Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (510)

Search Parameters:
Keywords = viral encephalitis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3221 KiB  
Article
Development of a Deer Tick Virus Infection Model in C3H/HeJ Mice to Mimic Human Clinical Outcomes
by Dakota N. Paine, Erin S. Reynolds, Charles E. Hart, Jessica Crooker and Saravanan Thangamani
Viruses 2025, 17(8), 1092; https://doi.org/10.3390/v17081092 (registering DOI) - 7 Aug 2025
Abstract
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human [...] Read more.
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human infection with DTV can result in acute febrile illness followed by central nervous system complications, such as encephalitis and meningoencephalitis. Currently, there are mouse models established for investigating the pathogenesis and clinical outcomes of DTV that mimic human infections, but the strains of mice utilized are refractory to infection with B. burgdorferi s.l. Here, we describe the pathogenesis and clinical outcomes of DTV infection in C3H/HeJ mice. Neurological clinical signs, mortality, and weight loss were observed in all DTV-infected mice during the investigation. Infected animals demonstrated consistent viral infection in their organs. Additionally, neuropathology of brain sections indicated the presence of meningoencephalitis throughout the brain. This data, along with the clinical outcomes for the mice, indicates successful infection and showcases the neuroinvasive nature of the virus. This is the first study to identify C3H/HeJ mice as an appropriate model for DTV infection. As C3H/HeJ mice are already an established model for B. burgdorferi s.l. infection, this model could serve as an ideal system for investigating disease progression and pathogenesis of co-infections. Full article
(This article belongs to the Special Issue Tick-Borne Viruses 2026)
Show Figures

Figure 1

20 pages, 1558 KiB  
Review
Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies
by Jae-Yeon Park and Hye-Mi Lee
Life 2025, 15(8), 1260; https://doi.org/10.3390/life15081260 (registering DOI) - 7 Aug 2025
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification [...] Read more.
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification and maintenance, making JEV fundamentally a veterinary infectious disease with zoonotic potential. This review summarizes the current understanding of JEV transmission dynamics from a veterinary and ecological perspective, emphasizing the roles of amplifying hosts and animal surveillance in controlling viral circulation. Recent genotype shifts and viral evolution have raised concerns regarding vaccine effectiveness and regional emergence. National surveillance systems and animal-based monitoring strategies are examined for their predictive value in detecting outbreaks early. Veterinary and human vaccination strategies are also reviewed, highlighting the importance of integrated One Health approaches. Advances in modeling and climate-responsive surveillance further underscore the dynamic and evolving landscape of JEV transmission. By managing the infection in animal reservoirs, veterinary interventions form the foundation of sustainable zoonotic disease control. Full article
Show Figures

Figure 1

68 pages, 2838 KiB  
Review
Unravelling the Viral Hypothesis of Schizophrenia: A Comprehensive Review of Mechanisms and Evidence
by Mădălina Georgeta Sighencea and Simona Corina Trifu
Int. J. Mol. Sci. 2025, 26(15), 7429; https://doi.org/10.3390/ijms26157429 - 1 Aug 2025
Viewed by 374
Abstract
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a [...] Read more.
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a wide array of neurotropic viruses, including influenza viruses, herpesviruses (HSV-1 and 2, CMV, VZV, EBV, HHV-6 and 8), hepatitis B and C viruses, HIV, HERVs, HTLV, Zika virus, BoDV, coronaviruses (including SARS-CoV-2), and others. These pathogens can contribute to schizophrenia through mechanisms such as direct microinvasion, persistent central nervous system infection, immune-mediated neuroinflammation, molecular mimicry, and the disturbance of the blood–brain barrier. Prenatal exposure to viral infections can trigger maternal immune activation, resulting in cytokine-mediated alterations in the neurological development of the foetus that persist into adulthood. Genetic studies highlight the role of immune-related loci, including major histocompatibility complex polymorphisms, in modulating susceptibility to infection and neurodevelopmental outcomes. Clinical data also support the “mild encephalitis” hypothesis, suggesting that a subset of schizophrenia cases involve low-grade chronic neuroinflammation. Although antipsychotics have some immunomodulatory effects, adjunctive anti-inflammatory therapies show promise, particularly in treatment-resistant cases. Despite compelling associations, pathogen-specific links remain inconsistent, emphasising the need for longitudinal studies and integrative approaches such as viromics to unravel causal relationships. This review supports a “multi-hit” model in which viral infections interfere with hereditary and immunological susceptibilities, enhancing schizophrenia risk. Elucidating these virus–immune–brain interactions may facilitate the discovery of biomarkers, targeted prevention, and novel therapeutic strategies for schizophrenia. Full article
(This article belongs to the Special Issue Schizophrenia: From Molecular Mechanism to Therapy)
Show Figures

