Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (312)

Search Parameters:
Keywords = virtual plane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5641 KB  
Article
A Novel Smartphone PDR Framework Based on Map-Aided Adaptive Particle Filter with a Reduced State Space
by Mengchi Ai, Ilyar Asl Sabbaghian Hokmabadi and Xuan Zhao
ISPRS Int. J. Geo-Inf. 2025, 14(12), 476; https://doi.org/10.3390/ijgi14120476 - 2 Dec 2025
Viewed by 368
Abstract
Accurate, reliable and infrastructure-free indoor positioning using a smartphone is considered an essential topic for applications such as indoor emergency response and indoor path planning. While the inertial measurement units (IMU) offer continuous and high-frequency motion data, pedestrian dead reckoning (PDR) based on [...] Read more.
Accurate, reliable and infrastructure-free indoor positioning using a smartphone is considered an essential topic for applications such as indoor emergency response and indoor path planning. While the inertial measurement units (IMU) offer continuous and high-frequency motion data, pedestrian dead reckoning (PDR) based on IMU data suffers from significant and accumulative errors. Map-aided particle filters (PFs) are important pose estimation frameworks that have exhibited capabilities to eliminate drifts by incorporating additional constraints from a pre-built floor map, without relying on other wireless or perception-based infrastructures. However, despite the recent approaches, a key challenging issue remains: existing map-aided PF-PDR solutions are computationally demanding, as they typically rely on a large number of particles and require map boundaries to eliminate non-matching particles. This process introduces substantial computational overhead, limiting efficiency and real-time performance on resource-constrained platforms such as smartphones. To address this key issue, this work proposes a novel map-aided PF-PDR framework that leverages a smartphone’s IMU data and a pre-built vectorized floor plan map. The proposed method introduces an adaptive PF-PDR solution that detects particle convergence using a cross-entropy distance of the particles and a Gaussian distribution. The number of particles is reduced significantly after a convergence is detected. Further, in order to reduce the computational cost, only the heading is included in particle attitude sampling. The heading is estimated accurately by levelling gyroscope measurements to a virtual plane, parallel to the ground. Experiments are performed using a dataset collected on a smartphone and the results demonstrate improved performance, especially in drift reduction, achieving an mean position error of 0.9 m and a processing rate of 37.0 Hz. Full article
(This article belongs to the Special Issue Indoor Mobile Mapping and Location-Based Knowledge Services)
Show Figures

Figure 1

20 pages, 2801 KB  
Article
Quantum-Enhanced Security Framework for Next-Generation Space–Terrestrial Networks
by Chengbin Huang, Jiangang Tong, Shengkai Liao, Jinhua Wang, Fei Zhou, Weiwen Kong, Yan Jiang, Yang Xie, Qianran Wang, Yue Zhang and Jinhui Li
Photonics 2025, 12(12), 1182; https://doi.org/10.3390/photonics12121182 - 30 Nov 2025
Viewed by 504
Abstract
Advancements in Non-Terrestrial Network (NTN) technology facilitate ubiquitous network access for users, whereas satellite-based Quantum Key Distribution (QKD) offers a viable solution for long-distance quantum key exchange in scenarios lacking terrestrial network infrastructure. This study explores the feasibility and practical utility of integrating [...] Read more.
Advancements in Non-Terrestrial Network (NTN) technology facilitate ubiquitous network access for users, whereas satellite-based Quantum Key Distribution (QKD) offers a viable solution for long-distance quantum key exchange in scenarios lacking terrestrial network infrastructure. This study explores the feasibility and practical utility of integrating NTN technology with satellite-based QKD and proposes a novel quantum-enhanced security framework for next-generation space–terrestrial networks. We have developed and deployed the first-of-its-kind 5G-enabled (fifth generation mobile communication) NTN prototype system leveraging satellite-based QKD key encryption. This system comprises a quantum satellite system, a communication satellite system, a 5G network infrastructure, and end-to-end encryption/decryption modules, aiming to validate the feasibility and usability of the proposed quantum-encrypted NTN security framework. Comprehensive tests and performance evaluations were carried out on the testbed constructed based on this prototype system, which collected critical Quality of Experience (QoE) metrics, including Round-Trip Time (RTT) and jitter, during user-plane ping measurements. Experimental results demonstrate that the integration of quantum encryption capabilities incurs an RTT overhead of 5 ms (0.75%), a necessary trade-off for systems incorporating supplementary quantum-encrypted transmission. Concurrently, the deployment of Virtual Private Network (VPN) infrastructure mitigates network jitter by 50%. These results hold critical theoretical and practical implications for the development of next-generation NTN security frameworks enabled by satellite-based QKD. Full article
(This article belongs to the Special Issue Advanced Optical Transmission Techniques)
Show Figures

