Effects of Drainage Control on Non-Point Source Pollutant Loads in the Discharges from Rice Paddy Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Monitoring of Paddy Field Discharges
2.3. Statistical Analysis
2.4. Monitoring of Stormwater Runoff
3. Results and Discussion
3.1. Discharged Loads from Paddy Fields
3.2. Discharged Loads from Paddy Fields in HD
3.3. Correlations of Discharged Pollutant Loads and Paddy Field Conditions
3.4. Characteristics of Stormwater Runoff
3.5. Limitations of This Study, Further Study, and Suggestions for a Greater Reduction in Pollutant Load from Paddy Fields
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, C.; Piao, S.L.; Wang, X.H.; Huang, Y.; Ciais, P.; Elliott, J.; Huang, M.T.; Janssens, I.A.; Li, T.; Lian, X.; et al. Plausible rice yield losses under future climate warming. Nat. Plants 2017, 3, 16202. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.S.; Jabran, K.; Mahajan, G. Rice Production Worldwide; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- International Fertilizer Association (IFA) and International Plant Nutrition Institute (IPNI). Assessment of Fertilizer Use by Crop at the Global Level 2014-2014/15; IFA: Paris, France, 2017. [Google Scholar]
- Deng, J.; Zhou, Z.; Zhu, B.; Zheng, X.; Li, C.; Wang, X.; Jian, Z. Modeling nitrogen loading in a small watershed in southwest China using a DNDC model with hydrological enhancements. Biogeosciences 2011, 8, 2999–3009. [Google Scholar] [CrossRef]
- Han, H.; Gao, R.; Cui, Y.; Gu, S. Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields. Agric. Water Manag. 2021, 255, 107024. [Google Scholar] [CrossRef]
- Baker, E.A.; Cappato, A.; Todeschini, S.; Tamellini, L.; Sangalli, G.; Reali, A.; Manenti, S. Combining the Morris Method and Multiple Error Metrics to assess aquifer characteristics and recharge in the lower Ticino basin, in Italy. J. Hydrol. 2022, 614, 128536. [Google Scholar] [CrossRef]
- Hou, X.K.; Zhan, X.Y.; Zhou, F.; Yan, X.Y.; Gu, B.J.; Reis, S.; Wu, Y.L.; Liu, H.B.; Piao, S.L.; Tang, Y.H. Detection and attribution of nitrogen runoff trend in China’s croplands. Environ. Pollut. 2018, 234, 270–278. [Google Scholar] [CrossRef]
- Fu, J.; Wu, Y.; Wang, Q.; Hu, K.; Wang, S.; Zhou, M.; Hayashi, K.; Wang, H.; Zhan, X.; Jian, Y.; et al. Importance of subsurface fluxes of water, nitrogen and phosphorus from rice paddy fields relative to surface runoff. Agric. Water Manag. 2019, 213, 627–635. [Google Scholar] [CrossRef]
- Joint Ministry of Korea. Comprehensive Plan for Managing Stormwater Runoff and Non-Point Source Pollution, 3rd ed.; Joint Ministry of Korea: Sejong, Republic of Korea, 2020. [Google Scholar]
- OECD. Agri-Environmental Indicators/Nutrient Balances. 2021. Available online: https://data-explorer.oecd.org (accessed on 10 January 2025).
