; Xu, S.; Lee, T.R. Fe3O4 nanoparticles: Structures; synthesis; magnetic properties; surface functionalisation; emerging applications. Appl. Sci. 2021, 11, 11301. [Google Scholar] [CrossRef]
- Peñafiel, M.E.; Jara-Cobos, L.; Flores, D.; Jerves, C.; Menendez, M. Enhancing adsorptive removal of diclofenac from aqueous solution: Evaluating organic and inorganic acid treatment of zeolite. CSCEE 2024, 9, 100575. [Google Scholar] [CrossRef]
- Ling, W.; Wang, M.; Xiong, C.; Xie, D.; Chen, Q.; Chu, X.; Xiao, X. Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res. 2019, 34, 1828–1844. [Google Scholar] [CrossRef]
- Ebrahimi-Tazangi, F.; Hekmatara, S.H.; Seyed-Yazdi, J. Remarkable microwave absorption of GO-SiO2/Fe3O4 via an effective design and optimised composition. J. Alloys Compd. 2021, 854, 157213. [Google Scholar] [CrossRef]
- Divya, S.; Lims, S.C.; Manivannan, M.; Robert, R.; Das, S.J.; Jose, M. Impact of amorphous SiO2 as shell material on superparamagnetic Fe3O4 nanoparticles and investigation of temperature and frequency dependent dielectric properties. J. Alloys Compd. 2022, 919, 165751. [Google Scholar] [CrossRef]
- Meng, C.; Liu, X.; Li, R.; Malekmohammadi, S.; Feng, Y.; Song, J.; Li, J. 3D Poly (L-lactic acid) fibrous sponge with interconnected porous structure for bone tissue scaffold. Int. J. Biol. Macromol. 2024, 268, 131688. [Google Scholar] [CrossRef]
- Yadav, V.K.; Fulekar, M.H. Green synthesis and characterisation of amorphous silica nanoparticles from fly ash. Mater. Today Proc. 2019, 18, 4351–4359. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Kim, K.; Powell, M.A.; Equeenuddin, S.M. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. Int. J. Coal Sci. Technol. 2016, 3, 267–283. [Google Scholar] [CrossRef]
- Panda, L.; Dash, S. Characterisation and utilisation of coal fly ash: A review. Emerg. Mater. Res. 2020, 9, 921–934. [Google Scholar]
- Yuan, J.; Ding, Z.; Li, J.; Yu, A.; Wen, S.; Bai, S. An innovative method to degrade xanthate from flotation tailings wastewater in acid mine drainage (AMD) system: Performance, degradation mechanism and pathways. J. Environ. Manag. 2024, 349, 119395. [Google Scholar] [CrossRef]
- Jiang, F.; Li, Y.; Pan, Y. Design Principles of Single-Atom Catalysts for Oxygen Evolution Reaction: From Targeted Structures to Active Sites. Adv. Mater. 2024, 36, 2306309. [Google Scholar] [CrossRef]
- Kishibayev, K.K.; Serafin, J.; Tokpayev, R.R.; Khavaza, T.N.; Atchabarova, A.A.; Abduakhytova, D.A.; Ibraimov, Z.T.; Sreńscek-Nazzal, J. Physical and chemical properties of activated carbon synthesised from plant wastes and shungite for CO2 capture. J. Environ. Chem. Eng. 2021, 9, 106798. [Google Scholar] [CrossRef]
- Fu, S.; Fang, Q.; Li, A.; Li, Z.; Han, J.; Dang, X.; Han, W. Accurate characterization of full pore size distribution of tight sandstones by low-temperature nitrogen gas adsorption and high-pressure mercury intrusion combination method. Energy Sci. Eng. 2021, 9, 80–100. [Google Scholar] [CrossRef]
- Imoisili, P.E.; Jen, T.C.; Safaei, B. Microwave-assisted sol–gel synthesis of TiO2-mixed metal oxide nanocatalyst for degradation of organic pollutant. Nanotech. Rev. 2021, 10, 126–136. [Google Scholar] [CrossRef]
- Mahdi, A.E.; Ali, N.S.; Kalash, K.R.; Salih, I.K.; Abdulrahman, M.A.; Albayati, T.M. Investigation of equilibrium, isotherm, and mechanism for the efficient removal of 3-nitroaniline dye from wastewater using mesoporous material MCM-48. Prog. Color Color. Coat. 2023, 16, 387–398. [Google Scholar]