Figure 1

23 pages, 14657 KB  
Article
An Annular CMUT Array and Acquisition Strategy for Continuous Monitoring
by María José Almario Escorcia, Amir Gholampour, Rob van Schaijk, Willem-Jan de Wijs, Andre Immink, Vincent Henneken, Richard Lopata and Hans-Martin Schwab
Sensors 2025, 25(21), 6637; https://doi.org/10.3390/s25216637 - 29 Oct 2025
Viewed by 809
Abstract
In many monitoring scenarios, repeated and operator-independent assessments are needed. Wearable ultrasound technology has the potential to continuously provide the vital information traditionally obtained from conventional ultrasound scanners, such as in fetal monitoring for high-risk pregnancies. This work is an engineering study motivated [...] Read more.
In many monitoring scenarios, repeated and operator-independent assessments are needed. Wearable ultrasound technology has the potential to continuously provide the vital information traditionally obtained from conventional ultrasound scanners, such as in fetal monitoring for high-risk pregnancies. This work is an engineering study motivated by that setting. A 144-element annular capacitive micromachined ultrasonic transducer (CMUT) is hereby proposed for 3-D ultrasound imaging. The array is characterized by its compact size and cost-effectiveness, with a geometry and low-voltage operation that make it a candidate for future wearable integration. To enhance the imaging performance, we propose the utilization of a Fermat’s spiral virtual source (VS) pattern for diverging wave transmission and conduct a performance comparison with other VS patterns and standard techniques, such as focused and plane waves. To facilitate this analysis, a simplified and versatile simulation framework, enhanced by GPU acceleration, has been developed. The validation of the simulation framework aligned closely with expected values (0.002 ≤ MAE ≤ 0.089). VSs following a Fermat’s spiral led to a balanced outcome across metrics, outperforming focused wave transmissions for this specific aperture. The proposed transducer presents imaging limitations that could be improved in future developments, but it establishes a foundational framework for the design and fabrication of cost-effective, compact 2-D transducers suitable for 3-D ultrasound imaging, with potential for future integration into wearable devices. Full article
(This article belongs to the Special Issue Wearable Physiological Sensors for Smart Healthcare)
Show Figures

Figure 1

18 pages, 14342 KB  
Article
A Multi-LiDAR Self-Calibration System Based on Natural Environments and Motion Constraints
by Yuxuan Tang, Jie Hu, Zhiyong Yang, Wencai Xu, Shuaidi He and Bolun Hu
Mathematics 2025, 13(19), 3181; https://doi.org/10.3390/math13193181 - 4 Oct 2025
Viewed by 835
Abstract
Autonomous commercial vehicles often mount multiple LiDARs to enlarge their field of view, but conventional calibration is labor-intensive and prone to drift during long-term operation. We present an online self-calibration method that combines a ground plane motion constraint with a virtual RGB–D projection, [...] Read more.
Autonomous commercial vehicles often mount multiple LiDARs to enlarge their field of view, but conventional calibration is labor-intensive and prone to drift during long-term operation. We present an online self-calibration method that combines a ground plane motion constraint with a virtual RGB–D projection, mapping 3D point clouds to 2D feature/depth images to reduce feature extraction cost while preserving 3D structure. Motion consistency across consecutive frames enables a reduced-dimension hand–eye formulation. Within this formulation, the estimation integrates geometric constraints on SE(3) using Lagrange multiplier aggregation and quasi-Newton refinement. This approach highlights key aspects of identifiability, conditioning, and convergence. An online monitor evaluates plane alignment and LiDAR–INS odometry consistency to detect degradation and trigger recalibration. Tests on a commercial vehicle with six LiDARs and on nuScenes demonstrate accuracy comparable to offline, target-based methods while supporting practical online use. On the vehicle, maximum errors are 6.058 cm (translation) and 4.768° (rotation); on nuScenes, 2.916 cm and 5.386°. The approach streamlines calibration, enables online monitoring, and remains robust in real-world settings. Full article
(This article belongs to the Section A: Algebra and Logic)
Show Figures