- Matamoros, V.; Caiola, N.; Rosales, V.; Hernández, O.; Ibáñez, C. The role of rice fields and constructed wetlands as a source and a sink of pesticides and contaminants of emerging concern: Full-scale evaluation. Ecol. Eng. 2020, 156, 105971. [Google Scholar] [CrossRef]
- Liu, R.; Ouyang, W.; Wang, Y.; Lian, Z.; Pan, J.; Liu, H.; Chen, J.; Niu, S. Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects. Agric. Water Manag. 2023, 277, 108102. [Google Scholar] [CrossRef]
- Arouna, A.; Dzomeku, I.K.; Shaibu, A.G.; Nurudeen, A.R. Water Management for Sustainable Irrigation in Rice (Oryza sativa L.) Production: A Review. Agronomy 2023, 13, 1522. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Bouman, B.A.M.; de Dios, J.L.; Espiritu, A.J.; Soriana, J.B.; Lactaoen, A.T.; Faronilo, J.E.; Thant, K.M. Yield of aerobic rice in rainfed lowlands of the Philippines as affected by nitrogen management and row spacing. Field Crops Res. 2010, 116, 165–174. [Google Scholar] [CrossRef]
- Han, H.; Cui, Y.; Huang, Y.; Wang, S.; Duan, Q.; Zhang, L. Impacts of the channel/barrier effect and three-dimensional climate-A case study of rice water requirement and irrigation quata in Yunnan, China. Agric. Water Manag. 2019, 212, 317–327. [Google Scholar] [CrossRef]
- Wu, M.; Cao, X.; Guo, X.; Xiao, J.; Ren, J. Assessment of grey water footprint in paddy rice cultivation: Effects of field water management policies. J. Clean. Prod. 2021, 313, 127876. [Google Scholar] [CrossRef]
- Hama, T.; Nakamura, K.; Kawashima, S.; Kaneki, R.; Mitsuno, T. Effects of cyclic irrigation on water and nitrogen mass balances in a paddy field. Ecol. Eng. 2011, 37, 1563–1566. [Google Scholar] [CrossRef]
- Feng, Y.; Yoshinag, I.; Shiratani, E.; Hitomi, T.; Hasebe, H. Characteristics and behavior of nutrients in a paddy field area equipped with a recycling irrigation system. Agric. Water Manag. 2004, 68, 47–60. [Google Scholar] [CrossRef]
- Zampieri, M.; Ceglar, A.; Manfron, G.; Toreti, A.; Duveiller, G.; Romani, M.; Rocca, C.; Scoccimarro, E.; Podrascanin, Z.; Djurdjevic, V. Adaptation and sustainability of water management for rice agriculture in temperate regions: The Italian case-study. Land Degrad. Dev. 2019, 30, 2033–2047. [Google Scholar] [CrossRef]
- Wu, M.; Li, Y.; Xiao, J.; Guo, X.; Cao, X. Blue, green, and grey water footprints assessment for paddy irrigation-drainage system. J. Environ. Manag. 2022, 302, 114116. [Google Scholar] [CrossRef]
- Shi, L.; Li, S. Simulation Study on Water Quality of Paddy Field Ditches Considering the Effects of Rainfall and Sediment Release. Sustainability 2024, 16, 1075. [Google Scholar] [CrossRef]
- Hua, L.; Zhai, L.; Liu, J.; Liu, H.; Zhang, F.; Fan, X. Effect of irrigation-drainage unit on phosphorus interception in paddy field system. J. Environ. Manag. 2019, 235, 319–327. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Liu, H.; Zhu, J.; Fan, X.; Zhang, F.; Ma, Y.; Chen, J.; Hao, F.; Lian, Z. Drainage optimization of paddy field watershed for diffuse phosphorus pollution control and sustainable agricultural development. Agriculture, Ecosyst. Environ. 2021, 308, 107238. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, J.; Zhang, P.; Meng, Y.; Xiong, Y. Controlled Irrigation and Drainage Reduce Rainfall Runoff and Nitrogen Loss in Paddy Fields. Int. J. Environ. Res. Public Health 2021, 18, 3348. [Google Scholar] [CrossRef]
- Li, X.-N.; Zhang, W.-W.; Wu, J.-Y.; Li, H.-J.; Zhao, T.-K.; Zhao, C.-Q.; Shi, R.-S.; Li, Z.-S.; Wang, C.; Li, C. Loss of nitrogen and phosphorus from farmland runoff and the interception effect of an ecological drainage ditch in the North China Plain—A field study in a modern agricultural park. Ecol. Eng. 2021, 169, 106310. [Google Scholar] [CrossRef]
- National Institute of Agricultural Sciences (NIAS), Korea. Characteristics of Agricultural Non-Point Source Pollution Discharge and Development of Its Integrated Management Practice; NIAS: Wanju, Republic of Korea, 2015. [Google Scholar]
- Li, S.S.; Liu, H.B.; Zhang, L.; Li, X.; Wang, H.; Zhuang, Y.; Zhang, F.; Zhai, L.; Fan, X.; Hu, W.; et al. Potential nutrient removal function of naturally existed ditches and ponds in paddy regions: Prospect of enhancing water quality by irrigation and drainage management. Sci. Total Environ. 2020, 718, 137418. [Google Scholar] [CrossRef]
- Cho, J.-Y. Seasonal runoff estimation of N and P in a paddy field of central Korea. Nutr. Cycl. Agroecosystems 2003, 65, 43–52. [Google Scholar] [CrossRef]
- Cui, N.; Cai, M.; Zhang, X.; Abdelhafez, A.A.; Zhou, L.; Sun, H.; Chen, G.; Zou, G.; Zhou, S. Runoff loss of nitrogen and phosphorus from a rice paddy field in the east of China: Effects of long-term chemical N fertilizer and organic manure applications. Glob. Ecol. Conserv. 2020, 22, e01011. [Google Scholar] [CrossRef]
- Korea Ministry of Environment. River Information Management Geographic Information System (RIMGIS). Available online: https://river.go.kr (accessed on 8 May 2025).