- Watthanachai, C.; Ngamcharussrivichai, C.; Pengprecha, S. Synthesis and characterisation of bimodal mesoporous silica derived from rice husk ash. Eng. J. 2019, 23, 25–34. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, F.; Song, W.; Zhu, C.; Wang, X.; Li, W. Construction of surface oxygen vacancy active sites upon MnOx/AC composite catalysts for efficient coupling adsorption and oxidation of toluene. Chem. Eng. J. 2023, 464, 142740. [Google Scholar] [CrossRef]
- Zhang, B.; Tong, Z.; Pang, Y.; Xu, H.; Li, X.; Ji, H. Design and electrospun closed cell structured SiO2 nanocomposite fiber by hollow SiO2/TiO2 spheres for thermal insulation. Compos. Sci. Technol. 2022, 218, 109152. [Google Scholar] [CrossRef]
- Karamikamkar, S.; Naguib, H.E.; Park, C.B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customised morphology, and multifunctionality: A review. Adv. Colloid Interface Sci. 2020, 276, 102101. [Google Scholar] [CrossRef]
- Dilshad, M.R.; Islam, A.; Haider, B.; Sajid, M.; Ijaz, A.; Khan, R.U.; Khan, W.G. Effect of silica nanoparticles on carbon dioxide separation performances of PVA/PEG cross-linked membranes. Chem. Pap. 2021, 75, 3131–3153. [Google Scholar] [CrossRef]
- Choi, H.; Kim, T.; Kim, T.; Moon, S.; Yoo, S.; Parale, V.G.; Park, H.H. Ultralow dielectric cross-linked silica aerogel nanocomposite films for interconnect technology. Appl. Mater. Today 2022, 28, 101536. [Google Scholar] [CrossRef]
- Vohl, S.; Kristl, M.; Stergar, J. Harnessing Magnetic Nanoparticles for the Effective Removal of Micro-and Nanoplastics: A Critical Review. Nanomaterials 2024, 14, 1179. [Google Scholar] [CrossRef]
- Doss, V.N.M.M.A.; Lin, Y.W.; Horng, L. Characterization of an Environmentally Responsive Organic–Inorganic Hybrid Fe3O4/SiO2/PPy-c Core–Shell Nanocomposite with Magneto-Chromatic Ability for Synergistic Electrical Properties. Inorg. Chem. 2024, 63, 18016–18029. [Google Scholar] [CrossRef] [PubMed]
- Huaccallo-Aguilar, Y.; De Tuesta, J.D.; Álvarez-Torrellas, S.; Gomes, H.T.; Larriba, M.; Ovejero, G.; García, J. New insights on the removal of diclofenac and ibuprofen by CWPO using a magnetite-based catalyst in an up-flow fixed-bed reactor. J. Environ. Manag. 2021, 281, 111913. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, T.B.; Dat, N.D.; Huu, B.T.; Nguyen, X.C.; Tran, T.; Bui, X.T. Adsorption of norfloxacin from aqueous solution on biochar derived from spent coffee ground: Master variables and response surface method optimised adsorption process. Chemosphere 2022, 288, 132577. [Google Scholar] [CrossRef]
- Gerbing, D.W. Enhancement of the command-line environment for use in the introductory statistics course and beyond. J. Stat. Data Sci. Educ. 2021, 29, 251–266. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Aljohani, M.; Alkhamis, K.; Shaaban, F.; El-Desouky, M.G.; El-Bindary, A.A.; El-Bindary, M.A. Adsorption and effective removal of organophosphorus pesticides from aqueous solution via novel metal-organic framework: Adsorption isotherms, kinetics, and optimisation via Box-Behnken design. J. Mol. Liq. 2023, 384, 122206. [Google Scholar] [CrossRef]
- Vitek, R.; Masini, J.C. Nonlinear regression for treating adsorption isotherm data to characterise new sorbents: Advantages over linearisation demonstrated with simulated and experimental data. Heliyon 2023, 9, e15128. [Google Scholar] [CrossRef]
- Hu, Q.; Lan, R.; He, L.; Liu, H.; Pei, X. A critical review of adsorption isotherm models for aqueous contaminants: Curve characteristics, site energy distribution and common controversies. J. Environ. Manag. 2023, 329, 117104. [Google Scholar] [CrossRef]