Figure 1

20 pages, 3191 KB  
Article
Visuomotor Control Accuracy of Circular Tracking Movement According to Visual Information in Virtual Space
by Jihyoung Lee, Kwangyong Han, Woong Choi and Jaehyo Kim
Sensors 2025, 25(19), 5998; https://doi.org/10.3390/s25195998 - 29 Sep 2025
Viewed by 963
Abstract
The VR-based circular tracking movement evaluation system (CES) was developed to quantitatively assess visuomotor control. The virtual stick, a component of the CES, provides visual cues in the virtual environment and haptic feedback when holding the controller. This study examined the effects of [...] Read more.
The VR-based circular tracking movement evaluation system (CES) was developed to quantitatively assess visuomotor control. The virtual stick, a component of the CES, provides visual cues in the virtual environment and haptic feedback when holding the controller. This study examined the effects of stick presence and presentation order on control accuracy for distance, angle, and angular velocity. Twenty-seven participants (12 females; mean age 23.3 ± 2.3 years) performed tasks in the frontal plane followed by the sagittal plane. In each plane, the stick was visible for the first 1–3 revolutions and invisible for the subsequent 4–6 revolutions in the invisible condition, with the reverse order in the visible condition. In the invisible condition, control accuracy with the stick was 1.10 times higher for distance only in the sagittal plane, and 1.13 and 1.09 times higher for angle and angular velocity in the frontal plane, and 1.11 and 1.08 times higher in the sagittal plane. No significant differences were observed in the visible condition. The improved control accuracy when the stick was visible is likely due to enhanced precision in constructing the reference frame, internal models, body coordinates, and effective multisensory integration of visual and haptic information. Such visual information may enable fine control in virtual environment-based applications, including games and surgical simulations. Full article
(This article belongs to the Special Issue Sensors Technologies for Measurements and Signal Processing)
Show Figures

Figure 1

22 pages, 8860 KB  
Article
Generating Multi-View Action Data from a Monocular Camera Video by Fusing Human Mesh Recovery and 3D Scene Reconstruction
by Hyunsu Kim and Yunsik Son
Appl. Sci. 2025, 15(19), 10372; https://doi.org/10.3390/app151910372 - 24 Sep 2025
Viewed by 1575
Abstract
Multi-view data, captured from various perspectives, is crucial for training view-invariant human action recognition models, yet its acquisition is hindered by spatio-temporal constraints and high costs. This study aims to develop the Pose Scene EveryWhere (PSEW) framework, which automatically generates temporally consistent, multi-view [...] Read more.
Multi-view data, captured from various perspectives, is crucial for training view-invariant human action recognition models, yet its acquisition is hindered by spatio-temporal constraints and high costs. This study aims to develop the Pose Scene EveryWhere (PSEW) framework, which automatically generates temporally consistent, multi-view 3D human action data from a single monocular video. The proposed framework first predicts 3D human parameters from each video frame using a deep learning-based Human Mesh Recovery (HMR) model. Subsequently, it applies tracking, linear interpolation, and Kalman filtering to refine temporal consistency and produce naturalistic motion. The refined human meshes are then reconstructed into a virtual 3D scene by estimating a stable floor plane for alignment, and finally, novel-view videos are rendered using user-defined virtual cameras. As a result, the framework successfully generated multi-view data with realistic, jitter-free motion from a single video input. To assess fidelity to the original motion, we used Root Mean Square Error (RMSE) and Mean Per Joint Position Error (MPJPE) as metrics, achieving low average errors in both 2D (RMSE: 0.172; MPJPE: 0.202) and 3D (RMSE: 0.145; MPJPE: 0.206) space. PSEW provides an efficient, scalable, and low-cost solution that overcomes the limitations of traditional data collection methods, offering a remedy for the scarcity of training data for action recognition models. Full article
(This article belongs to the Special Issue Advanced Technologies Applied for Object Detection and Tracking)
Show Figures