- National Institute of Environmental Research (NIER), Korea. 2019 National Water Quality Evaluation; NIER: Incheon, Republic of Korea, 2020. (In Korean) [Google Scholar]
- Geum River Basin Environmental Office (GRBEO), Korea. 2021 Miho Stream Mid-Watershed Water Environment Management Plan Implementation Assessment; GRBEO: Hwaseong, Republic of Korea, 2022. (In Korean) [Google Scholar]
- National Institute of Environmental Research (NIER), Korea. Natl. Pollut. Source Investigation; NIER: Incheon, Republic of Korea. 2020. Available online: https://wems.nier.go.kr (accessed on 8 May 2025).
- Geum River Basin Management Committee (GRBEMC), Korea. Study on the Dissemination Effects of Agricultural Drainage Management Facility for Geum River Watershed (2nd Year); GRBEMC: Jeonju, Republic of Korea, 2023. (In Korean) [Google Scholar]
- Daejeon Sejong Research Institute (DSRI), Korea. Policy Analysis and Response Strategies for Improving the Water Quality of Miho Stream; DSRI: Seoul, Republic of Korea, 2021. (In Korean) [Google Scholar]
- Zhuang, Y.; Zhang, L.; Li, S.S.; Liu, H.; Zhai, L.; Zhou, F.; Ye, Y.; Ruan, S.; Wen, W. Effects and potential of water-saving irrigation for rice production in China. Agric. Water Manag. 2019, 217, 374–382. [Google Scholar] [CrossRef]
- National Institute of Environmental Research (NIER), Korea. Official Test Standards of Water Pollution; NIER: Incheon, Republic of Korea, 2021. (In Korean) [Google Scholar]
- Eum, J.-S. Runoff Characteristics of Non-Point Source Pollution from Agricultural Watershed and Water Quality Simulations with Crop Change. Ph.D. Thesis, Kangwon National University, Gangwon, Republic of Korea, 2015. [Google Scholar]
- Perera, T.; McGree, J.; Egodawatta, P.; Jinadasa, K.B.S.N.; Goonetilleke, A. Catchment based estimation of pollutant event mean concentration (EMC) and implications for first flush assessment. J. Environ. Manag. 2021, 279, 111737. [Google Scholar] [CrossRef]
- Korea Meorological Administration. Available online: https://www.weather.go.kr (accessed on 8 May 2025).
- Wang, L.; Huang, D. Nitrogen and phosphorus losses by surface runoff and soil microbial communities in a paddy field with different irrigation and fertilization managements. PLoS ONE 2021, 16, e0254227. [Google Scholar] [CrossRef]
- Liu, J.; Ouyang, X.Q.; Shen, J.L.; Li, Y.; Sun, W.R.; Jiang, W.Q. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Sci. Total Environ. 2020, 715, 136852. [Google Scholar] [CrossRef]
- Liu, M.; Wu, Y.; Huang, S.; Yang, Y.; Li, Y.; Wang, L.; Xi, Y.; Zhang, J.; Chen, Q. Effects of Organic Fertilization Rates on Surface Water Nitrogen and Phosphorus Concentrations in Paddy Fields. Agriculture 2022, 12, 1466. [Google Scholar] [CrossRef]
- Choi, J.-K.; Son, J.-G.; Yoon, K.-S.; Lee, H.-J.; Kim, Y.-J. Runoff Characteristics in Paddy Field using Cow Manure Compost Fertilizer (in Korean). J. Korean Soc. Agric. Eng. 2012, 54, 29–36. [Google Scholar]
- Kwun, S.K.; Yoo, M.H. Establish Prevention of Eutrophication and Environmental Pollution of Reservoirs(Ⅱ); Korean Rural Community and Agricultural Corporation: Anyang, Republic of Korea, 1989. (In Korean) [Google Scholar]
