Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mansfield, K.L.; Hernández-Triana, L.M.; Banyard, A.C.; Fooks, A.R.; Johnson, N. Japanese encephalitis virus infection, diagnosis and control in domestic animals. Vet. Microbiol. 2017, 201, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Sewgobind, S.; Johnson, N.; Mansfield, K.L. Japanese encephalitis virus: An emerging threat. J. Med. Microbiol. 2022, 71, 001620. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, H.; Li, X.; Fu, S.; Cao, L.; Shao, N.; Zhang, W.; Wang, Q.; Lu, Z.; Lei, W.; et al. Changing geographic distribution of Japanese encephalitis virus genotypes, 1935–2017. Vector Borne Zoonotic Dis. 2019, 19, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Simon-Loriere, E.; Faye, O.; Prot, M.; Casademont, I.; Fall, G.; Fernandez-Garcia, M.D.; Diagne, M.M.; Kipela, J.-M.; Fall, I.S.; Holmes, E.C.; et al. Autochthonous Japanese encephalitis with Yellow Fever coinfection in Africa. N. Engl. J. Med. 2017, 376, 1483–1485. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; Williams, D.T.; van den Hurk, A.F.; Smith, D.W.; Currie, B.J. Japanese encephalitis virus: The emergence of genotype IV in Australia and its potential endemicity. Viruses 2022, 14, 2480. [Google Scholar] [CrossRef] [PubMed]
- Paz, S. Climate change impacts on vector-borne diseases in Europe: Risks, predictions and actions. Lancet Reg. Health Eur. 2020, 1, 100017. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). Culex pipiens—Factsheet for experts. 2020. Available online: https://www.ecdc.europa.eu/en/infectious-disease-topics/related-public-health-topics/disease-vectors/facts/mosquito-factsheets/culex-pipiens (accessed on 18 September 2023).
- Folly, A.J.; Dorey-Robinson, D.; Hernández-Triana, L.M.; Ackroyd, S.; Vidana, B.; Lean, F.Z.X.; Hicks, D.; Nuñez, A.; Johnson, N. Temperate conditions restrict Japanese encephalitis virus infection to the mid-gut and prevents systemic dissemination in Culex pipiens mosquitoes. Sci. Rep. 2021, 11, 6133. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Triana, L.M.; Folly, A.J.; Sewgobind, S.; Lean, F.Z.X.; Ackroyd, S.; Nuñez, A.; Delacour, S.; Drago, A.; Visentin, P.; Mansfield, K.L.; et al. Susceptibility of Aedes albopictus and Culex quinquefasciatus to Japanese encephalitis virus. Parasites Vectors 2022, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Met Office, UK and Global Extreme Heatwaves. 2023. Available online: https://www.metoffice.gov.uk/ (accessed on 24 August 2023).
- Van den Eynde, C.; Sohier, C.; Matthijs, S.; de Regge, N. Relevant day/night temperatures simulating Belgian summer conditions reduce Japanese encephalitis virus dissemination and transmission in Belgian field-collected Culex pipiens mosquitoes. Viruses 2023, 15, 764. [Google Scholar] [CrossRef] [PubMed]
- Chapman, G.E.; Sherlock, K.; Hesson, J.C.; Blagrove, M.S.C.; Lycett, G.J.; Archer, D.; Solomon, T.; Baylis, M. Laboratory transmission potential of British mosquitoes for equine arboviruses. Parasites Vectors 2020, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Van den Eynde, C.; Sohier, C.; Matthijs, S.; de Regge, N. Belgian Anopheles plumbeus mosquitoes are competent for Japanese Encephalitis virus and readily feed on pigs, suggesting a high vectorial capacity. Microorganisms 2023, 11, 1386. [Google Scholar] [CrossRef] [PubMed]
- Krambrich, J.; Akaberi, D.; Lindahl, J.F.; Lundkvist, A.; Hesson, J.C. Vector competence of Swedish Culex pipiens mosquitoes for Japanese encephalitis virus. Parasites Vectors 2024, 17, 220. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, K.L.; La Rocca, S.A.; Khatri, M.; Johnson, N.; Steinbach, F.; Fooks, A.R. Detection of Schmallenberg virus serum neutralising antibodies. J. Virol. Methods 2013, 188, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Schuh, A.J.; Ward, M.J.; Brown, A.J.; Barrett, A.D. Phylogeography of Japanese encephalitis virus: Genotype is associated with climate. PLoS Neglected Trop. Dis. 2013, 7, e2411. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, U.; Bergmann, F.; Fischer, D.; Müller, K.; Holicki, C.M.; Sadeghi, B.; Sieg, M.; Keller, M.; Schwehn, R.; Reuschel, M.; et al. Spread of West Nile virus and Usutu virus in the German bird population, 2019–2020. Microorganisms 2022, 10, 807. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Roche, R.; Gould, E.A. Understanding the dengue viruses and progress towards their control. Biomed. Res. Int. 2013, 2013, 690835. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Valencia, V.; Olive, M.M.; Le Goff, G.; Faisse, M.; Bourel, M.; L’Ambert, G.; Vollot, B.; Tolsá-García, M.J.; Paupy, C.; Roiz, D. Host-feeding preferences of Culex pipiens and its potential significance for flavivirus transmission in the Camargue, France. Med. Vet. Entomol. 2025, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Brugman, V.A.; Hernández-Triana, L.M.; England, M.E.; Medlock, J.L.; Logan, J.G.; Wilson, A.J.; Fooks, A.R.; Johnson, N.; Carpenter, S. Blood-feeding patterns of native mosquitoes and insights into the potential role as pathogen vectors in the Thames estuary region of the United Kingdom. Parasites Vectors 2016, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Folly, A.J.; Sewgobind, S.; Hernández-Triana, L.M.; Mansfield, K.L.; Lean, F.Z.X.; Lawson, B.; Seilern-Moy, K.; Cunningham, A.A.; Spiro, S.; Wrigglesworth, E.; et al. Evidence for overwintering and autochthonous transmission of Usutu virus to wild birds following its redetection in the United Kingdom. Transbound. Emerg. Dis. 2022, 69, 3684–3692. [Google Scholar] [CrossRef] [PubMed]
Mosquito Species | JEV Strain | Genotype | Temperature | Days Post Infection | Infection Rate (%) | References (Country) |
---|---|---|---|---|---|---|
Aedes albopictus | R-9 | III | 26 °C | 13 | 65 | [11] (France) |
SA-21 | III | 25 °C | 14 | 17 | [9] (Italy, Spain) | |
XZ0934 R-9 | V | 26 °C | 13 | 80 | [11] (France) | |
Aedes detritus | Muar | V | 23 °C | 14 | 78 | [12] (United Kingdom) |
Anopheles plumbeus | Nakayama | III | 25 °C 25 °C/15 °C | 14 | 34.1 | [13] (Belgium) |
Culex pipiens | CN5138-11 | II | 18 °C | 21 | 100 | [12] (United Kingdom) |
XZ0934 | III | 26 °C | 13 | 85 | [11] (France) | |
V | 100 | |||||
SA-21 | III | 20 °C | 14 | 70 | [8] (United Kingdom) | |
25 °C | 90 | |||||
37 | [11] (Belgium) | |||||
Nakayama | III | 25 °C | 14 | 35 | ||
15–25 °C | ||||||
Nakayama | III | 25 °C | 14, 21, 28 | 10 | [14] (Sweden) | |
Culiseta annulata | CN5138-11 | II | 24 °C 18 °C | 14 21 | 20 100 | [12] (United Kingdom) |
Experimental Group | Total Mosquitoes | Total Blood Fed | % Feeding Rate |
---|---|---|---|
21 °C | |||
Control | 10 | 7 | 70 |
JEV-infected | 43 | 26 | 60.5 |
25 °C | |||
Control | 10 | 7 | 70 |
JEV-infected | 62 | 36 | 58.1 |
Temperature °C | |||
---|---|---|---|
21 °C | 25 °C | ||
Infectious bloodmeal titre (PFU/mL) | 7.8 × 108 | 7.8 × 108 | |
Infection (Body) | 0/26 (0) | 5/36 (13.9) | |
Dissemination (Legs) | 0 | 3/5 (60.0) | |
Transmission potential (Saliva) | 0 | 1/3 (33.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Triana, L.M.; Sewgobind, S.; Parekh, I.; Johnson, N.; Mansfield, K.L. Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change. Viruses 2025, 17, 869. https://doi.org/10.3390/v17070869
Hernández-Triana LM, Sewgobind S, Parekh I, Johnson N, Mansfield KL. Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change. Viruses. 2025; 17(7):869. https://doi.org/10.3390/v17070869
Chicago/Turabian StyleHernández-Triana, Luis M., Sanam Sewgobind, Insiyah Parekh, Nicholas Johnson, and Karen L. Mansfield. 2025. "Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change" Viruses 17, no. 7: 869. https://doi.org/10.3390/v17070869
APA StyleHernández-Triana, L. M., Sewgobind, S., Parekh, I., Johnson, N., & Mansfield, K. L. (2025). Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change. Viruses, 17(7), 869. https://doi.org/10.3390/v17070869