Figure 1

13 pages, 909 KB  
Article
An Innovated Vibration Equation for Longitudinal Plate by Using the Symmetric and Asymmetric Spectral Decomposition
by Jun Yin, Chuanping Zhou, Changyong Chu, Huipeng Chen and Fan Yang
Symmetry 2025, 17(9), 1563; https://doi.org/10.3390/sym17091563 - 18 Sep 2025
Viewed by 350
Abstract
Thick wall structures involving longitudinal wave are typically utilized in aerospace engineering, nuclear power engineering, precision transmission device design, and pressure vessels design. Consequently, developing sophisticated dynamic models for thick plates is of paramount importance. However, the commonly used longitudinal vibration equation is [...] Read more.
Thick wall structures involving longitudinal wave are typically utilized in aerospace engineering, nuclear power engineering, precision transmission device design, and pressure vessels design. Consequently, developing sophisticated dynamic models for thick plates is of paramount importance. However, the commonly used longitudinal vibration equation is of the second order, which is regarded as a plane stress problem. Its dispersion curve is a straight line, which cannot describe the actual dispersion in the plate. In this paper, the spectral analysis of Navier equation describing three-dimensional elasto-dynamics is carried out by using the symmetric and asymmetric spectral decomposition theory of differential operators and introducing the concept of virtual differential operators. The infinite product operator series describing longitudinal vibration are truncated into fourth order. The governing equation of longitudinal vibration consists of a fourth-order wave equation and a second-order wave equation. Owing to the fact that no a priori assumptions were introduced during the derivation of its dynamic equations, the proposed plate dynamic model boasts higher precision and is applicable across a broader frequency spectrum and for plates with greater thicknesses. This is a breakthrough in the longitudinal vibration equation of plates. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

12 pages, 2796 KB  
Article
Wedge Osteotomy of the Maxilla for the Treatment of Obstructive Sleep Apnea (OSA) Through Virtual Surgical Planning, CAD/CAM Technology: Consecutive Case Series
by Antonio Scarano, Roberto Pistilli, Flavio Andrea Govoni, Silvio Di Nezza, Luca Tarascio, Filippo Pica, Luca De Paolis, Alessandra Celebrini, Vinicio Magliacani, Gianluca Bellocchi and Vincenzo Antonio Marcelli
Surgeries 2025, 6(3), 74; https://doi.org/10.3390/surgeries6030074 - 30 Aug 2025
Viewed by 944
Abstract
Orthognathic surgery, particularly maxillomandibular advancement (MMA), has emerged as an effective therapeutic option for patients with moderate to severe OSA who are refractory to conventional treatments. The wedge osteotomy of the maxilla, often performed in combination with mandibular surgery, can be a surgical [...] Read more.
Orthognathic surgery, particularly maxillomandibular advancement (MMA), has emerged as an effective therapeutic option for patients with moderate to severe OSA who are refractory to conventional treatments. The wedge osteotomy of the maxilla, often performed in combination with mandibular surgery, can be a surgical treatment for obstructive sleep apnea (OSA). This case series report describes 6 OSA patients without anteroposterior maxillary deficiency who were treated with wedge osteotomy of the maxilla. Material and Methods: We conducted a retrospective analysis of 6 patients who underwent maxillomandibular advancement (MMA) for obstructive sleep apnea (OSA), all operated on consecutively by the same surgeon between 2018 and 2024 at the Maxillofacial Surgery of San Camillo-Forlanini Hospital, in Rome, Italy. Patients were evaluated using a CAD/CAM-assisted approach. A pre- and postoperative comparative analysis was conducted to assess the effectiveness of the surgical treatment in improving OSA-related parameters. Maxillary wedge osteotomy and bilateral sagittal split osteotomies (BSSO) of the mandibular ramus were digitally planned. Results: The comparison between preoperative and postoperative CT scans, along with 3D reconstructions generated using dedicated software, revealed a counterclockwise rotation of the occlusal plane, resulting in a mandibular advancement of approximately 13 mm. The CT shows a significant increase in airway volume following the skeletal repositioning. The airway volume increased from 20.665 ± 546 mm3 to 27.177 ± 446 mm3. Conclusions: Counterclockwise rotational orthognathic surgery without maxillary advancement has been shown to effectively enlarge the posterior pharyngeal space while also delivering excellent esthetic outcomes. Full article
Show Figures