- Yoon, K.S.; Han, K.H.; Cho, J.Y.; Choi, C.H.; Son, J.G.; Choi, J.K. Water and Nutrient Balance of Paddy Field Irrigated from a Pumping Station during Cropping Period (in Korean). J. Korean Soc. Rural Plan. 2002, 8, 3–14. [Google Scholar]
- Kim, K.; Kang, M.S.; Song, I.; Song, J.-H.; Park, J.; Jun, S.M.; Jang, J.R.; Kim, J.S. Effects of Controlled Drainage and Slow-release Fertilizer on Nutrient Pollutant Loads from Paddy Fields (in Korean). J. Korean Soc. Agric. Eng. 2016, 58, 1–10. [Google Scholar]
- Roudbar, M.V.; Dehnavi, A.; Jamshidi, S.; Yazdani, M. A multi-pollutant pilot study to evaluate the grey water footprint of irrigated paddy rice. Agric. Water Manag. 2023, 282, 108291. [Google Scholar] [CrossRef]
- Zhang, S.; Rasool, G.; Guo, X.; Sen, L.; Cao, K. Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency. Water 2020, 12, 2239. [Google Scholar] [CrossRef]
- Takeda, I.; Fukushima, A. Long-term changes in pollutant load outflows and purification function in a paddy field watershed. Water Res. 2006, 40, 569–578. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kong, S.D.; Shin, D.S.; Jeon, J.H. Characteristics of Nutrient Export from Paddy Rice Fields with Irrigation Practices (in Korean). J. Korean Soc. Water Qual. 2004, 20, 597–602. [Google Scholar]
- Geum River Basin Management Committee (GRBMC), Korea. Control of Agricultural Non-point Source Pollution Discharge from Paddy Fields by Water Tails of the Geum River Watershed; GRBMC: Daejeon, Republic of Korea, 2020. [Google Scholar]
- Zhang, Y.; Fang, W.; Xu, G.; Ren, Y.; Xu, X. Experimental study on the release rate of nitrogen and phosphorus from sediments under wave action. J. Ocean. Univ. China 2016, 50, 102–110. [Google Scholar]
- Gu, J.; Yang, J. Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management. Crop Environ. 2022, 1, 7–14. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, T.; Kothawala, D.N.; Wang, Q.; Zhao, Z.; Wang, D.; Zhijian, M.; Zhang, J. Rice-paddy field acts as a buffer system to decrease the terrestrial characteristics of dissolved organic matter exported from a typical small agricultural watershed in the Three Gorges Reservoir Area, China. Environ. Sci. Pollut. Res. 2019, 26, 23873–23885. [Google Scholar] [CrossRef] [PubMed]
- Rural Research Institute (RRI), Korea; Korea Rural Community Corporation (KRCC), Korea. The Environmental-Friendly Agricultural Infrastructure Improvement Plan to Reduce the Influence Agricultural Drainage on Water Pollution (Final): Focus on the Paddy Fields; Korea Rural Community Corporation, KRCC: Ansan, Republic of Korea, 2003. (In Korean) [Google Scholar]
- Wu, D.; Li, M.; Du, L.; Ren, D.; Wang, J. Straw return in paddy field alters photodegradation of organic contaminants by changing the quantity rather than the quality of water-soluble soil organic matter. Sci. Total Environ. 2022, 821, 153371. [Google Scholar] [CrossRef]
- Nguyen, H.V.-M.; Hur, J. Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools. Chemosphere 2011, 85, 782–789. [Google Scholar] [CrossRef]
- Choi, S.G.; Kim, M.G.; So, G.H.; Jang, T.I. Application of APEX-PADDY model considering paddy environment. Mag. Korean Soc. Agric. Eng. 2016, 58, 23–27. [Google Scholar]
