An Economically Viable Minimalistic Solution for 3D Display Discomfort in Virtual Reality Headsets Using Vibrating Varifocal Fluidic Lenses
Abstract
1. Introduction
2. Background
3. Electro-Optical Design
3.1. Optical Layout
3.2. Piezoelectric Varifocal Tunable Liquid Lenses and Drive Electronics
3.3. Lens Vibration Frequency, Virtual Image Frame Rate and Visual Perception
4. VTL Dynamics Experiments
4.1. Varifocal Lens Frequency Response
4.2. Stroboscopic Varifocal Lens Power vs. Time Profile
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wheatstone, C. Contributions to the physiology of vision Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 1838, 128, 371–394. [Google Scholar] [CrossRef]
- Steuer, J. Defining virtual reality: Dimensions determining presence. In Communication in the Age of Virtual Reality; Hillsdale, N.J., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1995; pp. 33–56. [Google Scholar]
- Slater, M.; Wilbur, S. A framework for immersive virtual environments (five): Speculations on the role of presence in virtual environments. Presence Teleoperators Virtual Environ. 1997, 6, 603–616. [Google Scholar] [CrossRef]
- Walsh, K.R.; Pawlowski, S.D. Virtual reality: A technology in need of is research. Commun. Assoc. Inf. Syst. 2002, 8, 20. [Google Scholar] [CrossRef]
- Witmer, B.G.; Singer, M.J. Measuring presence in virtual environments: A presence questionnaire. Presence 1998, 7, 225–240. [Google Scholar] [CrossRef]
- Jensen, L.; Konradsen, F. A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol. 2018, 23, 1515–1529. [Google Scholar] [CrossRef]
- Krokos, E.; Plaisant, C.; Varshney, A. Virtual Memory Palaces: Immersion aids Recall. Virtual Real. 2019, 23, 1–15. [Google Scholar] [CrossRef]
- Choi, S.; Jung, K.; Noh, S.D. Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurr. Eng. 2015, 23, 40–63. [Google Scholar] [CrossRef]
- Li, X.; Yi, W.; Chi, H.-L.; Wang, X.; Chan, A.P. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 2018, 86, 150–162. [Google Scholar] [CrossRef]
- Hu, Y.; Malthaner, R.A. The feasibility of three-dimensional displays of the thorax for preoperative planning in the surgical treatment of lung cancer. Eur. J. Cardiothorac. Surg. 2007, 31, 506–511. [Google Scholar] [CrossRef]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Mihelj, M.; Novak, D.; Beguš, S. Virtual Reality Technology and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Eichenberg, C. (Ed.) Virtual Reality in Psychological, Medical and Pedagogical Applications; InTech: Vienna, Austria, 2012. [Google Scholar]
- Mendiburu, B. 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen; Focal Press: Wellington, OX, USA, 2009. [Google Scholar]
- Rendon, A.A.; Lohman, E.B.; Thorpe, D.; Johnson, E.G.; Medina, E.; Bradley, B. The effect of virtual reality gaming on dynamic balance in older adults. Age Ageing 2012, 41, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Yin, K.; Xiong, J.; He, Z.; Wu, S.-T. Augmented Reality and Virtual Reality Displays: Perspectives and Challenges. iScience 2020, 23, 101397. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Hsiang, E.-L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Cutting, J.E.; Vishton, P.M. Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Perception of Space and Motion; Handbook of Perception and Cognition; Academic Press: London, UK, 1995; Volume 5, pp. 69–117. [Google Scholar]
- Fincham, E.F.; Walton, J. The reciprocal actions of accommodation and convergence. J. Physiol. 1957, 137, 488–508. [Google Scholar] [CrossRef]
- Hoffman, D.M.; Girshick, A.R.; Akeley, K.; Banks, M.S. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 2008, 8, 33. [Google Scholar] [CrossRef]
- Watt, S.J.; Akeley, K.; Ernst, M.O.; Banks, M.S. Focus cues affect perceived depth. J. Vis. 2005, 5, 834–862. [Google Scholar] [CrossRef]
- Emoto, M.; Niida, T.; Okano, F. Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television. J. Disp. Technol. 2005, 1, 328–340. [Google Scholar] [CrossRef]
- Carnegie, K.; Rhee, T. Reducing Visual Discomfort with HMDs Using Dynamic Depth of Field. IEEE Comput. Graph. Appl. 2015, 35, 34–41. [Google Scholar] [CrossRef]
- Mark, F.; Marsh, J.P. Overcoming Vergence Accommodation Conflict in Near Eye Display Systems; Whitepaper. 2019. Available online: https://docslib.org/doc/4636635/overcoming-vergence-accommodation-conflict-in-near-eye-display-systems (accessed on 18 June 2025).