Figure 1

15 pages, 1609 KiB  
Article
Expanding the Antiviral Spectrum of Scorpion-Derived Peptides Against Toscana Virus and Schmallenberg Virus
by Rosa Giugliano, Carla Zannella, Roberta Della Marca, Annalisa Chianese, Laura Di Clemente, Alessandra Monti, Nunzianna Doti, Federica Cacioppo, Valentina Iovane, Serena Montagnaro, Simona De Grazia, Massimiliano Galdiero and Anna De Filippis
Pathogens 2025, 14(7), 713; https://doi.org/10.3390/pathogens14070713 - 19 Jul 2025
Viewed by 405
Abstract
Toscana virus (TOSV) and Schmallenberg virus (SBV) are arthropod-borne viruses from the Bunyaviricetes class, posing significant human and animal health threats. TOSV, endemic to the Mediterranean region, is a notable human pathogen detected in various animals, suggesting potential zoonotic reservoirs. SBV emerged in [...] Read more.
Toscana virus (TOSV) and Schmallenberg virus (SBV) are arthropod-borne viruses from the Bunyaviricetes class, posing significant human and animal health threats. TOSV, endemic to the Mediterranean region, is a notable human pathogen detected in various animals, suggesting potential zoonotic reservoirs. SBV emerged in Europe in 2011, affecting ruminants and causing reproductive issues, with substantial economic implications. The rapid spread of both viruses underscores the need for novel antiviral strategies. Host defense peptides (HDPs), particularly those derived from scorpion venom, are gaining attention for their antiviral potential. This study investigated pantinin-1 and pantinin-2 for their inhibitory activity against TOSV and SBV by plaque reduction assay, tissue culture infective dose (TCID50) determination, and the analysis of M gene expression via qPCR. Both peptides exhibited potent virucidal activity, with IC50 values of approximately 10 µM, depending on the specific in vitro cell model used. Additionally, the selectivity index (SI) values were favorable across all virus/cell line combinations, with particularly optimal results observed for pantinin-2. In human U87-MG neuronal cells, both peptides effectively blocked TOSV infection, a critical finding given the virus’s association with neurological conditions like encephalitis. The strong efficacy of these peptides against these viruses underscores the broader applicability of venom-derived peptides as promising antiviral agents, particularly in the context of emerging viral pathogens and increasing resistance to conventional therapeutics. Further studies are needed to optimize their antiviral potency and to assess their safety in vivo using animal models. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