- Kong, Y.Y.S.; Wang, Q.; Lu, J.X.; Poon, C.S. Lightweight aggregates produced from low-temperature sintering of multiple solid wastes for heavy metals removal: Adsorption kinetics and stabilization. J. Clean. Prod. 2024, 480, 144118. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant adsorption isotherms: A review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef]
- Abumelha, H.M. Enhancing brilliant green dye removal via bio composite chitosan and food-grade algae capsulated ruthenium metal-organic framework: Optimization of adsorption parameters by box-behnken design. Int. J. Biol. Macromol. 2024, 264, 130635. [Google Scholar] [CrossRef]
- Fakhfakh, F.; Raissi, S.; Jeddou, F.B.; Zghal, R.Z.; Ghorbel, A. Isotherm and kinetic modeling of Cr (VI) removal with quaternary ammonium functionalized silica. J. Solgel Sci. Technol. 2024, 111, 921–940. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Januário, E.F.D.; Vidovix, T.B.; Vieira, A.M.S.; Bergamasco, R. Synthesis of a novel functionalised biosorbent from mango stone and its application in the pharmaceutical’s removal from water and a synthetic mixture. Chemosphere 2024, 346, 140520. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.H.; Hashim, M.A.; da Costa Santos, Y.T.; Debord, J.; Harel, M.; Bollinger, J.C. The Redlich–Peterson isotherm for aqueous phase adsorption: Pitfalls in data analysis and interpretation. Chem. Eng. Sci. 2024, 285, 119573. [Google Scholar] [CrossRef]
- Van Melkebeke, M.; De Somer, T.; Van Laere, T.; Minh, T.N.L.; Shirazi, H.M.; Poelman, H.; De Meester, S. Adsorption modeling for contaminant removal in plastic dissolution recycling: Investigating an amino ketone-based red dye. Sep. Purif. Technol. 2024, 331, 125559. [Google Scholar] [CrossRef]
- Yanardağ, D.; Edebali, S. Adsorptive removal of malachite green dye from aqueous solution by ion exchange resins. Biomass Conv. Biorefin. 2024, 14, 5699–5710. [Google Scholar] [CrossRef]
- Mustafa, D.; Ibrahim, B.; Erten, A. Adsorptive removal of anticarcinogen pazopanib from aqueous solutions using activated carbon: Isotherm, kinetic and thermodynamic studies. Sci. Rep. 2024, 14, 17765. [Google Scholar] [CrossRef]
- Zafar, S.; Khan, M.I.; Rehman, H.U.; Fernandez-Garcia, J.; Shahida, S.; Prapamonthon, P.; Lashari, M.H. Kinetic, equilibrium, and thermodynamic studies for adsorptive removal of cobalt ions by rice husk from aqueous solution. Desalination Water Treat. 2020, 204, 285–296. [Google Scholar] [CrossRef]
- Hidayat, A.R.P.; Sulistiono, D.O.; Murwani, I.K.; Endrawati, B.F.; Fansuri, H.; Zulfa, L.L.; Ediati, R. Linear and nonlinear isotherm, kinetic and thermodynamic behavior of methyl orange adsorption using modulated Al2O3@ UiO-66 via acetic acid. J. Environ. Chem. Eng. 2021, 9, 106675. [Google Scholar] [CrossRef]
- Islam, M.S.; Maamoun, I.; Falyouna, O.; Eljamal, O.; Saha, B.B. Arsenic removal from contaminated water utilising novel green composite Chlorella vulgaris and nano zero-valent iron. J. Mol. Liq. 2023, 370, 121005. [Google Scholar] [CrossRef]
- Khankhasaeva, S.T.; Badmaeva, S.V.; Ukhinova, M.V. Adsorption of diclofenac onto Fe2O3-pillared montmorillonite: Equilibrium, kinetics and thermodynamic studies. J. Mol. Liq. 2023, 380, 121725. [Google Scholar] [CrossRef]