- Lambooij, M.; Fortuin, M.; Heynderickx, I.; IJsselsteijn, W. Visual discomfort andvisual fatigue of stereoscopic displays: A review. J. Imaging Sci. Technol. 2009, 53, 1–14. [Google Scholar] [CrossRef]
- Munafo, J.; Diedrick, M.; Stoffregen, T. The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Exp. Brain Res. 2017, 235, 889–901. [Google Scholar] [CrossRef]
- Padmanaban, N.; Konrad, R.; Stramer, T.; Cooper, E.A.; Wetzstein, G. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays. Proc. Natl. Acad. Sci. USA 2017, 114, 2183–2188. [Google Scholar] [CrossRef]
- Kramida, G. Resolving the vergence accommodation conflict in head-mounted displays. IEEE Trans. Vis. Comput. Graph. 2015, 22, 1912–1931. [Google Scholar] [CrossRef] [PubMed]
- Konrad, R.; Cooper, E.A.; Wetzstein, G. Novel optical configurations for virtual reality: Evaluating user preference and performance with focus-tunable and monovision near-eye displays. In Proceedings of the ACM CHI Conference on Human Factors in Computing System, New York, NY, USA, 7–12 May 2016; pp. 1211–1220. [Google Scholar]
- Johnson, P.V.; Parnell, J.A.; Kim, J.; Saunter, C.D.; Love, G.D.; Banks, M.S. Dynamic lens and monovision 3D displays to improve viewer comfort. Opt. Express 2016, 24, 11808–11827. [Google Scholar] [CrossRef] [PubMed]
- Mauderer, M.; Conte, S.; Nacenta, M.A.; Vishwanath, D. Depth perception with gaze contingent depth of field. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM SIGCHI, Toronto, ON, Canada, 26 April 2014; pp. 217–226. [Google Scholar]
- Maiello, G.; Chessa, M.; Solari, F.; Bex, P.J. The (in)effectiveness of simulated blur for depth perception in naturalistic images. PLoS ONE 2015, 10, e0140230. [Google Scholar] [CrossRef] [PubMed]
- Suyama, S.; Date, M.; Takada, H. Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens. Jpn. J. Appl. Phys. 2000, 39, 480. [Google Scholar] [CrossRef]
- Love, G.D.; Hoffman, D.M.; Hands, P.J.; Gao, J.; Kirby, A.K.; Banks, M.S. High-speed switchable lens enables the development of a volumetric stereoscopic display. Opt. Express 2009, 17, 15716–15725. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, D.; Hua, H. An optical see-through head mounted display with addressable focal planes. In Proceedings of the 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, Cambridge, UK, 15–18 September 2008; pp. 33–42. [Google Scholar] [CrossRef]
- Dunn, D.; Tippets, C.; Torell, K.; Kellnhofer, P.; Akit, K.; Didyk, P.; Myszkowski, K.; Luebke, D.; Fuchs, H. Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1322–1331. [Google Scholar] [CrossRef]
- Akşit, K.; Lopes, W.; Kim, J.; Shirley, P.; Luebke, D. Near-eye Varifocal Augmented Reality Display Using See-through Screens. ACM Trans. Graph. 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Akeley, K.; Watt, S.J.; Girshick, A.R.; Banks, M.S. A Stereo Display Prototype with Multiple Focal Distances. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04; ACM: New York, NY, USA, 2004; pp. 804–813. [Google Scholar] [CrossRef]
- Hu, X.; Hua, H. Design and tolerance of a free-form optical system for an optical see-through multi-focal-plane display. Appl. Opt. 2015, 54, 9990–9999. [Google Scholar] [CrossRef]