14 pages, 1708 KiB  
Article
Investigation of the Mouse Infection Model for Echovirus 18
by Lei Xiang, Linlin Zhai, Guanyong Ou, Wei Zhao, Yang Yang and Chenguang Shen
Viruses 2025, 17(7), 1011; https://doi.org/10.3390/v17071011 - 18 Jul 2025
Viewed by 347
Abstract
Echovirus 18, a member of the B group of enteroviruses, is a significant etiological agent of aseptic meningitis and viral encephalitis in children. In this study, we investigated the pathogenicity of E18 by establishing a mouse infection model after comparing various mouse strains [...] Read more.
Echovirus 18, a member of the B group of enteroviruses, is a significant etiological agent of aseptic meningitis and viral encephalitis in children. In this study, we investigated the pathogenicity of E18 by establishing a mouse infection model after comparing various mouse strains and injection methods. Two-day-old IFNAR1 knockout mice infected with clinical isolates of E18 exhibited symptoms such as lethargy, hind limb paralysis, and even mortality. Similarly, some two-day-old C57BL/6J mice displayed comparable symptoms; however, the incidence was lower than that observed in IFNAR1 knockout mice. No similar symptoms were noted in any Balb/c mice. Significant pathological changes were observed in skeletal muscle, brain tissue, and other organs of symptomatic mice; among these tissues, skeletal muscle demonstrated the highest viral load. The established infection model using two-day-old IFNAR1 knockout mice provides valuable insights into further investigations regarding its pathological injury mechanisms as well as the protective effects conferred by antibodies. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

21 pages, 407 KiB  
Review
Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates
by Krystal J. Vail, Brittany N. Macha, Linh Hellmers and Tracy Fischer
Int. J. Mol. Sci. 2025, 26(14), 6886; https://doi.org/10.3390/ijms26146886 - 17 Jul 2025
Viewed by 488
Abstract
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with [...] Read more.
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with a unique set of challenges. First, because brain biopsies are rarely necessary to diagnose viral-associated neurological disorders, antemortem tissue samples are not readily available for study and human pathological studies must rely on end-stage, postmortem evaluations. Second, in vitro models fail to fully capture the nuances of an intact immune system, necessitating the use of animal models to fully characterize pathogenesis and identify potential therapeutic approaches. Non-human primates (NHP) represent a particularly attractive animal model in that they overcome many of the limits posed by more distant species and most closely mirror human disease pathogenesis and susceptibility. Here, we review NHP infection models of viruses known to infect and/or replicate within cells of the CNS, including West Nile virus, the equine encephalitis viruses, Zika virus, and herpesviruses, as well as those known to alter the immune status of the brain in the absence of significant CNS penetrance, including human immunodeficiency virus (HIV) in the current era of combination antiretroviral therapy (cART) and the coronavirus of severe acute respiratory syndrome (SARS)-CoV−2. This review focuses on viruses with an established role in causing CNS disease, including encephalitis, meningitis, and myelitis and NHP models of viral infection that are directly translatable to the human condition through relevant routes of infection, comparable disease pathogenesis, and responses to therapeutic intervention. Full article
(This article belongs to the Special Issue Animal Research Model for Neurological Diseases, 2nd Edition)
15 pages, 2039 KiB  
Article
Homoharringtonine Inhibits CVS-11 and Clinical Isolates of Rabies Virus In Vitro: Identified via High-Throughput Screening of an FDA-Approved Drug Library
by Kalenahalli Rajappa Harisha, Varun Kailaje, Ravinder Reddy Kondreddi, Chandra Sekhar Gudla, Shraddha Singh, Sharada Ramakrishnaiah, Shrikrishna Isloor, Shridhar Narayanan, Radha Krishan Shandil and Gudepalya Renukaiah Rudramurthy
Viruses 2025, 17(7), 945; https://doi.org/10.3390/v17070945 - 4 Jul 2025
Viewed by 592
Abstract
Rabies, a viral encephalitis caused by rabies virus (RABV), is 100% fatal upon the onset of symptoms. Effective post-exposure prophylaxis (PEP) measures are available, but they are often difficult to access in low-income countries. WHO estimates about 59,000 deaths due to rabies globally, [...] Read more.
Rabies, a viral encephalitis caused by rabies virus (RABV), is 100% fatal upon the onset of symptoms. Effective post-exposure prophylaxis (PEP) measures are available, but they are often difficult to access in low-income countries. WHO estimates about 59,000 deaths due to rabies globally, and the majority are contributed by developing countries. Hence, developing drugs for the treatment of post-symptomatic rabies is an urgent and unmet demand. It is worth noting that previous efforts regarding antiviral strategies, such as small-interfering RNA, antibodies and small-molecule inhibitors, against the rabies virus have failed to show efficacy in pre-clinical studies, especially when the virus has reached the central nervous system (CNS). Therefore, drug repurposing seems to be an alternative tool for the development of new anti-rabies drugs. We validated and used a high-throughput, FITC-conjugated antibody-based flow cytometry assay to expedite the identification of repurposable new drug candidates against the RABV. The assay was validated using ribavirin and salinomycin as reference compounds, which showed EC50 values of 10.08 µM and 0.07 µM, respectively. We screened a SelleckChem library comprising 3035 FDA-approved compounds against RABV (CVS-11) at 10 µM concentration. Five compounds (clofazimine, tiamulin, difloxacin, harringtonine and homoharringtonine) were active against RABV, with greater than 90% inhibition. Homoharringtonine (HHT) identified in the present study is active against laboratory-adapted RABV (CVS-11) and clinical isolates of RABV, with an average EC50 of 0.3 µM in both BHK-21 and Neuro-2a cell lines and exhibits post-entry inhibition. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

