Precision of the Fully Digital 3D Treatment Plan in Orthognathic Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Preoperative Patient Preparation and Surgical Procedure
2.2. Data Analysis
2.3. Measurements
2.4. Statistics
3. Results
3.1. Transversal Plane
3.2. Sagittal Plane
3.3. Vertical Plane
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borba, A.M.; Haupt, D.; Teresinha, L.; Almeida Romualdo, L.T.; Silva, A.L.F.; Naclerio-Homem, M.G.; Miloro, M. How Many Oral and Maxillofacial Surgeons Does It Take to Perform Virtual Orthognathic Surgical Planning? J. Oral Maxillofac. Surg. 2016, 74, 1807–1826. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.; Kämmerer, P.W.; Hennig, M.; Schön, G.; Thiem, D.G.E.; Bschorer, R. Customized virtual surgical planning in bimaxillary orthognathic surgery: A prospective randomized trial. Clin. Oral Investig. 2019, 23, 3115–3122. [Google Scholar] [CrossRef] [PubMed]
- Bempt, M.; Liebregts, J.; Maal, T.; Berg, S.; Xi, T. Toward a higher accuracy in orthognathic surgery by using intraoperative computer navigation, 3D surgical guides, and/or customized osteosynthesis plates: A systematic review. J. Cranio-Maxillofac. Surg. 2018, 46, 2108–2119. [Google Scholar] [CrossRef]
- Bengtsson, M.; Wall, G.; Greiff, L.; Rasmusson, L. Treatment outcome in orthognathic surgery—A prospective randomized blinded case-controlled comparison of planning accuracy in computer-assisted two- and three-dimensional planning techniques (part II). J. Cranio-Maxillofac. Surg. 2017, 45, 1419–1424. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, S.; Hu, Z.; Hu, J.; Zhu, S.; Li, Y. Accuracy of virtual surgical planning in two-jaw orthognathic surgery: Comparison of planned and actual results. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Stokbro, K.; Aagaard, E.; Torkov, P.; Bell, R.B.; Thygesen, T. Virtual planning in orthognathic surgery. Int. J. Oral Maxillofac. Surg. 2014, 43, 957–965. [Google Scholar] [CrossRef]
- Hsu, S.S.P.; Gateno, J.; Bell, R.B.; Hirsch, D.L.; Markiewicz, M.R.; Teichgraeber, J.F.; Zhou, X.; Xia, J.J. Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: A prospective multicenter study. J. Oral Maxillofac. Surg. 2013, 71, 128–142. [Google Scholar] [CrossRef]
- Tucker, S.; Cevidanes, L.H.; Styner, M.; Kim, H.; Reyes, M.; Proffit, W.; Turvey, T. Comparison of actual surgical outcomes and 3- dimensional surgical simulations. J. Oral Maxillofac. Surg. 2010, 68, 2412–2421. [Google Scholar] [CrossRef]
- Mazzoni, S.; Badiali, G.; Lancellotti, L.; Babbi, L.; Bianchi, A.; Marchetti, C. Simulation-guided navigation: A new approach to improve intraoperative three-dimensional reproducibility during orthognathic surgery. J. Craniofac. Surg. 2010, 21, 1698–1705. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 20, 1323–1341. [Google Scholar] [CrossRef]