- Liu, S.; Hua, H.; Cheng, D. A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues. IEEE Trans. Vis. Comput. Graph. 2010, 16, 381–393. [Google Scholar] [CrossRef]
- MacKenzie, K.J.; Hoffman, D.M.; Watt, S.J. Accommodation to multiple focal plane displays: Implications for improving stereoscopic displays and for accommodation control. J. Vis. 2010, 10, 22. [Google Scholar] [CrossRef]
- Hu, X.; Hua, H. Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype. J. Disp. Technol. 2014, 10, 308–316. [Google Scholar] [CrossRef]
- Hu, X.; Hua, H. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics. Opt. Express 2014, 22, 13896–13903. [Google Scholar] [CrossRef] [PubMed]
- Narain, R.; Albert, R.A.; Bulbul, A.; Ward, G.J.; Banks, M.S.; O’Brien, J.F. Optimal Presentation of Imagery with Focus Cues on Multiplane Displays. ACM Trans. Graph. 2015, 34, 1–12. [Google Scholar] [CrossRef]
- Mercier, O.; Sulai, Y.; Mackenzie, K.; Zannoli, M.; Hillis, J.; Nowrouzezahrai, D.; Lanman, D. Fast Gaze-contingent Optimal Decompositions for Multifocal Displays. ACM Trans. Graph. 2017, 36, 237. [Google Scholar] [CrossRef]
- Lee, S.; Cho, J.; Lee, B.; Jo, Y.; Jang, C.; Kim, D.; Lee, B. Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays. IEEE Access 2018, 6, 2170–2180. [Google Scholar] [CrossRef]
- Hua, H. Enabling Focus Cues in Head-Mounted Displays. Proc. IEEE 2017, 105, 805–824. [Google Scholar] [CrossRef]
- Chang, J.H.R.; Kumar, B.V.K.V.; Sankaranarayanan, A.C. Towards multifocal displays with dense focal stacks. ACM Trans. Graph. 2018, 37, 1–13. [Google Scholar] [CrossRef]
- Rathinavel, K.; Wang, H.; Blate, A.; Fuchs, H. An Extended Depth-at-Field Volumetric Near-Eye Augmented Reality Display. IEEE Trans. Vis. Comput. Graph. 2018, 24, 2857–2866. [Google Scholar] [CrossRef]
- Lanman, D.A.L.D. Near-eye light field displays. ACM Trans. Graph. 2013, 32, 1–10. [Google Scholar] [CrossRef]
- Maimone, A.; Lanman, D.; Rathinavel, K.; Keller, K.; Luebke, D.; Fuchs, H. Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources. In ACM SIGGRAPH 2014 Emerging Technologies, SIGGRAPH’14; ACM: New York, NY, USA, 2014; p. 1. [Google Scholar] [CrossRef]
- Wetzstein, G.; Lanman, D.; Hirsch, M.; Raskar, R. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 2012, 31, 1–11. [Google Scholar] [CrossRef]
- Pamplona, V.F.; Oliveira, M.M.; Aliaga, D.G.; Raskar, R. Tailored displays to compensate for visual aberrations. ACM Trans. Graph. 2012, 31, 1–12. [Google Scholar] [CrossRef]
- Javidi, B.; Okano, F. (Eds.) Three-Dimensional Television, Video and Display Technologies; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Matusik, W.; Pfister, H. 3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes. ACM Trans. Graph. 2004, 23, 814–824. [Google Scholar] [CrossRef]
- Huang, F.-C.; Chen, K.; Wetzstein, G. The Light Field Stereoscope: Immersive Computer Graphics via Factored Near-eye Light Field Displays with Focus Cues. ACM Trans. Graph. 2015, 34, 1–60. [Google Scholar] [CrossRef]
- Hua, H.; Javidi, B. A 3D integral imaging optical see-through head mounted display. Opt. Express. 2014, 22, 13484–13491. [Google Scholar] [CrossRef] [PubMed]