- Hou, X.K.; Zhou, F.; Leip, A.; Fu, B.J.; Yang, H.; Chen, Y.; Gao, S.S.; Shang, Z.Y.; Ma, L. Spatial patterns of nitrogen runoff from Chinese paddy fields. Agric. Ecosyst. Environ. 2016, 231, 246–254. [Google Scholar] [CrossRef]
- Zhou, W.; Guo, Z.; Chen, J.; Jiang, J.; Hui, D.; Wang, X.; Sheng, J.; Chen, L.; Luo, Y.; Zheng, J.; et al. Direct seeding for rice production increased soil erosion and phosphorus runoff losses in subtropical China. Sci. Total. Envrion. 2019, 695, 133845. [Google Scholar] [CrossRef]
- Xiang, W.; Chen, J.; Li, Z.; Liu, M.; Gan, W.; Jiang, Y. Evaluation of nitrogen and phosphorus pollution in surface sediments of Baitan Lake and its influencing factors of release intensity. Resour. Environ. Eng. 2002, 36, 782–786+794. [Google Scholar]
- Xie, C.; Zhang, L.; Wang, M.; Jiang, Q. Scenario analysis on the management practices and optimization of rural non-point source pollution with the coupling of source-process-end: A case study of the Guishui river basin. Ecol. Indic. 2024, 159, 111677. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, P.; Zhao, Y.; Wang, F.; Huang, X.; Li, H. Contribution of ammonia nitrogen release from surface sediments of a reservoir in East China. J. Shanghai Univ. 2022, 28, 49–56. [Google Scholar]
- Wang, X.; Li, J.; Li, S.; Zhang, X. A study on removing nitrogen from paddy field rainfall runoff by an ecological ditch-zeolite barrier system. Enviton. Sci. Pollut. Res. 2017, 24, 27090–27103. [Google Scholar] [CrossRef]
- Obermann, M.; Rosenwinkel, K.H.; Tournoud, M.G. Investigation of first flushes in a medium-sized Med-iterraneancatchment. J. Hydrol. 2009, 373, 405–415. [Google Scholar] [CrossRef]
- Jafar, R.; Awad, A.; Hatem, I.; Jafar, K.; Awad, E.; Shahrour, I. Multiple Linear Regression and Machine Learning for Predicting the Drinking Water Quality Index in Al-Seine Lake. Smart Cities 2023, 6, 2807–2827. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Tong, Y.; Yin, X. A 5-year lysimeter monitoring of nitrate leaching from wheat–maize rotation system: Comparison between optimum N fertilization and conventional farmer N fertilization. Agric. Ecosyst. Environ. 2015, 199, 34–42. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). Annual Weather Report (in Korean); KMA: Daejeon, Republic of Korea, 2023. [Google Scholar]
- Li, Q.; Ouyang, W.; Zhu, J.; Lin, C.; He, M. Discharge dynamics of agricultural diffuse pollution under different rainfall patterns in the middle Yangtze river. J. Environ. Manag. 2023, 347, 119116. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, J.; Zhang, J.; Wang, Y.; Peng, S. Reduction of non-point pollution from paddy fields. Irrig. and Drain 2016, 65, 734–740. [Google Scholar] [CrossRef]
- Yin, W.; Yang, X.; Liu, W. Sustainable Management and Regulation of Agricultural Water Resources in the Context of Global Climate Change. Sustainability 2025, 17, 2760. [Google Scholar] [CrossRef]
- Abe, Y.; Maie, N.; Shima, E. Influence of Irrigated Paddy Fields on the Fluorescence Properties of Fluvial Dissolved Organic Matter. Surf. Water Qual. 2011, 40, 1266–1272. [Google Scholar] [CrossRef]