- Alahabadi, A.; Shomoossi, N.; Riahimanesh, F.; Salari, M. Development of AC/ZnO/Fe2O3 for efficiently adsorptive removal of Tetracycline from water environment: Isotherm, kinetic and thermodynamic studies and adsorption mechanism. Biomass Conv. Biorefin. 2024, 14, 17499–17517. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Deb, A.; Debnath, A.; Bhattacharjee, N.; Saha, B. Ultrasonically enhanced dye removal using conducting polymer functionalised ZnO nanocomposite at near neutral pH: Kinetic study, isotherm modelling and adsorbent cost analysis. Int. J. Environ. Anal. Chem. 2022, 102, 8055–8074. [Google Scholar] [CrossRef]
- Tunio, A.; Balouch; Talpur, F.N.; Alveroglu, E.; Jagirani, M.S.; Safdar, M.; Mustafai, F.A. Lipase Enzyme Immobilized Magnetic NanoAdsorbent: A promising candidate to efficiently remove chromium from aqueous media. Mater. Chem. Phys. 2024, 323, 129632. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Tijani, J.O.; Jacob, J.O.; Suleiman, M.A.T.; Mathew, J.T. Preparation, characterisation, adsorptive and antimicrobial properties of Fe3O4@ SiO2@ ZnO nanocomposite. Colloids Surf. A Physicochem. Eng. Aspects 2024, 686, 133190. [Google Scholar] [CrossRef]
- Islam, R.; Faysal, S.M.; Amin, R.; Juliana, F.M.; Islam, M.J.; Alam, J.; Asaduzzaman, M. Assessment of pH and total dissolved substances (TDS) in the commercially available bottled drinking water. IOSR-JNHS 2017, 6, 35–40. [Google Scholar] [CrossRef]
- Szabolcsik-Izbéki, A.; Bodnár, I.; Fábián, I. The removal of pollutants from synthetic bathroom greywater by coagulation-flocculation and filtration as a fit-for-purpose method. J. Environ. Chem. Eng. 2024, 12, 114250. [Google Scholar] [CrossRef]
- Li, X.; Ji, M.; Nghiem, L.D.; Zhao, Y.; Liu, D.; Yang, Y.; Tran, N.H. A novel red mud adsorbent for phosphorus and diclofenac removal from wastewater. J. Mol. Liq. 2020, 303, 112286. [Google Scholar] [CrossRef]
- Van Tran, T.; Nguyen, D.T.C.; Le, H.T.; Vo, D.V.N.; Nanda, S.; Nguyen, T.D. Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. J. Environ. Sci. 2020, 93, 137–150. [Google Scholar] [CrossRef]
- Larous, S.; Meniai, A.H. Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones. Int. J. Hydrogen Energy 2016, 41, 10380–10390. [Google Scholar] [CrossRef]
- Pourzamani, H.; Hajizadeh, Y.; Mengelizadeh, N. Application of three-dimensional electrofenton process using MWCNTs-Fe3O4 nanocomposite for removal of diclofenac. Process Saf. Environ. Prot. 2018, 119, 271–284. [Google Scholar] [CrossRef]
- Aphane, M.E.; Doucet, F.J.; Kruger, R.A.; Petrik, L.; van der Merwe, E.M. Preparation of sodium silicate solutions and silica nanoparticles from South African coal fly ash. Waste Biomass Valori. 2020, 11, 4403–4417. [Google Scholar] [CrossRef]
- Razavi, R.; Amiri, M.; Salavati-Niasari, M. Eco-friendly synthesis by Rosemary extract and characterization of Fe3O4@ SiO2 magnetic nanocomposite as a potential adsorbent for enhanced arsenic removal from aqueous solution: Isotherm and kinetic studies. Biomass Conv. Bioref. 2024, 14, 5109–5123. [Google Scholar] [CrossRef]
- De Luna, M.D.G.; Budianta, W.; Rivera, K.K.P.; Arazo, R.O. Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks. J. Environ. Chem. Eng. 2017, 5, 1465–1474. [Google Scholar] [CrossRef]
- Munonde, T.S.; Maxakato, N.W.; Nomngongo, P.N. Preparation of magnetic Fe3O4 nanocomposites modified with MnO2, Al2O3, Au and their application for preconcentration of arsenic in river water samples. J. Environ. Chem. Eng. 2018, 6, 1673–1681. [Google Scholar] [CrossRef]
- Pereira, L.; Castillo, V.; Calero, M.; González-Egido, S.; Martín-Lara, M.A.; Solís, R.R. Promoting the circular economy: Valorization of a residue from industrial char to activated carbon with potential environmental applications as adsorbents. J. Environ. Manag. 2024, 356, 120753. [Google Scholar] [CrossRef]