- Maimone, A.; Georgiou, A.; Kollin, J.S. Holographic Near-eye Displays for Virtual and Augmented Reality. ACM Trans. Graph. 2017, 36, 1–16. [Google Scholar] [CrossRef]
- Matsuda, N.; Fix, A.; Lanman, D. Focal Surface Displays. ACM Trans. Graph. 2017, 36, 1–14. [Google Scholar] [CrossRef]
- Shi, L.; Huang, F.-C.; Lopes, W.; Matusik, W.; Luebke, D. Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics. ACM Trans. Graph. 2017, 36, 236. [Google Scholar] [CrossRef]
- Dunn, D. Required accuracy of gaze tracking for varifocal displays. In Proceedings of the IEEE Virtual Reality (VR), Osaka, Japan, 23–27 March 2019; pp. 1838–1842. [Google Scholar]
- Padmanaban, N.; Konrad, R.; Wetzstein, G. Autofocals: Evaluating gaze-contingent eyeglasses for presbyopes. Sci. Adv. 2018, 5, 1–2. [Google Scholar]
- Ebner, C.; Mori, S.; Mohr, P.; Peng, Y.; Schmalstieg, D.; Wetzstein, G.; Kalkofen, D. Video See-Through Mixed Reality with Focus Cues. IEEE Trans. Vis. Comput. Graph. 2022, 28, 2256–2266. [Google Scholar] [CrossRef]
- Hasan, N.; Kim, H.; Mastrangelo, C. Tunable-focus lens for adaptive eyeglasses. Opt. Express 2017, 25, 1221–1233. [Google Scholar] [CrossRef]
- Lee, S.; Jo, Y.; Yoo, D.; Cho, J.; Lee, D.; Lee, B. Tomoreal: Tomographic displays. arXiv 2018, arXiv:1804.04619. [Google Scholar] [CrossRef]
- Thibos, L.N.; Hong, X.; Bradley, A.; Cheng, X. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J. Opt. Soc. Am. A 2002, 19, 2329–2348. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.B.; Ahumada, A.J., Jr. Predicting visual acuity from wavefront aberrations. J. Vis. 2008, 8, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.C.; Lee, J.W.; Park, K.R. Experimental Investigations of Pupil Accommodation Factors. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6478–6485. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.; Majumder, A. Adaptable Lenses for Smart Eyeglasses. U.S. Patent 11,927,774 B2, 12 March 2024. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, T.; Karkhanis, M.; Mastrangelo, C.H. An Economically Viable Minimalistic Solution for 3D Display Discomfort in Virtual Reality Headsets Using Vibrating Varifocal Fluidic Lenses. Virtual Worlds 2025, 4, 38. https://doi.org/10.3390/virtualworlds4030038
Ghosh T, Karkhanis M, Mastrangelo CH. An Economically Viable Minimalistic Solution for 3D Display Discomfort in Virtual Reality Headsets Using Vibrating Varifocal Fluidic Lenses. Virtual Worlds. 2025; 4(3):38. https://doi.org/10.3390/virtualworlds4030038
Chicago/Turabian StyleGhosh, Tridib, Mohit Karkhanis, and Carlos H. Mastrangelo. 2025. "An Economically Viable Minimalistic Solution for 3D Display Discomfort in Virtual Reality Headsets Using Vibrating Varifocal Fluidic Lenses" Virtual Worlds 4, no. 3: 38. https://doi.org/10.3390/virtualworlds4030038
APA StyleGhosh, T., Karkhanis, M., & Mastrangelo, C. H. (2025). An Economically Viable Minimalistic Solution for 3D Display Discomfort in Virtual Reality Headsets Using Vibrating Varifocal Fluidic Lenses. Virtual Worlds, 4(3), 38. https://doi.org/10.3390/virtualworlds4030038