Figure 1

16 pages, 8310 KB  
Article
An Economically Viable Minimalistic Solution for 3D Display Discomfort in Virtual Reality Headsets Using Vibrating Varifocal Fluidic Lenses
by Tridib Ghosh, Mohit Karkhanis and Carlos H. Mastrangelo
Virtual Worlds 2025, 4(3), 38; https://doi.org/10.3390/virtualworlds4030038 - 26 Aug 2025
Viewed by 1428
Abstract
Herein, we report a USB-powered VR-HMD prototype integrated with our 33 mm aperture varifocal liquid lenses and electronic drive components, all assembled in a conventional VR-HMD form-factor. In this volumetric-display-based VR system, a sequence of virtual images are rapidly flash-projected at different plane [...] Read more.
Herein, we report a USB-powered VR-HMD prototype integrated with our 33 mm aperture varifocal liquid lenses and electronic drive components, all assembled in a conventional VR-HMD form-factor. In this volumetric-display-based VR system, a sequence of virtual images are rapidly flash-projected at different plane depths in front of the observer and are synchronized with the correct accommodations provided by the varifocal lenses for depth-matched focusing at chosen sweep frequency. This projection mechanism aids in resolving the VAC that is present in conventional fixed-depth VR. Additionally, this system can address refractive error corrections like myopia and hyperopia for prescription users and do not require any eye-tracking systems. We experimentally demonstrate these lenses can vibrate up to frequencies approaching 100 Hz and report the frequency response of the varifocal lenses and their focal characteristics in real time as a function of the drive frequency. When integrated with the prototype’s 120 fps VR display system, these lenses produce a net diopter change of 2.3 D at a sweep frequency of 45 Hz while operating at ~70% of its maximum actuation voltage. The components add a total weight of around 50 g to the off-the-shelf VR set, making it a cost-effective but lightweight minimal solution. Full article
Show Figures

Figure 1

35 pages, 4321 KB  
Review
An Overview of SDN Issues—A Case Study and Performance Evaluation of a Secure OpenFlow Protocol Implementation
by Hugo Riggs, Asadullah Khalid and Arif I. Sarwat
Electronics 2025, 14(16), 3244; https://doi.org/10.3390/electronics14163244 - 15 Aug 2025
Viewed by 5157
Abstract
Software-Defined Networking (SDN) is a network architecture that decouples the control plane from the data plane, enabling centralized, programmable management of network traffic. SDN introduces centralized control and programmability to modern networks, improving flexibility while also exposing new security vulnerabilities across the application, [...] Read more.
Software-Defined Networking (SDN) is a network architecture that decouples the control plane from the data plane, enabling centralized, programmable management of network traffic. SDN introduces centralized control and programmability to modern networks, improving flexibility while also exposing new security vulnerabilities across the application, control, and data planes. This paper provides a comprehensive overview of SDN security threats and defenses, covering recent developments in controller hardening, trust management, route optimization, and anomaly detection. Based on these findings, we present a comparative analysis of SDN controllers in terms of performance, scalability, and deployment complexity. This culminates in the introduction of the Cloud-to-Edge Layer Two (CELT)-Secure switch, a virtual OpenFlow-based data-plane security mechanism. CELT-Secure detects and blocks Internet Control Message Protocol flooding attacks in approximately two seconds and actively disconnects hosts engaging in Address Resolution Protocol-based man-in-the-middle attacks. In comparative testing, it achieved detection performance 10.82 times faster than related approaches. Full article
Show Figures