- Jin, B.; Liu, X.; Tan, J.; Shao, X.; Cheng, J. Effect of Plant Buffer Zone–Antifouling Curtain Wall on Reducing Non-Point Source Pollution in Paddy Fields, China. Sustainability 2022, 14, 6044. [Google Scholar] [CrossRef]
- Han, H.; Wang, X.; Zheng, H.; Liu, B.; Gao, R.; Cui, Y.; Liu, X.; Gu, S.; Zhang, B.; Yang, M. Using the paddy eco-ditch wetland system to reduce nitrogen non-point source pollution discharge from paddies: A consecutive six-year study in the Yunnan Plateau, China. Agric. Ecosyst. Environ. 2024, 365, 108911. [Google Scholar] [CrossRef]
- Yang, J.R.; Tang, S.; Li, Y.; Zhu, J.; Liu, Z. Assessing the nutrient removal performance from rice-crayfish paddy fields by an ecological ditch-wetland system. Heliyon 2024, 10, e38373. [Google Scholar] [CrossRef]
BOD | SS | T-N | T-P | TOC | |||
---|---|---|---|---|---|---|---|
HD | Control | Average | 16.5 | 1777.2 | 14.54 | 4.70 | 62.6 |
Standard deviation | 5.3 | 283.6 | 3.20 | 2.44 | 30.9 | ||
Test | Average | 11.2 | 256.2 | 4.86 | 0.99 | 20.6 | |
Standard deviation | 6.5 | 174.5 | 1.81 | 0.65 | 9.1 | ||
MD | Control | Average | 8.0 | 45.6 | 3.42 | 0.21 | 36.9 |
Standard deviation | 4.5 | 21.4 | 1.44 | 0.10 | 21.3 | ||
Test | Average | 2.5 | 17.4 | 0.69 | 0.13 | 6.9 | |
Standard deviation | 0.1 | 9.2 | 0.06 | 0.04 | 0.9 | ||
FD | Control | Average | 0.4 | 14.8 | 0.26 | 0.05 | 0.9 |
Standard deviation | 0.3 | 15.2 | 0.18 | 0.04 | 0.5 | ||
Test | Average | 0.9 | 6.0 | 0.24 | 0.05 | 2.3 | |
Standard deviation | 0.7 | 5.3 | 0.16 | 0.04 | 1.8 | ||
Total | Control | Average | 22.2 | 1817.5 | 16.99 | 4.87 | 87.8 |
Standard deviation | 10.0 | 261.8 | 1.50 | 2.29 | 14.9 | ||
Test | Average | 14.6 | 279.5 | 5.79 | 1.17 | 29.9 | |
Standard deviation | 6.1 | 177.5 | 1.81 | 0.62 | 9.2 | ||
Reduction | Average | 31.0 | 83.5 | 65.4 | 69.1 | 64.9 | |
(%) | Standard deviation | 28.9 | 11.8 | 12.2 | 21.7 | 12.9 |
Location | Period | Irrigation Mode | T-N | T-P | COD (BOD) | Reference |
---|---|---|---|---|---|---|
Shimane, Japan | 1991~2000 | Conventional | 13.6~75.0 | −3.55 *~2.21 | −24.7 *~48.5 | [50] |
Guilan, Iran | 2020 | Conventional | 10.98 | 8.40 | 54.5 | [48] |
Nanjing, China | 2015 | Common flood irrigation | 19.77 ** | - | - | [20] |
Water saving irrigation | 20.57 ** | - | - | |||
Zhoubeidun, China | 2018 | Traditional irrigation and drainage | 30.1 | - | - | [24] |
Controlled irrigation and drainage | 9.1 | - | - | |||
Nanjing, China | 2016~2017 | Frequent and shallow irrigation | 5.56~6.22 | 0.06~0.26 | - | [49] |
Wet and shallow irrigation | 5.21~5.22 | 0.06~0.20 | - | |||
Controlled irrigation | 3.94~4.99 | 0.04~0.15 | - | |||
Rain-catching and controlled irrigation | 5.41~5.66 | 0.06~0.22 | - | |||
Lianshui, China | 2016~2017 | Frequent and shallow irrigation | 16.3~18.9 | 0.84~1.47 | - | [16] |
Wet and shallow irrigation | 9.94~11.5 | 0.30~0.41 | - | |||
Controlled irrigation | 12.5~13.7 | 0.53~0.63 | - | |||
Rain-catching and controlled irrigation | 2.09~4.31 | 0.14~0.19 | - | |||
Nanjing, China | 2015~2017 | Frequent and shallow irrigation | 5.2~13.3 | - | - | [16] |
Wet and shallow irrigation | 4.8~18.1 | - | - | |||
Controlled irrigation | 3.0~18.0 | - | - | |||