29 pages, 4246 KiB  
Article
Immune Signatures in Post-Acute Sequelae of COVID-19 (PASC) and Myalgia/Chronic Fatigue Syndrome (ME/CFS): Insights from the Fecal Microbiome and Serum Cytokine Profiles
by Martin Tobi, Diptaraj Chaudhari, Elizabeth P. Ryan, Noreen F. Rossi, Orena Koka, Bridget Baxter, Madison Tipton, Taru S. Dutt, Yosef Tobi, Benita McVicker and Mariana Angoa-Perez
Biomolecules 2025, 15(7), 928; https://doi.org/10.3390/biom15070928 - 25 Jun 2025
Viewed by 1743
Abstract
While there are many postulates for the etiology of post-viral chronic fatigue and other symptomatology, little is known. We draw on our past experience of these syndromes to devise means which can expose the primary players of this malady in terms of a [...] Read more.
While there are many postulates for the etiology of post-viral chronic fatigue and other symptomatology, little is known. We draw on our past experience of these syndromes to devise means which can expose the primary players of this malady in terms of a panoply participating biomolecules and the state of the stool microbiome. Using databases established from a large dataset of patients at risk of colorectal cancer who were followed longitudinally over 3 decades, and a smaller database dedicated to building a Long PASC cohort (Post-Acute Sequelae of COVID-19), we were able to ascertain factors that predisposed patients to (and resulted in) significant changes in various biomarkers, i.e., the stool microbiome and serum cytokine levels, which we verified by collecting stool and serum samples. There were significant changes in the stool microbiome with an inversion from the usual Bacillota and Bacteroidota species. Serum cytokines showed significant differences in MIP-1β versus TARC (CC chemokine ligand 17) in patients with either PASC or COVID-19 (p < 0.02); IL10 versus IL-12p70a (p < 0.02); IL-1b versus IL-6 (p < 0.01); MCP1 versus TARC (p < 0.03); IL-8 versus TARC (p < 0.002); and Eotaxin3 versus TARC (p < 0.004) in PASC. Some changes were seen solely in COVID-19, including MDC versus MIP-1α (p < 0.01); TNF-α versus IL-1-β (p < 0.06); MCP4 versus TARC (p < 0.0001). We also show correlates with chronic fatigue where an etiology was not identified. These findings in patients with positive criteria for PASC show profound changes in the microbiome and serum cytokine expression. Patients with chronic fatigue without clear viral etiologies also have common associations, including a history of tonsillectomy, which evokes a likely immune etiology. Full article
Show Figures