Figure 1

19 pages, 1716 KB  
Article
Image-Based Adaptive Visual Control of Quadrotor UAV with Dynamics Uncertainties
by Jianlan Guo, Bingsen Huang, Yuqiang Chen, Guangzai Ye and Guanyu Lai
Electronics 2025, 14(15), 3114; https://doi.org/10.3390/electronics14153114 - 5 Aug 2025
Viewed by 945
Abstract
In this paper, an image-based visual control scheme is proposed for a quadrotor aerial vehicle with unknown mass and moment of inertia. In order to reduce the impacts of underactuation in quadrotor dynamics, a virtual image plane is introduced and appropriate image moment [...] Read more.
In this paper, an image-based visual control scheme is proposed for a quadrotor aerial vehicle with unknown mass and moment of inertia. In order to reduce the impacts of underactuation in quadrotor dynamics, a virtual image plane is introduced and appropriate image moment features are defined to decouple the image features from the movement of the vehicle. Subsequently, based on the quadrotor dynamics, a backstepping method is used to construct the torque controller, ensuring that the control system has superior dynamic performance. Furthermore, an adaptive control scheme is then designed to enable online estimation of dynamic parameters. Finally, stability is formally verified through constructive Lyapunov methods, and performance test results validate the efficacy and robustness of the proposed control scheme. It can be verified through performance tests that the quadrotor successfully positions itself at the desired position under uncertain dynamic parameters, and the attitude angles converge to the expected values. Full article
Show Figures

Figure 1

19 pages, 3698 KB  
Article
Multi-Plane Virtual Vector-Based Anti-Disturbance Model Predictive Fault-Tolerant Control for Electric Agricultural Equipment Applications
by Hengrui Cao, Konghao Xu, Li Zhang, Zhongqiu Liu, Ziyang Wang and Haijun Fu
Energies 2025, 18(14), 3857; https://doi.org/10.3390/en18143857 - 20 Jul 2025
Viewed by 480
Abstract
This paper proposes an anti-disturbance model predictive fault-tolerance control strategy for open-circuit faults of five-phase flux intensifying fault-tolerant interior permanent magnet (FIFT-IPM) motors. This strategy is applicable to electric agricultural equipment that has an open winding failure. Due to the rich third-harmonic back [...] Read more.
This paper proposes an anti-disturbance model predictive fault-tolerance control strategy for open-circuit faults of five-phase flux intensifying fault-tolerant interior permanent magnet (FIFT-IPM) motors. This strategy is applicable to electric agricultural equipment that has an open winding failure. Due to the rich third-harmonic back electromotive force (EMF) content of five-phase FIFT-IPM motors, the existing model predictive current fault-tolerant control algorithms fail to effectively track fundamental and third-harmonic currents. This results in high harmonic distortion in the phase current. Hence, this paper innovatively proposes a multi-plane virtual vector model predictive fault-tolerant control strategy that can achieve rapid and effective control of both the fundamental and harmonic planes while ensuring good dynamic stability performance. Additionally, considering that electric agricultural equipment is usually in a multi-disturbance working environment, this paper introduces an adaptive gain sliding-mode disturbance observer. This observer estimates complex disturbances and feeds them back into the control system, which possesses good resistance to complex disturbances. Finally, the feasibility and effectiveness of the proposed control strategy are verified by experimental results. Full article
Show Figures

Figure 1

16 pages, 6930 KB  
Article
Planogen: A Procedural Generation Framework for Dynamic VR Research Environments
by Kaitlyn Tracy, Lazaros Rafail Kouzelis, Rami Dari and Ourania Spantidi
Virtual Worlds 2025, 4(3), 33; https://doi.org/10.3390/virtualworlds4030033 - 14 Jul 2025
Cited by 1 | Viewed by 1789
Abstract
This paper introduces Planogen, a modular procedural generation plug-in for the Unity game engine, which is composed of two primary components: a character generation module (CharGen) and an airplane generation module (PlaneGen). Planogen facilitates the rapid generation of [...] Read more.
This paper introduces Planogen, a modular procedural generation plug-in for the Unity game engine, which is composed of two primary components: a character generation module (CharGen) and an airplane generation module (PlaneGen). Planogen facilitates the rapid generation of varied and interactive aircraft cabin environments populated with diverse virtual passengers. The presented system is intended for use in research experiment scenarios, particularly those targeting the fear of flying (FoF), where environmental variety and realism are essential for user immersion. Leveraging Unity’s extensibility and procedural content generation techniques, Planogen allows for flexible scene customization, randomization, and scalability in real time. We further validate the realism and user appeal of Planogen-generated cabins in a user study with 33 participants, who rate their immersion and satisfaction, demonstrating that Planogen produces believable and engaging virtual environments. The modular architecture supports asynchronous updates and future extensions to other VR domains. By enabling on-demand, repeatable, and customizable VR content, Planogen offers a practical tool for developers and researchers aiming to construct responsive, scenario-specific virtual environments that can be adapted to any research domain. Full article
Show Figures