Sample | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
SiO2—30 min | 3.7 | 0.21 | 229 |
SiO2—2 h | 10.6 | 0.23 | 87.3 |
Fe3O4 | 90.8 | 0.27 | 12.1 |
Fe3O4/SiO2—30 min | 37.7 | 0.19 | 20.1 |
Fe3O4/SiO2—2 h | 67.8 | 0.39 | 23.2 |
Isotherms | Parameters | Values |
---|---|---|
Langmuir | qmax (mg/g) | 55.7 |
KL (L/mg) | 0.38 | |
R2 | 0.9766 | |
Freundlich | n | 2.77 |
KF (mg/g) | 18.9 | |
R2 | 0.9236 | |
Temkin | AT (L/g) | 11.2 |
BT (J/mol) | 4.87 | |
R2 | 0.9574 | |
Sips | n | 1.34 |
qS (mg/g) | 54.4 | |
KS (L/mg)n | 0.58 | |
R2 | 0.9777 | |
Redlich–Peterson (R−P) | β | 0.09 |
KRP (L/g) αRP (L/mg) | 13.6 1.38 | |
R2 | 0.9882 | |
Dubinin–Radushkevich (D−R) | E (kJ/mol) | 4.55 |
qRP (mg/g) | 45.2 | |
R2 | 0.9673 |
Isotherms | Parameters | Values |
---|---|---|
Pseudo-first order | K1 (1/min) | 0.10 |
qe (mg/g) | 44.0 | |
R2 | 0.9819 | |
Pseudo-second order | K2 (g/mg.min) | 0.002 |
qe (mg/g) | 50.2 | |
R2 | 0.9569 | |
Intra-particle diffusion | C1 (mg/g) | 4.23 |
Kid1 (mg/g) min1/2 | 9.11 | |
R12 | 0.8757 | |
C2 (mg/g) | 41.1 | |
Kid2 (mg/g) min1/2 | 0.28 | |
R22 | 0.7052 |
Analyte | T (K) | qe (mg/g) | ΔG° (kJ/mol) | ΔS° (J/mol K) | ΔH°(kJ/mol) |
---|---|---|---|---|---|
DCF | 298 | 44.0 | −3.89 | 51.81 | 11.38 |
303 | 50.87 | −4.52 | |||
313 | 52.71 | −4.82 | |||
333 | 61.20 | −5.84 |
Sample | Prior Adsorption (mg/L) | Post Adsorption (mg/L) | %RE |
---|---|---|---|
Influent | 7.311 | 0.345 | 95.28 |
Effluent | 6.948 | 0.178 | 97.44 |
Raw sewage | 8.376 | 0.433 | 94.83 |
Final sewage | 8.629 | 0.983 | 88.61 |
Parameter | Influent | Effluent | Raw Sewage | Final Sewage | ||||
---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | |
pH | 8.09 | 7.46 | 9.86 | 7.37 | 8.21 | 7.42 | 9.51 | 7.03 |
Turbidity (NTU) | 29.0 | 11.7 | 1.31 | 0.95 | 15.8 | 1.33 | 23.0 | 11.1 |
EC (mS) | 0.19 | 0.12 | 0.37 | 0.24 | 1.48 | 1.02 | 1.25 | 0.95 |
TDS (mg/L) | 130 | 65 | 192 | 96 | 776 | 411 | 595 | 299 |
Adsorbent | pH | Adsorption Capacity (mg/g) | MA (g) | Contact Time (min) | References |
---|---|---|---|---|---|
RM-PPy | 5 | 195 | 0.20 | 50 | [97] |
GO@CoFe2O4 nanocomposite | 4 | 32.4 | 0.74 | 60 | [98] |
Olive stones-AC | 4.2 | 11.0 | 0.30 | 30 | [99] |
MWCNTs-Fe3O4 nanocomposite | 5.6 | 52.1 | 0.15 | 82 | [100] |
Cocoa pod husk-AC | 7 | 5.53 | 0.25 | 15 | [101] |
Fe3O4/SiO2 Nanocomposite | 2.4 | 55.7 | 0.02 | 40 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabu, D.; Waleng, N.J.; Munonde, T.S.; Nqombolo, A.; Nomngongo, P.N. Fe3O4/SiO2 Nanocomposite Derived from Coal Fly Ash and Acid Mine Drainage for the Adsorptive Removal of Diclofenac in Wastewater. Recycling 2025, 10, 99. https://doi.org/10.3390/recycling10030099
Mabu D, Waleng NJ, Munonde TS, Nqombolo A, Nomngongo PN. Fe3O4/SiO2 Nanocomposite Derived from Coal Fly Ash and Acid Mine Drainage for the Adsorptive Removal of Diclofenac in Wastewater. Recycling. 2025; 10(3):99. https://doi.org/10.3390/recycling10030099
Chicago/Turabian StyleMabu, Dance, Ngwako Joseas Waleng, Tshimangadzo S. Munonde, Azile Nqombolo, and Philiswa Nosizo Nomngongo. 2025. "Fe3O4/SiO2 Nanocomposite Derived from Coal Fly Ash and Acid Mine Drainage for the Adsorptive Removal of Diclofenac in Wastewater" Recycling 10, no. 3: 99. https://doi.org/10.3390/recycling10030099
APA StyleMabu, D., Waleng, N. J., Munonde, T. S., Nqombolo, A., & Nomngongo, P. N. (2025). Fe3O4/SiO2 Nanocomposite Derived from Coal Fly Ash and Acid Mine Drainage for the Adsorptive Removal of Diclofenac in Wastewater. Recycling, 10(3), 99. https://doi.org/10.3390/recycling10030099