Figure 1

6 pages, 197 KiB  
Communication
Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change
by Luis M. Hernández-Triana, Sanam Sewgobind, Insiyah Parekh, Nicholas Johnson and Karen L. Mansfield
Viruses 2025, 17(7), 869; https://doi.org/10.3390/v17070869 - 20 Jun 2025
Viewed by 440
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus and a major cause of human encephalitis throughout Asia, although it is currently not reported in Europe. To assess the potential impact of climate change, such as increased temperatures, and the potential for native Cx. [...] Read more.
Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus and a major cause of human encephalitis throughout Asia, although it is currently not reported in Europe. To assess the potential impact of climate change, such as increased temperatures, and the potential for native Cx. pipiens to transmit JEV genotype I in the United Kingdom (UK), we have investigated vector competence at two different temperatures. Culex pipiens f. pipiens were provided a bloodmeal containing JEV genotype I at 7.8 × 108 PFU/mL. Mosquitoes were maintained for 14 days at 21 °C or 25 °C, and rates of infection, dissemination, and transmission potential were assessed. There was no evidence for virus infection, dissemination, or potential for transmission at 21 °C. However, at 25 °C, virus infection was detected in 5 of 36 mosquitoes (13.9%). Of these, JEV disseminated to legs and wings in three specimens (3/5) and viral RNA was detected in saliva from one specimen (1/3). These data indicate that at elevated temperatures of 25 °C, UK Cx. pipiens f. pipiens could transmit JEV genotype 1. Full article
(This article belongs to the Section Invertebrate Viruses)
60 pages, 6483 KiB  
Review
The Challenge of Lyssavirus Infections in Domestic and Other Animals: A Mix of Virological Confusion, Consternation, Chagrin, and Curiosity
by Charles E. Rupprecht, Aniruddha V. Belsare, Florence Cliquet, Philip P. Mshelbwala, Janine F. R. Seetahal and Vaughn V. Wicker
Pathogens 2025, 14(6), 586; https://doi.org/10.3390/pathogens14060586 - 13 Jun 2025
Viewed by 2390
Abstract
Lyssaviruses are RNA viruses in the Family Rhabdoviridae, Genus Lyssavirus. They represent the causative agents of acute, progressive encephalitis, known historically as rabies. Regardless of specific etiology, their collective viral morphology, biochemistry, pathobiology, associated clinical signs, diagnosis, epizootiology, and management are essentially [...] Read more.
Lyssaviruses are RNA viruses in the Family Rhabdoviridae, Genus Lyssavirus. They represent the causative agents of acute, progressive encephalitis, known historically as rabies. Regardless of specific etiology, their collective viral morphology, biochemistry, pathobiology, associated clinical signs, diagnosis, epizootiology, and management are essentially the same. Despite centuries of clinical recognition, these quintessential neurotropic agents remain significant pathogens today, with substantive consequences to agriculture, public health, and conservation biology. Notably, the singular morbidity caused by lyssaviruses is incurable and constitutes the highest case fatality of any viral disease. All warm-blooded vertebrates are believed to be susceptible. The dog is the only domestic animal that serves as a reservoir, vector, and victim. In contrast, felids are effective vectors, but not reservoirs. All other rabid domestic species, such as livestock, constitute spillover infections, as a bellwether to local lyssavirus activity. Frequently, professional confusion abounds among the veterinary community, because although the viral species Lyssavirus rabies is inarguably the best-known representative in the Genus, at least 20 other recognized or putative members of this monophyletic group are known. Frequently, this is simply overlooked. Moreover, often the ‘taxonomic etiology’ (i.e., ‘Lyssavirus x’) is mistakenly referenced in a biopolitcal context, instead of the obvious clinical illness (i.e., ‘rabies’). Global consternation persists, if localities believe they are ‘disease-free’, when documented lyssaviruses circulate or laboratory-based surveillance is inadequate to support such claims. Understandably, professional chagrin develops when individuals mistake the epidemiological terminology of control, prevention, elimination, etc. Management is not simple, given that the only licensed veterinary and human vaccines are against rabies virus, sensu lato. There are no adequate antiviral drugs for any lyssaviruses or cross-reactive biologics developed against more distantly related viral members. While representative taxa among the mammalian Orders Chiroptera, Carnivora, and Primates exemplify the major global reservoirs, which mammalian species are responsible for the perpetuation of other lyssaviruses remains a seemingly academic curiosity. This zoonosis is neglected. Clearly, with such underlying characteristics as a fundamental ‘disease of nature’, rabies, unlike smallpox and rinderpest, is not a candidate for eradication. With the worldwide zeal to drive human fatalities from canine rabies viruses to zero by the rapidly approaching year 2030, enhanced surveillance and greater introspection of the poorly appreciated burden posed by rabies virus and diverse other lyssaviruses may manifest as an epidemiological luxury to the overall global program of the future. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