- Ford, E.H.R. Growth of the human cranial base. Am. J. Orthod. 1958, 44, 498–506. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Li, B.; Shen, S.; Jiang, W.; Li, J.; Jiang, T.; Xia1, J.J.; Shen, S.G.; Wang, X. A new approach of splint-less orthognathic surgery using a personalized orthognathic surgical guide system: A preliminary study. Int. J. Oral Maxillofac. Surg. 2017, 46, 1298–1305. [Google Scholar] [CrossRef]
- Nackaerts, O.; Maes, F.; Yan, H.; Souza, P.C.; Pauwels, R.; Jacobs, R. Analysis of intensity variability in multislice and cone beam computed tomography. Clin. Oral Impl. Res. 2011, 22, 873–879. [Google Scholar] [CrossRef]
- Ghoneima, A.; Cho, H.; Farouk, K.; Kula, K. Accuracy and reliability of landmark-based, surface-based and voxel-based 3D cone-beam computed tomography superimposition methods. Orthod. Craniofacial Res. 2017, 20, 227–236. [Google Scholar] [CrossRef]
- Almukhtar, A.; Ju, X.; Khambay, B.; McDonald, J.; Ayoub, A. Comparison of the Accuracy of Voxel Based Registration and Surface Based Registration for 3D Assessment of Surgical Change following Orthognathic Surgery. PLoS ONE 2014, 9, e93402. [Google Scholar] [CrossRef]
- Kamio, T.; Suzuki, M.; Asaumi, R.; Kawai, T. DICOM segmentation and STL creation for 3D printing: A process and software package comparison for osseous anatomy. 3D Print. Med. 2020, 6, 17. [Google Scholar] [CrossRef]
- Oh, S.M.; Lee, C.Y.; Kim, J.W.; Jang, C.S.; Kim, J.Y.; Yang, B.E. Condylar repositioning in bilateral sagittal split ramus osteotomy with centric relation bite. J. Craniofac. Surg. 2013, 24, 1535–1538. [Google Scholar] [CrossRef]
- Cortese, A.; Chandran, R.; Borri, A.; Cataldo, E. A Modified Novel Technique for Condylar Positioning in Mandibular Bilateral Sagittal Split Osteotomy Using Computer-Assisted Designed and Computer-Assisted Manufactured Surgical Guides. J. Oral Maxillofac. Surg. 2019, 77, 1069.e1–1069.e9. [Google Scholar] [CrossRef]
- Catherine, Z.; Breton, P.; Bouletreau, P. Condylar resorption after orthognathic surgery: A systematic review. Rev. Stomatol. Chir. Maxillo-Faciale Chir. Orale 2016, 117, 3–10. [Google Scholar] [CrossRef]
- Kwon, T.G.; Choi, J.W.; Kyung, H.M.; Park, H.S. Accuracy of maxillary repositioning in two-jaw surgery with conventional articulator model surgery versus virtual model surgery. Int. J. Oral Maxillofac. Surg. 2014, 43, 732–738. [Google Scholar] [CrossRef]
- Ritto, F.G.; Schmitt, A.R.M.; Pimentel, T.; Canellas, J.V.; Medeiros, P.J. Comparison of the accuracy of maxillary position between conventional model surgery and virtual surgical planning. Int. J. Oral Maxillofac. Surg. 2017, 74, 160–166. [Google Scholar] [CrossRef]