Rain-catching and controlled irrigation | 2.6~10.0 | - | - | |||
Iksan, ROK | 2015 | Conventional | 15.5 | 1.38 | - | [44] |
Water management | 11.7 | 1.02 | - | |||
Fertilization management | 8.5 | 0.69 | - | |||
Pyeongtaek, ROK | 2014 | Before treatment | 10.15 | 0.47 | 84.02 | [26] |
After treatment | 9.69 | 0.35 | 83.94 | |||
2013 | Before treatment | 23.68 | 1.85 | 70.4 | ||
After treatment | 18.17 | 1.16 | 47.2 | |||
2012 | Before treatment | 20.15 | 1.75 | 118.5 | ||
After treatment | 9.7 | 1.33 | 89.9 | |||
Jincheon, ROK | 2012–2013 | Traditional paddy field | 22.7 | 2.52 | - | |
Yeoju, ROK | 2012–2013 | Flat paddy field | 21.1 | 1.82 | - | |
Suwon, ROK | 2012–2013 | Chemical fertilizer | 1.63 | 0.28 | - | |
Pig manure compost | 9.52 | 3.16 | - | |||
Suwon, ROK | 2012–2014 | Traditional paddy field | 5 | 0.63 | - | [26] |
Iksan, ROK | 2012–2014 | Traditional paddy field | 8.91 | 1.88 | - | |
Jeonju | 2011 | Cow manure compost | 15.7 | 0.4 | - | [44] |
Cheongwon ROK | 2001 | Surface water irrigation | 42.33 | 1.50 | [51] | |
Yeoju, ROK | 2001 | Groundwater irrigation | 20.28 | 1.15 | ||
Namwon, ROK | 1999–2000 | Traditional paddy field | 54.7~57.8 | 2.0~2.3 | - | [46] |
Jincheon, ROK | 2020 | Conventional irrigation | 38.46 | 1.831 | (25.27) | [52] *** |
Improved irrigation | 23.67 | 0.140 | (24.49) | |||
Cheongju, ROK | 2022 | Conventional drainage | 16.99 | 4.870 | (22.15) | This study |
Improved drainage | 5.79 | 1.173 | (14.55) |
Control (n = 11) | Test (n = 11) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BOD | SS | T-N | T-P | TOC | BOD | SS | T-N | T-P | TOC | ||
Water depth (cm) | 0.95 | 0.41 * | 0.44 | −0.07 * | 0.47 * | 0.78 | 0.61 ** | 0.34 * | −0.05 * | 0.64 ** | |
Area (m2) | 0.00 * | −0.25 * | −0.08 * | −0.31 * | −0.08 * | 0.34 * | 0.53 * | 0.63 ** | 0.06 * | 0.10 * | |
Total discharge volume (m3) | 0.46 * | −0.01 * | 0.24 * | −0.32 * | 0.25 * | 0.75 ** | 0.80 | 0.58 * | −0.03 * | 0.54 * | |
Initial flow velocity (m/s) | 0.58 * | 0.09 * | 0.26 * | −0.46 * | 0.31 * | 0.49 * | 0.50 * | 0.78 | −0.34 * | 0.34 * | |
Initial flowrate (m3/s) | 0.47 * | 0.08 * | 0.26 * | −0.39 * | 0.23 * | 0.58 * | 0.78 ** | 0.84 ** | −0.27 * | 0.48 * | |
Area normalized total discharge volume (m3/m2) | 0.95 ** | 0.42 * | 0.44 * | −0.07 * | 0.47 * | 0.77 ** | 0.61 ** | 0.34 * | −0.05 * | 0.64 ** | |
Area normalized initial flow velocity (m/m2·s) | 0.77 ** | 0.34 * | 0.26 * | −0.36 * | 0.38 * | 0.49 * | 0.35 * | 0.60 ** | −0.40 * | 0.43 * | |
Area normalized initial flowrate (m3/m2·s) | 0.84 ** | 0.46 * | 0.38 | −0.35 * | 0.40 * | 0.62 ** | 0.66 ** | 0.72 ** | −0.36 * | 0.58 * | |
Irrigation | BOD | 0.56 * | 0.42 * | 0.24 | 0.31 * | 0.23 * | 0.38 * | 0.33 * | 0.37 | 0.29 * | 0.32 * |
water | SS | −0.47 | −0.18 * | −0.26 | 0.34 * | −0.39 * | −0.50 | −0.45 * | −0.55 * | 0.20 * | −0.48 |
quality | T-N | −0.44 * | 0.02 * | 0.05 * | 0.51 | −0.12 * | −0.31 * | −0.36 * | −0.41 * | 0.37 * | −0.72 ** |
(mg/L) | T-P | 0.43 * | 0.24 * | 0.35 * | −0.40 | 0.44 * | 0.67 ** | 0.50 * | 0.66 ** | −0.30 | 0.03 * |
TOC | −0.42 * | −0.53 * | −0.67 ** | −0.24 * | −0.65 ** | −0.64 ** | −0.40 * | −0.51 | −0.25 * | 0.25 * | |