19 pages, 4197 KiB  
Article
Re-Emergence of Usutu Virus and Spreading of West Nile Virus Neuroinvasive Infections During the 2024 Transmission Season in Croatia
by Tatjana Vilibić-Čavlek, Ljubo Barbić, Ana Klobučar, Marko Vucelja, Maja Bogdanić, Dario Sabadi, Marko Kutleša, Branimir Gjurašin, Vladimir Stevanović, Marcela Curman Posavec, Linda Bjedov, Marko Boljfetić, Tonka Jozić-Novinc, Robert Škara, Morana Tomljenović, Željka Hruškar, Mahmoud Al-Mufleh, Tanja Potočnik-Hunjadi, Ivana Rončević and Vladimir Savić
Viruses 2025, 17(6), 846; https://doi.org/10.3390/v17060846 - 13 Jun 2025
Viewed by 1390
Abstract
Neuroinvasive arboviruses such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), Usutu virus (USUV), and Toscana virus (TOSV) have (re-)emerged with increasing incidence and geographic range. We analyzed the epidemiology of arboviral infections in Croatia during the 2024 transmission season. A total [...] Read more.
Neuroinvasive arboviruses such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), Usutu virus (USUV), and Toscana virus (TOSV) have (re-)emerged with increasing incidence and geographic range. We analyzed the epidemiology of arboviral infections in Croatia during the 2024 transmission season. A total of 154 patients with neuroinvasive diseases (NID), 1596 horses, 69 dead birds, and 7726 mosquitoes were tested. Viral RNA was detected using RT-qPCR. IgM/IgG-specific antibodies were detected using commercial ELISA or IFA, with confirmation of cross-reactive samples by virus neutralization test. RT-qPCR-positive samples were Sanger sequenced. Arboviral etiology was confirmed in 33/21.42% of patients with NID. WNV was most frequently detected (17/11.03%), followed by TBEV (10/6.49%), USUV (5/3.24%), and TOSV (1/0.64%). WNV infections were reported in regions previously known as endemic, while in one continental county, WNV was recorded for the first time. USUV infections re-emerged after a six-year absence. In addition to human cases, acute WNV infections were recorded in 11/395 (2.78%) of horses and two dead crows. WNV IgG seropositivity was detected in 276/1168 (23.63%) and TBEV IgG seropositivity in 68/428 (15.88%) horses. None of the tested mosquito pools were positive for WNV and USUV RNA. Phylogenetic analysis showed the circulation of WNV lineage 2 and Usutu Europe 2 lineage. Climate conditions in 2024 in Croatia were classified as extremely warm, which could, at least in part, impact the quite intense arboviral season. The spreading of flaviviruses in Croatia highlights the need for continuous surveillance in humans, animals, and vectors (“One Health”). Full article
(This article belongs to the Special Issue Arboviral Lifecycle 2025)
Show Figures