Figure 1

12 pages, 1504 KB  
Article
Precision of the Fully Digital 3D Treatment Plan in Orthognathic Surgery
by Paula Locmele, Oskars Radzins, Martins Lauskis, Girts Salms, Anda Slaidina and Andris Abeltins
J. Clin. Med. 2025, 14(14), 4916; https://doi.org/10.3390/jcm14144916 - 11 Jul 2025
Viewed by 1470
Abstract
Background/Objectives: The aim of this study was to investigate the accuracy of implementing a virtual treatment plan in orthognathic surgery. Methods: The study included 30 patients (11 males and 19 females with a mean age of 23.7 years) with a digital surgical plan. [...] Read more.
Background/Objectives: The aim of this study was to investigate the accuracy of implementing a virtual treatment plan in orthognathic surgery. Methods: The study included 30 patients (11 males and 19 females with a mean age of 23.7 years) with a digital surgical plan. All patients underwent bimaxillary orthognathic surgery: LeFort I osteotomy of the maxilla combined with bilateral split sagittal osteotomy (BSSO) of the mandible. Eleven landmarks on the pre-surgical (planned) model and the same landmarks on the post-surgical model were used for comparison and linear difference measurements between the real and predicted outcomes in all three planes—transversal, sagittal, and vertical. Results: All median values fell within the 2 mm range in the transversal plane, and the mean displacement was 0.57 mm. In the sagittal and vertical planes, the treatment outcome in the maxilla was more precise than in the mandible. The mean displacement in the sagittal plane was −0.88 mm and that in the vertical plane was 0.44 mm. All deviations were less than 2 mm. Conclusions: The data obtained in this study show that the digital surgical plan for orthognathic surgery is clinically reliable in all planes. Full article
Show Figures

Figure 1

25 pages, 5336 KB  
Article
A Modified Body Force Model for a Submerged Waterjet
by Dakui Feng, Yongyan Ma, Zichao Cai, Pengwei Yang and Yanlin Zou
J. Mar. Sci. Eng. 2025, 13(7), 1314; https://doi.org/10.3390/jmse13071314 - 8 Jul 2025
Viewed by 601
Abstract
The submerged waterjet exhibits advantages such as uniform inflow, minimal flow distortion, and excellent acoustic performance, making it particularly suitable for high-speed vessels. This study investigates the open-water characteristics of the submerged waterjet and develops a body force model for the submerged waterjet [...] Read more.
The submerged waterjet exhibits advantages such as uniform inflow, minimal flow distortion, and excellent acoustic performance, making it particularly suitable for high-speed vessels. This study investigates the open-water characteristics of the submerged waterjet and develops a body force model for the submerged waterjet propulsion system. First, under uniform inflow conditions, numerical simulations were performed using the body force method by replacing the rotor with a virtual blade and simultaneously replacing both the rotor and stator. The results of the body force model were then compared in detail with those obtained using the sliding mesh method. Second, the influence of the inflow velocity plane position on the results of the body force model was analyzed. The results indicate that the body force method, which replaces both the rotor and stator with a virtual blade, fails to accurately simulate the forces acting on various components of the propeller and the true distribution of the propeller’s flow field. In contrast, the method that replaces only the rotor with a virtual blade produces results for component forces and flow fields that are largely consistent with the results of the sliding mesh method, demonstrating the stability and reliability of the body force model. Additionally, the position of the inflow velocity plane has no significant effect on the model’s computational results. Full article
(This article belongs to the Special Issue Novelties in Marine Propulsion)
Show Figures

Figure 1

Back to TopTop