Soil | T-N (%) | −0.35 * | 0.28 * | 0.30 * | 0.96 ** | 0.30 * | 0.40 * | 0.40 * | −0.45 * | 0.94 | −0.04 * |
property | T-P (mg/L) | −0.48 * | −0.20 * | −0.02 * | 0.53 * | 0.28 * | −0.39 * | −0.48 * | −0.87 ** | −0.31 * | 0.19 * |
Sand (%) | −0.15 * | 0.29 * | 0.15 * | 0.62 ** | 0.00 | 0.12 * | 0.01 * | 0.13 * | 0.72 ** | −0.61 ** | |
Silt (%) | 0.16 * | −0.10 * | −0.10 * | −0.55 * | 0.14 * | −0.29 * | −0.17 * | −0.07 * | −0.83 ** | 0.57 | |
Clay (%) | 0.10 | −0.47 * | −0.15 | −0.58 | −0.07 * | 0.08 | 0.17 * | −0.18 * | −0.55 * | 0.61 ** | |
Fertilizer | N | 0.18 * | −0.32 * | −0.47 * | −0.68 ** | −0.36 * | −0.04 * | 0.11 * | 0.14 * | −0.59 * | 0.56 * |
(kg/ha) | P | 0.34 * | 0.08 * | 0.11 * | −0.61 ** | 0.16 | 0.42 * | 0.37 * | 0.54 * | −0.57 * | 0.08 * |
Control (n = 4) | Test (n = 7) | ||||||||||
Paddy | BOD | 0.44 | −0.97 * | 0.97 | −0.76 | −0.01 * | 0.56 | 0.56 * | 0.39 | 0.25 * | 0.63 |
water | SS | −0.50 * | 0.99 * | −0.90 ** | 0.87 ** | 0.21 * | 0.28 * | 0.70 | 0.14 * | 0.35 * | 0.33 * |
quality | T-N | 0.48 | −0.96 * | 0.96 | −0.77 * | −0.03 * | −0.10 | −0.44 * | 0.63 | −0.53 * | −0.06 |
(mg/L) | T-P | −0.14 * | 0.93 * | −0.96 ** | 0.65 * | −0.11 * | −0.06 * | 0.70 ** | −0.45 * | 0.79 | −0.13 * |
TOC | 0.27 * | −0.94 * | 0.98 | −0.68 ** | 0.10 | 0.53 | 0.40 * | 0.18 | 0.05 * | 0.63 |
Load (kg/ha) | Coefficient of Determination | β0 | β1 | β2 | β3 | β4 | β5 | β6 | |
---|---|---|---|---|---|---|---|---|---|
Paddy Water Quality (mg/L) | |||||||||
(r2) | SS | T-N | T-P | SS + T-N | SS + T-N | T-N + TP | |||
No | BOD | 0.1548 | 21.7421 | 0.0721 | −0.3031 | −19.1016 | - | - | - |
Interaction | SS | 0.1730 | 1171.0027 | −0.8011 | −16.4488 | 56.5278 | - | - | - |
T-N | 0.5499 | 9.1616 | 0.0338 | 0.5457 | −11.1674 | - | - | - | |
T-P | 0.1748 | 3.1077 | −0.0024 | −0.0462 | 0.3920 | - | - | - | |
TOC | 0.1822 | 68.0944 | 0.1292 | −0.7477 | −46.9947 | - | - | - | |
With | BOD | 0.2964 | −4.9129 | 0.2632 | 0.7957 | −10.4489 | −0.0068 | −0.0852 | 0.0797 |
interactions | SS | 0.6525 | −604.7422 | 7.6860 | 22.1729 | 3756.8943 | −0.1497 | −9.7702 * | −89.5768 |
T-N | 0.7513 | −11.6151 | 0.2962 | 2.2992 | −2.0688 | −0.0089 | −0.0692 | −3.3491 | |
T-P | 0.6009 | −2.2069 | 0.0341 | 0.1577 | 10.7382 | −0.0009 | −0.0283 | −0.5362 | |
TOC | 0.5179 | −23.4434 | 0.8535 | 3.5506 | 24.1300 | −0.0234 | −0.3466 | −4.5407 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, S.; Kim, D.; Ko, S. Effects of Drainage Control on Non-Point Source Pollutant Loads in the Discharges from Rice Paddy Fields. Water 2025, 17, 1650. https://doi.org/10.3390/w17111650
Jeon S, Kim D, Ko S. Effects of Drainage Control on Non-Point Source Pollutant Loads in the Discharges from Rice Paddy Fields. Water. 2025; 17(11):1650. https://doi.org/10.3390/w17111650
Chicago/Turabian StyleJeon, Sunyoung, Dogun Kim, and Seokoh Ko. 2025. "Effects of Drainage Control on Non-Point Source Pollutant Loads in the Discharges from Rice Paddy Fields" Water 17, no. 11: 1650. https://doi.org/10.3390/w17111650
APA StyleJeon, S., Kim, D., & Ko, S. (2025). Effects of Drainage Control on Non-Point Source Pollutant Loads in the Discharges from Rice Paddy Fields. Water, 17(11), 1650. https://doi.org/10.3390/w17111650