Figure 1

14 pages, 862 KiB  
Article
Clinical Variability of Pediatric MERS: Insights from a Retrospective Observational Study
by Mariaelena Romeo, Maria Polselli, Vittorio Mantero, Romina Moavero, Luigi Mazzone and Massimiliano Valeriani
J. Clin. Med. 2025, 14(12), 4169; https://doi.org/10.3390/jcm14124169 - 12 Jun 2025
Viewed by 420
Abstract
Background/Objectives: Mild encephalitis/encephalopathy with reversible splenial lesion (MERS) is a rare neurological disorder primarily affecting pediatric patients but also observed in adults. The radiological hallmark of MERS is a reversible lesion in the splenium of the corpus callosum. Although MERS generally has [...] Read more.
Background/Objectives: Mild encephalitis/encephalopathy with reversible splenial lesion (MERS) is a rare neurological disorder primarily affecting pediatric patients but also observed in adults. The radiological hallmark of MERS is a reversible lesion in the splenium of the corpus callosum. Although MERS generally has a favorable prognosis, its variable presentation poses diagnostic challenges. This study examines the clinical variability, diagnostic hurdles, and outcomes of pediatric MERS cases. Methods: Our retrospective study included 19 pediatric patients (11 female and 8 males with an average age of 8.41 years) diagnosed with MERS between 2016 and 2024. Clinical data, including demographic characteristics, prodromal symptoms, neurological features, MRI findings, laboratory results, treatments, and outcomes, were analyzed. Results: Among the 19 patients, 84% were previously healthy, with the remaining 16% having pre-existing medical conditions. The most common prodromal symptoms were fever (68%), vomiting (47%), and diarrhea (32%). Neurological manifestations included seizures (26%), headache (21%), and drowsiness (21%), among others. In terms of etiology, infections were identified in 52% of the patients, with viral agents, particularly rotavirus, being the most common (40%). Hyponatremia was present in 63% of the cohort. The typical MRI splenial lesion underwent complete resolution in all patients. Treatment varied, with 53% of patients receiving electrolyte rehydration, and 21% receiving intravenous immunoglobulin or corticosteroids. All patients, but one, achieved full recovery. Discussion: This study reinforces the clinical heterogeneity of MERS in pediatric patients, emphasizing its favorable prognosis independently of presentation. Viral infections and hyponatremia were the most frequent etiologies. Full article
(This article belongs to the Special Issue Clinical Advances in Child Neurology)
Show Figures

Figure 1

11 pages, 1020 KiB  
Review
Could the Identification of Skin Lesions Be Beneficial for the Differential Diagnosis of Viral Meningitis?
by Agata Marszałek, Weronika Górska, Artur Łukawski, Carlo Bieńkowski and Maria Pokorska-Śpiewak
Zoonotic Dis. 2025, 5(2), 16; https://doi.org/10.3390/zoonoticdis5020016 - 11 Jun 2025
Viewed by 1014
Abstract
Viral infections may vary from mild to severe, manifesting with a wide range of symptoms, including skin lesions, influenza-like symptoms, or meningitis/meningoencephalitis signs. Viruses that cause both skin lesions and meningitis comprise, e.g., Enteroviruses (EVs) and Herpes viruses (HV). EVs are responsible for [...] Read more.
Viral infections may vary from mild to severe, manifesting with a wide range of symptoms, including skin lesions, influenza-like symptoms, or meningitis/meningoencephalitis signs. Viruses that cause both skin lesions and meningitis comprise, e.g., Enteroviruses (EVs) and Herpes viruses (HV). EVs are responsible for approximately 90% of viral meningitis cases. They occur frequently among children under 3 years of age and are characterized by various types of rash. HV infections are responsible for up to 18% of viral meningitis, mostly among adults or older children. Most patients with viral meningitis recover entirely. However, the rates of serious complications and mortality may be as high as 74% and 10%, respectively, for particularly vulnerable neonatal or immunocompromised patients. Patients that present signs of encephalitis and/or are suspected to have HSV/VZV infection require immediate implementation of empiric acyclovir therapy before receiving the polymerase chain reaction (PCR) test results. The clinical picture of viral meningitis may differ depending on the virus, including the presence of both meningeal signs and skin lesions. Therefore, early identification of the etiological factor is necessary for early and proper treatment implementation. It is crucial to accurately differentiate between the causative agents, and this work focuses on answering the question of how skin lesions can assist in achieving a better and faster diagnosis. The aim of this review was to analyze the characteristics of skin lesions in the course of meningitis caused by various viral species. This can be helpful for physicians in the diagnostic process and subsequent treatment. Full article
Show Figures