- Badiali, G.; Roncari, A.; Bianchi, A.; Taddei, F.; Marchetti, C.; Schileo, E. Navigation in orthognathic surgery: 3D accuracy. Facial Plast. Surg. 2015, 31, 463–473. [Google Scholar]
- Shih-Jan, C.; Wilde, F.; Neuhaus, M.; Schramm, A.; Gellrich, N.C.; Rana, M. Accuracy of virtual surgical planning of orthognathic surgery with aid of CAD/CAM fabricated surgical splint—A novel 3D analyzing algorithm. J. Cranio-Maxillo-Facial Surg. 2017, 45, 1962–1970. [Google Scholar]
- Lin, H.-H.; Wu, T.-J.; Lo, L.-J.; Ho, C.-T. Postoperative outcomes of two and threedimensional planning in orthognathic surgery: A comparative study. Br. J. Plast. Surg. 2017, 70, 1101–1111. [Google Scholar] [CrossRef]
- Zinser, M.J.; Sailer, H.F.; Ritter, L.; Braumann, B.; Maegele, M.; Zöller, J.E. A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and “classic” intermaxillary splints to surgical transfer of virtual orthognathic planning. J. Oral Maxillofac. Surg. 2013, 71, 2151.e1–2151.e21. [Google Scholar] [CrossRef]
- Gaber, R.M.; Shaheen, E.; Falter, B.; Araya, S.; Politis, C.; Swennen, G.R.J.; Jacobs, R. A systematic review to uncover a universal protocol for accuracy assessment of 3-dimensional virtually planned orthognathic surgery. J. Oral Maxillofac. Surg. 2017, 75, 2430–2440. [Google Scholar] [CrossRef]
Patient Cohort | N = 30 |
---|---|
Mean Age | 23.7 |
Gender | |
Male | 11 |
Female | 19 |
Class of Occlusion | |
Class II | 6 |
Class III | 24 |
X | Y | Z | ||||
---|---|---|---|---|---|---|
ICC | 95% CI | ICC | 95% CI | ICC | 95% CI | |
A | 0.80 | (0.40; 0.94) | 0.98 | (0.93; 0.99) | 0.86 | (0.55; 0.96) |
B | 0.92 | (0.72; 0.98) | 0.99 | (0.99; 1.00) | 0.87 | (0.45; 0.96) |
Pog | 0.97 | (0.88; 0.99) | 0.99 | (0.99; 0.99) | 0.93 | (0.72; 0.98) |
Me | 0.95 | (0.81; 0.98) | 0.93 | (0.77; 0.98) | 0.90 | (0.68; 0.97) |
PNS | 0.41 | (−0.17; 0.80) | 0.63 | (0.10; 0.89) | 0.91 | (0.70; 0.97) |
U1 | 0.99 | (0.99; 0.99) | 0.99 | (0.98; 0.99) | 0.99 | (0.98; 0.99) |
U6L | 0.98 | (0.94; 0.99) | 0.99 | (0.97; 0.99) | 0.99 | (0.99; 1.00) |
U6R | 0.95 | (0.81; 0.98) | 0.98 | (0.93; 0.99) | 0.97 | (0.89; 0.99) |
L1 | 0.99 | (0.98; 0.99) | 0.99 | (0.97; 0.99) | 0.99 | (0.97; 0.99) |
L6L | 0.99 | (0.97; 0.99) | 0.97 | (0.90; 0.99) | 0.99 | (0.97; 0.99) |
L6R | 0.98 | (0.95; 0.99) | 0.99 | (0.99; 1.00) | 0.99 | (0.97; 0.99) |
X | Y | Z | ||||
---|---|---|---|---|---|---|
ICC | 95% CI | ICC | 95% CI | ICC | 95% CI | |
A | 0.82 | (0.65; 0.91) | 0.91 | (0.82; 0.95) | 0.45 | (0.10; 0.69) |
B | 0.79 | (0.60; 0.89) | 0.96 | (0.91; 0.98) | 0.62 | (0.34; 0.80) |
Pog | 0.92 | (0.85; 0.96) | 0.98 | (0.97; 0.99) | 0.82 | (0.67; 0.91) |
Me | 0.73 | (0.51; 0.86) | 0.84 | (0.70; 0.92) | 0.98 | (0.97; 0.99) |
PNS | 0.86 | (0.73; 0.93) | 0.87 | (0.75; 0.94) | 0.80 | (0.63; 0.90) |