Figure 1

15 pages, 1894 KiB  
Article
Spatiotemporal Distribution and Host–Vector Dynamics of Japanese Encephalitis Virus
by Qikai Yin, Bin Li, Ruichen Wang, Kai Nie, Shihong Fu, Songtao Xu, Fan Li, Qianqian Cui, Dan Liu, Huanyu Wang and Guodong Liang
Viruses 2025, 17(6), 815; https://doi.org/10.3390/v17060815 - 4 Jun 2025
Viewed by 574
Abstract
Japanese encephalitis (JE), a mosquito-borne viral disease caused by the Japanese encephalitis virus (JEV), remains a significant public health threat in Asia. Although vaccination programs have successfully reduced the incidence of JE, challenges persist in the adult population, and the emergence of rare [...] Read more.
Japanese encephalitis (JE), a mosquito-borne viral disease caused by the Japanese encephalitis virus (JEV), remains a significant public health threat in Asia. Although vaccination programs have successfully reduced the incidence of JE, challenges persist in the adult population, and the emergence of rare JEV genotypes poses additional risks. In this study, a phylogenetic analysis of the whole JEV genome sequence, along with a temporal–spatial analysis of isolates and a host–vector analysis, was used to examine the changes in JEV transmission dynamics before and after 2012. The results revealed persistent differences between the dominant G1 and G3 genotypes, as well as the re-emergence of G4 and G5 genotypes. Although JEV has been detected in non-traditional vectors and atypical mammalian hosts, Culex tritaeniorhynchus and pigs remain the primary vector and amplifying host, respectively. These findings underscore the need to enhance existing JEV genotype surveillance while addressing emerging threats from genotype diversity, host expansion, and geographic spread. Full article
(This article belongs to the Special Issue Mosquito-Borne Encephalitis Viruses)
Show Figures

Figure 1

28 pages, 6149 KiB  
Article
Mathematical Modeling and Analysis of Human-to-Human Transmitted Viral Encephalitis
by Md. Saifur Rahman, Rehena Nasrin and Md. Haider Ali Biswas
Mathematics 2025, 13(11), 1809; https://doi.org/10.3390/math13111809 - 28 May 2025
Viewed by 1385
Abstract
Encephalitis, a severe neurological condition caused by human-to-human (H2H) transmitted viruses, such as herpes simplex virus (HSV), requires a rigorous mathematical framework to understand its transmission dynamics. This study develops a nonlinear compartmental model, SEITR (Susceptible–Exposed–Infected–Treated–Recovered), to characterize the progression of viral encephalitis. [...] Read more.
Encephalitis, a severe neurological condition caused by human-to-human (H2H) transmitted viruses, such as herpes simplex virus (HSV), requires a rigorous mathematical framework to understand its transmission dynamics. This study develops a nonlinear compartmental model, SEITR (Susceptible–Exposed–Infected–Treated–Recovered), to characterize the progression of viral encephalitis. The basic reproduction number (R0) is derived using the next-generation matrix method, serving as a threshold parameter determining disease persistence. The local and global stability of the disease-free and endemic equilibria are established through a rigorous mathematical analysis. Additionally, a sensitivity analysis quantifies the impact of key parameters on R0, offering more profound insights into their mathematical significance. Numerical simulations validate the theoretical results, demonstrating the system’s dynamical behavior under varying epidemiological conditions. This study provides a mathematically rigorous approach to modeling viral encephalitis transmission, filling a gap in the literature and offering a foundation for future research in infectious disease dynamics. Full article
Show Figures

Figure 1

Back to TopTop