U1 | 0.97 | (0.95; 0.98) | 0.99 | (0.98; 0.99) | 0.99 | (0.98; 0.99) |
U6L | 0.99 | (0.98; 0.99) | 0.98 | (0.97; 0.99) | 0.98 | (0.97; 0.99) |
U6R | 0.96 | (0.91; 0.98) | 0.96 | (0.93; 0.98) | 0.93 | (0.85; 0.96) |
L1 | 0.98 | (0.97; 0.99) | 0.99 | (0.99; 0.99) | 0.99 | (0.99; 0.99) |
L6L | 0.98 | (0.97; 0.99) | 0.99 | (0.98; 0.99) | 0.96 | (0.93; 0.98) |
L6R | 0.97 | (0.95; 0.98) | 0.98 | (0.96; 0.99) | 0.94 | (0.89; 0.97) |
X | Y | Z | ||||
---|---|---|---|---|---|---|
Median, mm | IQR, mm | Median, mm | IQR, mm | Median, mm | IQR, mm | |
A | 0.58 | (−0.12; 0.92) | −0.83 | (−1.61; 0.03) | 0.51 | (−0.24; 0.98) |
B | 0.65 | (−0.44; 1.26) | −1.24 | (−1.87; 0.37) | 0.75 | (−0.27; 1.21) |
Pog | 0.61 | (−0.31; 1.55) | −1.16 | (−1.75; 0.47) | 0.89 | (−0.55; 1.45) |
Me | 0.45 | (−0.06; 1.58) | −1.20 | (−1.69; 0.70) | 0.94 | (−0.03; 1.74) |
PNS | 0.54 | (−0.07; 1.23) | −0.84 | (−2.02; 0.27) | −0.08 | (−0.65; 0.86) |
U1 | 0.63 | (−0.19; 1.62) | −0.51 | (−1.27; 0.05) | 0.30 | (−0.52; 1.24) |
L1 | 0.93 | (−0.10; 2.03) | −0.93 | (−2.37; −0.10) | 0.94 | (0.02; 1.36) |
U6R | 0.21 | (−0.53; 1.28) | −0.34 | (−1.19; 0.20) | 0.21 | (−0.45; 1.29) |
U6L | 0.47 | (−0.35; 1.19) | −0.59 | (−1.83; 0.86) | 0.09 | (−0.49; 0.97) |
L6R | 0.50 | (−0.53; 1.95) | −1.01 | (−2.17; −0.16) | 0.33 | (−0.53; 1.16) |
L6L | 0.74 | (−0.46; 2.03) | −1.05 | (−2.14; 0.29) | 0.03 | (−0.74; 0.90) |
Point | p-Values | ||
---|---|---|---|
X | Y | Z | |
A | 0.052 | 0.015 * | 0.067 |
B | 0.083 | 0.022 * | 0.022 * |
Pog | 0.052 | 0.082 | 0.070 |
Me | 0.067 | 0.057 | 0.018 * |
PNS | 0.052 | 0.048 * | 0.159 |
U1 | 0.015 * | 0.014 * | 0.015 * |
L1 | 0.083 | 0.044 * | 0.919 |
U6R | 0.121 | 0.083 | 0.128 |
U6L | 0.088 | 0.210 | 0.481 |
L6R | 0.072 | 0.005 * | 0.166 |
L6L | 0.044 * | 0.028 * | 0.785 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locmele, P.; Radzins, O.; Lauskis, M.; Salms, G.; Slaidina, A.; Abeltins, A. Precision of the Fully Digital 3D Treatment Plan in Orthognathic Surgery. J. Clin. Med. 2025, 14, 4916. https://doi.org/10.3390/jcm14144916
Locmele P, Radzins O, Lauskis M, Salms G, Slaidina A, Abeltins A. Precision of the Fully Digital 3D Treatment Plan in Orthognathic Surgery. Journal of Clinical Medicine. 2025; 14(14):4916. https://doi.org/10.3390/jcm14144916
Chicago/Turabian StyleLocmele, Paula, Oskars Radzins, Martins Lauskis, Girts Salms, Anda Slaidina, and Andris Abeltins. 2025. "Precision of the Fully Digital 3D Treatment Plan in Orthognathic Surgery" Journal of Clinical Medicine 14, no. 14: 4916. https://doi.org/10.3390/jcm14144916
APA StyleLocmele, P., Radzins, O., Lauskis, M., Salms, G., Slaidina, A., & Abeltins, A. (2025). Precision of the Fully Digital 3D Treatment Plan in Orthognathic Surgery. Journal of Clinical Medicine, 14(14), 4916. https://doi.org/10.3390/jcm14144916